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In order to model emergency rescue location problem with uncertain rescue time, an uncertain expected cost minimization model
is proposed under uncertain environment. For solving this model, we convert the uncertain model to its equivalent deterministic
form. Finally, a numerical example has been presented to illustrate the model. The computational results which were solved by the
down mountain algorithm are provided to demonstrate the effectiveness of the model.

1. Introduction

In recent years, all kinds of unexpected disastrous events
continue to occur all over the world [1], such as terrorist
attacks on the World Trade Center, “SARS,” “5.12” Wenchuan
earthquake and Yushu earthquake in China, serious droughts
in the five provinces of southwest China, and Japan’s nuclear
leak. These disasters have caused great property loss for
people. Therefore, it is essential to research the sudden
disaster emergency management and its logistics system.

Emergency rescue center location is a vital problem in
the field of emergency logistics management [1], and it is also
an important tool to achieve effective rescue resources distri-
bution and scheduling after the disaster. Emergency rescue
center location problem is different from normal location-
allocation problems. The difference is mainly reflected in the
uncertainty of demand for the disaster area and the urgency
of the rescue time. Large-scale disaster emergency rescue
needs to mobilize large-scale emergency supplies. Effective
emergency rescue is very important to reduce casualties.
However, in the case of a large disaster, people needs to
transport a lot of aid supplies and rescuers to the disaster
area in a short time. Because of burst and uncertainty on
disaster and demand for emergency supplies, we must make
reasonable optimization for emergency location in order to
make the entire emergency rescue network work effectively

(2].

Scholars have made a lot of research on emergency
location problem. Cooper [3] proposed facility location-
allocation problem which has been widely used in the
areas of emergency location. In the premise of covering all
demand point customers, Roth [4] and Toregas and Swaim
[5] studied the minimum cost of facilities location of set
covering problem; Murali et al. [6] studied emergency logis-
tics facility location problem with capacity constraints and
established the maximum covering location model. Murtagh
and Niwattisyawong [7] studied facility location-allocation
problem with capacity constraints.

Harewood [8] has calculated the emergency rescue prob-
ability using queuing theory in rescue cover problem and
studied emergency rescue problem with the minimum cost.
Brotcorne et al. [9], Goldberg [10], Alsalloum and Rand [11],
and Tovia [12] have studied emergency location problem
which is subject to the time and cost. In the premise of meet-
ing the urgency of rescue time, Fang and He [13] proposed the
minimum total cost model. Wang and Zhang [14] proposed
emergency rescue center location model which was based
on the probability of disasters, spread function of disasters,
and rescue function and was solved by embedded heuristic
genetic algorithm. Ma et al. [15] researched covering location
problem, set covering location problem, and the maximal
covering location problem which were based on time sat-
isfaction and were solved by different algorithms, respec-
tively. Galvao et al. [16], Sheu [17], Rajagopalan et al. [18],
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and Yuan and Wang [19] have researched emergency res-
cue location problem using a phased manner, respectively.
Beraldi and Bruni [20] have researched the phased model by
stochastic programming.

Although much research on the emergency rescue loca-
tion problem has been made with deterministic assumption,
the real world is full of nondeterministic factors. There are
various forms of uncertainty, such as randomness, fuzziness,
and fuzzy randomness [2]. For the uncertainty of emergency
events, a large number of scholars have studied how to solve
the uncertainty around the emergency location problem.
Zhou and Liu [21, 22] proposed facility location-allocation
problem with stochastic demands and fuzzy demands. Ren
et al. [23] established a two-stage stochastic programming
model of the uncertain consumer demand and designed the
benders decomposition algorithm. Averbakh and Berman
[24] have studied location problem with indefinite require-
ments by deviations robust optimization methods. Mete and
Zabinsky [25] proposed reserves and distribution stochastic
optimization method under a variety of possible disasters.
Rawls and Turnquist [26] proposed a two-stage stochastic
mixed integer programming model in the case of hurricanes
and other uncertain disasters. Sheu [27] proposed a dynamic
emergency rescue demand management model in the case
of insufficient information on large-scale natural disasters.
By the definition of trapezoidal fuzzy numbers sort criteria,
Guo and Qi [28] gave the emergency material storage location
model and algorithm in the fuzzy environment. Ben-Tal et
al. [29] processed an emergency rescue location problem
under uncertain demand by robust optimization model. In
the case of factory supply capacity and customer demand
for fuzzy variables, Luo et al. [30] established a distribution
center location model with fuzzy variables. Tao and Hu [31]
established a stochastic programming model which is based
on set covering for the uncertainty demand and logistics
network in emergency relief.

Probability theory can be regarded as a tool to understand
objective uncertainty, while sometimes uncertainty shows its
subjectivity, known as fuzziness. If the uncertainty behaves
neither randomly nor fuzzily, we need a new tool. To describe
this type of uncertainty, Liu founded uncertainty theory in
2007 [32] and redefined it in 2010 [33]. Uncertainty theory
is a branch of axiomatic mathematics for modeling human
uncertainty. Many researchers have made a lot of significant
works in this area. Liu [34] proved the linearity of expected
value operator. Liu and Ha [35] derived a formula that can
easily calculate the expected values of monotone functions
of uncertain variables. Making a great contribution, Liu [36]
first proposed uncertain programming which is a type of
mathematical programming involving uncertain variables.
Many practical problems can be expressed as uncertain
programming problems. A number of works in this area
have also been developed. Liu and Chen [37] proposed an
uncertain multiobjective programming and an uncertain goal
programming. Recently, uncertain programming has been
extended to the fields of uncertain network optimization [38],
Chinese postman problem [39], transportation problem [40],
newsboy problem [41, 42], and so forth.
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In this paper, on the basis of uncertainty theory, the
emergency rescue location model is presented and solved.
This paper is organized as follows. In Section 2, some basic
concepts and properties of uncertainty theory are introduced.
In Section 3, the emergency center location model with
uncertain rescue transport time and the appropriate decision
matrix form are given. In Section 4, a numerical example is
presented. The conclusion is given in the last section.

2. Preliminaries

In this section, we introduce some foundational concepts and
properties on uncertainty theory.

A collection & of T'is called a g-algebra if: (a) I' € Z; (b)
ifA e Z, thenA® € &5 (c)if A, Ay, ... € &, then A UA,U
.-+ € Z.Eachelement A in the o-algebra Z is called an event.
Uncertain measure is a function from & to [0, 1]. In order
to present an axiomatic definition of uncertain measure, it is
necessary to assign to each event A a number #{A} which
indicates the belief degree that the event A will occur. In order
to ensure that the number .#{A} has certain mathematical
properties, Liu [43] proposed the following three axioms.

Axiom I (normality axiom). {T} = 1 for the universal set
I.

Axiom 2 (duality axiom). #{A} + M{A°} = 1 for any event
A.

Axiom 3 (subadditivity axiom). For every countable se-
quence of events A |, A5, ..., we have

/%@A,,)giﬂ(/\i). M

Axiom 4 (Liu [34], product axiom). Let (I}, &y, #,) be
uncertainty spaces for k = 1,2,...; the product uncertain
measure ./ is an uncertain measure satisfying

/%(HAk>:/\/%(Ak), )
k=1 k=1
where A are arbitrarily chosen events from &) for k =

1,2,..., respectively.

Definition I (Liu [43]). An uncertain variable is a measurable
function & from the uncertainty space (T, &, /) to the set of
real numbers; that is, for any Borel set B of real numbers, the
set

{£eBl={yeT|&(y) e B} (3)
is an event.

Definition 2 (Liu [43]). The uncertainty distribution @ of an
uncertain variable £ is defined by

O (x) = M{E < x} (4)

for any real number x.
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Obviously, the uncertainty distribution gives a descrip-
tion of uncertain variables. In many cases, it is sufficient to
know the uncertainty distribution rather than the uncertain
variable itself. Some useful uncertainty distributions are given
here.

Definition 3 (Liu [43]). Anuncertain variable  is called linear
it it has a linear uncertainty distribution

0, if x<a,
@ (x) = z:z ifa<x<b, (5)
1, ifx>b

denoted by Z(a, b), where a and b are real numbers with a <

To calculate the uncertain measure from an uncertainty
distribution, we introduce relevant theorems and definitions.

Theorem 4 (Liu [33], measure inversion theorem). Let & be
an uncertain variable with continuous uncertainty distribution
®; then, for any real number x, one has

ME<x}=D(x), ME>xI=1-D(x). (6)

Definition 5 (Liu [43]). An uncertainty distribution ® is said

to be regular if its inverse function ® ' (@) exists and is unique
for each a € (0, 1).

Definition 6 (Liu [43], inverse uncertainty distribution). Let&
be an uncertain variable with regular uncertainty distribution
®; then the inverse function ®' is called the inverse
uncertainty distribution of &.

Now, we give some useful inverse uncertainty distribu-
tions.

Definition 7 (Liu [43]). The inverse uncertainty distribution
of linear uncertain variable £(a, b) is

o' (a)=(1-a)a—ab. 7)
Theorem 8 (Liu [33]). Let &,&,,...,¢&, be independent vari-
ables with regular uncertainty distributions ®,,D,,...,D,,
respectively. If f is a strictly increasing function, then

E=f(&+&++8,) (8)

is an uncertain variable with inverse uncertainty distribution

¥ (@) = (0] (@, 0, (@),....0,' (@). (9

Definition 9 (Liu [43]). Leté&,,¢&,,. .., &, be independent vari-
ables with regular uncertainty distributions ®,, ®,,...,®,,
respectively. Since
f(x%0.000%,) =X AXy Ao+ A X, (10)
is a strictly increasing function, the minimum
£:E1A£2/\"‘/\§n (11)

is an uncertain variable with inverse uncertainty distribution
Y (@) = (@AD (@A AD (). (12)

Expected value is the average value of uncertain variable
in the sense of uncertain measure and represents the size of
uncertain variable.

Theorem 10 (Liu [43]). Let & be an uncertain variable with
regular uncertainty distribution ©; if the expected value exists,
then

E[¢] = Jl o () dav. (13)

0

Definition 11 (Liu [43]). Let £ ~ Z(a,b) be a linear
uncertain variable. Then, its inverse uncertainty distribution
is @' (a) = (1 — a)a — ab, and its expected value is

E[¢] = Ll o (o) da = JOI (1-a)a+ab)da = a;b'

(14)

Theorem 12 (Liu [33]). Let & and y be independent uncertain
variables with finite expected values. Then, for any real num-
bers a and b, one has

E[a& +bn] = aE [&] + bE [1] . (15)

3. Problem Descriptions

Here, we assume that there is a group of rescue demand
points. Each has its location and population. In order to
supply the demand points, we will construct a group of emer-
gency rescue centers, respectively, within given locations.
A single rescue demand point can be supplied by multiple
emergency rescue centers and a single emergency rescue
center can supply multiple rescue demand points. In order
to solve this problem, we list model parameters and decision
variables as follows.

3.1. Index Set

i is index of emergency rescue center.

j is index of rescue demand point.

3.2. Model Parameters

is the construction cost of emergency rescue center
(i=12,...,m).

¢; is the per hour transport cost between emergency
rescue center i and rescue demand point j (i =
L2,....mj=12,...,n).

Eij is the uncertain time between emergency rescue cen-
ter i and rescue demand point j (i = 1,2,...,m;j =
1,2,...,n).

®,; is the uncertainty distribution of §;; (i = 1,2,...,m;
j=12,...,n).



d);jl is the inverse uncertainty distribution of §; (i =

L2,...,mj=12,...,n).

is the distance between emergency rescue center i
and rescue demand point j (i = 1,2,...,m;j =
1,2,...,n).

T; is the time limit of rescue demand point j (j =

1,2,...,n).

p is the maximum number of emergency rescue center.

d;j

p; is the maximum number of rescue demand point
covered by each emergency rescue center (i =
1L,2,...,m).

« is confidence level.
3.3. Decision Variables. Consider

X =

11, if emergency rescue center i is selected,
1

0, otherwise,

1, if rescue demand point j

Yij = be serviced by emergency rescue point i,
0, otherwise.

(16)

3.4. Uncertain Model of Emergency Rescue Location Problem.
C is the total cost that includes the construction cost and
transportation cost, and then

C= Zci'xi + Z Zcijfij)’ij- (17)
i=1

j=li=1

In decision making, we hope to minimize the total cost.

By the definition of &;;, the expectation of the total cost is

C(x, 9,8 =

ch'xl + Z Z 1_1yij . (18)

j=li=1

Thus, the objective function of the decision problem is to
make the expected value of the total cost minimum; that is

minC (x, y,&

ZCx + ZZCIJ iiYii | - 19)

j=li=1

Consider the time urgency of emergency rescue center
location, that is, in a limited period of time, to complete
the emergency work after the disaster. Hence, for each
rescue demand point, the shortest time of the emergency
rescue center to the rescue demand point should be in a
predetermined time. Then, we give the constraint of time:

m
/\fijJ’ij <T
i=1

In the actual calculation, the affected point j might not
served by the rescue center i, then Yij = 0, and /\Zlfijy,-j =0

(j=12,...,n). (20)
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In order to avoid such a result, we define the transportation
time as

§ivip i y=1
K (fij,)’ij) = 1QJ) / i )’ij‘ o, (21)

where Q is a very large number.
And an uncertain time constraint is given:

m
i=1
Based on the analysis of the decision making process,

the emergency rescue location problem model is stated as
follows. Consider

min  C(x, 2,8 =E| YCx;+ Y Y&y | (23)

i=1 j=1i=1

M ( N\K;; (&> ;) < Tj> >« (24)
i=1

ixi =P (25)
i=1
Vij < %i (26)
ilyijspi (i=12,...,m) (27)
=
Xp» Yij € {0,1}. (28)

Objective (23) means the minimization of total con-
struction cost of emergency rescue center. Constraint (24)
means the time limit. Constraints (25) and (26) mean that
emergency rescue center to participate in the rescue work
does not exceed the number of p. Constraint (27) means the
number of restrictions of emergency rescue center to supply
rescue demand points.

Then, this programming problem can be transformed
into an equivalent deterministic programming problem by
uncertainty theory as follows. Consider

min C= ZCx +ZZ <J i (“)do‘)%

j=li=1

m

s.t. /_\d);jl (ocj, yl-j) <T

in <p (29)
Yij S X
Zyij < Ppi
=1

€ {0,1}.

(i=12,...,m)

Xi> Vij
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TaBLE 1: Distance (unit: km).

TABLE 2: Construction cost and transport cost.

Rescue demand point x1 x2 x3 x4 x5
1 13.7 5.2 9.3 12.0 7.2
2 19.0 131 8.4 32 7.6
3 12.0 3.3 4.9 8.0 4.3
4 14.5 8.0 3.6 2.5 3.8
5 5.8 3.4 3.8 12.7 11.2
6 6.7 4.3 4.1 19.3 9.8
7 11.7 9.2 3.8 5.6 9.2
8 6.0 7.9 6.3 10.9 12.6
9 21.0 15.0 12.3 1.2 8.5
10 13.0 52 8.4 10.0 21.0
11 35 8.6 5.3 6.2 7.5
12 20.0 16.5 13.4 1211 5.7
13 11.2 3.8 5.7 9.8 8.4
14 14.3 8.9 7.5 12.5 10.0
15 2.5 3.8 1.8 5.9 9.8
16 15.6 5.6 4.8 12.3 21.0
17 3.2 4.3 18.6 9.7 8.5
18 7.8 19.3 8.5 3.2 12.8
19 4.9 12.9 8.9 13.5 21.0
20 15.6 6.5 13.8 4.2 10.0
4. The Numerical Example

After our model is designed and a conceptual method is
found, a realistic problem is how it works when sample data
are given. An example of a group of rescue demand points and
planned locations for construction of emergency rescue cen-
ter is presented in the following tables. The distance between
those locations and the construction cost and transport cost
as well as efficiency restrictions are also given (there are 20
rescue demand points and 5 alternative emergency rescue
centers). For simplicity, the transport time is performed as a
linear uncertain variable, that is, E,-j ~ Z(a,b); then we give
experts empirical data table (Tables 1, 2, and 3). The location
program requires the following parameters p = 3,p, =
P, = P3s = py = ps = 15. When a solution, location
selection vector, and requirement cover matrix are given, we
can calculate the objective value. It is also clear to determine
whether the solution is reasonable and whether it can meet
every constraint in our model.

We use the down mountain algorithm to solve the
numerical example. The algorithm we actually performed is
to search for a reasonable and the most efficient solution.
Obviously, the constrains can be used to reduce the scope so
that the best solution can quickly be found.

We get the optimal requirement cover matrix by calcula-
tion (Table 4). The best solution shows that the emergency
rescue location selection vector is (0, 1, 1,0, 1); that is, the
emergency rescue centers x2, x3, and x5 are selected. And the
emergency rescue center x2 provides services for the rescue
demand points numbers 1, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, and 20. The emergency rescue center x3 provides
services for the rescue demand points numbers 2, 3, 4, 5, 6,

Per hour transport < « 3 <4 5

cost/million

1 2.1 2.2 2.3 2.0 2.0
2 2.3 1.8 2.5 1.7 1.5
3 19 1.9 1.6 2.4 3.0
4 1.8 1.5 1.9 2.1 2.1
5 1.7 2.5 1.5 2.3 3.0
6 2.1 1.7 2.5 2.2 2.4
7 2.3 1.6 2.1 2.4 2.1
8 2.4 1.4 1.8 2.1 2.0
9 2.5 2.0 1.7 2.5 2.0
10 3.0 2.3 1.2 2.6 2.1
1 1.8 1.3 1.3 3.0 2.6
12 14 1.8 2.0 13 2.5
13 2.0 1.6 2.1 1.8 2.8
14 1.8 1.9 2.5 1.9 1.2
15 1.6 2.1 2.4 1.5 1.6
16 2.1 2.3 1.2 14 1.8
17 2.6 1.1 2.3 2.6 1.7
18 2.2 0.9 2.2 2.5 3.0
19 1.6 1.6 2.2 2.2 1.9
20 1.8 1.7 1.8 2.1 2.2
Construction cost of 98 97 100 96 99

rescue center/million

7, 8,10, 13,15, 16, 18, 19, and 20. The emergency rescue center
x5 provides services for the rescue demand points numbers
1,2,3,4,79,10,11, 12, 14, and 17. Then, the objective value is
672.295.

5. Conclusions

Emergency rescue location problem is an important issue
in emergency management. An emergency rescue location
model under uncertain environment is presented in this
paper. An uncertain variable is introduced to describe the
transport time between emergency rescue centers and rescue
demand points. Based on uncertain theory, an uncertain
expected cost minimization model was proposed. Finally,
a numerical example has been presented to illustrate the
effectiveness of the model.

There are some suggestions for future research. We could
introduce additional uncertain parameters into this model or
construct a dynamic uncertain model, so that it should be
more suitable in emergency management.
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TABLE 3: Linear uncertain distribution of transport time (unit: hour).

Rescue demand point x1 x2 x3 x4 x5 Time limit

1 £(7.0,9.1) £(5.3,7.9) 2(5.6,8.4) £(6.9,10.3) 2(2.1,32) 6

2 £(8.2,13.5) £(8.1,12.2) P(4.6,6.9) 2(1.3,2.5) £(2.5,3.8) 6

3 £(6.5,8.6) 2(1.4,22) 2(1.5,2.3) 2(7.0,11) 2(1.3,2.0) 3

4 £(7.5,9.5) £(3.0,4.5) 2(1.3,3.0) 2(1.0,2.0) 2(1.0,1.1) 3

5 P(2.5,4.5) 2(1.0,1.6) 2(1.2,2.3) £(7.1,9.1) P(4.2,62) 4

6 #(3.0,5.0) £(1.2,2.3) £(1.5,2.6) £(8.1,13.0) £(3.1,4.7) 4

7 £(6.2,8.4) £(3.9,5.9) £(1.5,3.0) £(2.3,4.3) £(3.0,4.6) 5

8 £(2.9,4.8) Z#(3.3,6.0) £(3.8,5.8) #(3.5,5.5) £(4.6,6.9) 5

9 £(6.0,8.1) £(5.5,8.0) £(5.0,8.0) £(63,11.3) £(2.5,3.8) 6

10 £(8.0,12.0) P(4.7,8.0) P(4.6,9.6) 2(6.8,10.8) Z(3.5,6.8) 7

1 £(7.0,18.0) £(5.6,9.0) £(8.9,12.6) £(7.9,10.8) £(3.7,7.0) 7

12 £(10.8,13.8) P(4.7,9.0) £(7.9,10.6) £(6.5,10.8) £(2.0,4.0) 8

13 £(10.8,13.8) P(3.4,7.9) £(5.8,10.6) 2(6.5,11.8) 2(6.0,10.0) 7

14 £(9.0,13.0) 2(5.0,8.9) £(5.0,9.0) 2(6.5,12.0) Z(5.4,9.8) 8

15 £(2.0,5.0) £(2.5,5.5) £(1.2,3.0) Z£(5.0,8.0) £(5.4,9.8) 4

16 £(8.0,11.3) Z(2.5,6.0) £(2.3,5.6) £(6.8,11.2) £(10.2,13.5) 7

17 Z(2.1,4.2) Z(3.5,6.0) Z(8.9,12.5) Z(7.5,11.0) Z(7.0,10.0) 6

18 £(6.5,10.5) £(12.5,14.5) £(65,11.5) £(2.0,4.0) £(7.0,11.0) 8

19 £(3.5,6.0) £(10.5,13.5) £(6.5,11.5) £(9.0,14.0) £(14.0,19.5) 8

20 £(9.5,13.5) P(4.5,10.6) £(9.5,11.5) Z(3.0,4.6) £(7.0,11.0) 7

TABLE 4: Requirement cover solution.

Emergency rescue 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

center

x1 X X X X X X x x x x X X X X X X X X X X

x2 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1

x3 0 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1

x4 X X X X X X x x x x X X X X X X X X X X

x5 1 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 0
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