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The first and generalized second laws of thermodynamics are studied in 𝑓(𝑅, 𝐿
𝑚
) gravity, a more general modified theory with

curvature matter coupling. It is found that one can translate the Friedmann equations to the form of first law accompanied with
entropy production term.This behavior is due to the nonequilibrium thermodynamics in this theory. We establish the generalized
second law of thermodynamics and develop the constraints on coupling parameters for two specific models. It is concluded that
laws of thermodynamics in this modified theory are more general and can reproduce the corresponding results in Einstein, 𝑓(𝑅)
gravity, and 𝑓(𝑅) gravity with arbitrary as well as nonminimal curvature matter coupling.

1. Introduction

The rapid growth of observational measurements on expan-
sion history reveals the expanding paradigm of the universe.
This fact is based on accumulative observational evidences
mainly from type Ia supernova and other renowned sources
[1–3]. The expanding phase implicates the presence of repul-
sive force which compensates the attractiveness property of
gravity on cosmological scales. This phenomenon may be
translated as the existence of exotic matter components and
most acceptable understanding for such enigma is termed
as dark energy (DE) having large negative pressure. Several
approaches have been proposed to explain transition from
matter dominated to accelerated expansion era. The most
common representative for DE is the cosmological constant
having equation of state (EoS) 𝜔 = −1 [4]. However, there
are some serious issues to explain its mystery in any theory.
Furthermore, observations show that EoS may cross the
phantomdivide andWMAP5 data set the bound for the value
of 𝜔 in the range −1.11 < 𝜔 < −0.86 [5]. In Einstein gravity,
the issue of accelerated expansion is explained in the spirit
of various DE models such as Chaplygin gas, quintessence,
phantom, quintom, and Holographic DE models [6–10].

The other promising way to deal with the cosmic expan-
sion is the modification of Einstein-Hilbert action where it is

assumed that Einstein gravity breaks down on large scales.
The 𝑓(𝑅) theory is one of the theoretical models in this
context which has attained significant attention to explain the
cosmic acceleration [11, 12]. In this modification, the simplest
choice is to replace scalar curvature by𝑅𝑛, for 𝑛 > 1, it exhibits
the de Sitter behavior for early times while for 𝑛 = −1, 3/2, it
explains the accelerated expansion [13, 14]. The 𝑓(𝑅) theory
involving inverse power of scalar curvature can be a handy
candidate of DE for which 𝑓(𝑅) = (𝑅−(𝜇/𝑅𝑛)) (𝜇 > 0, 𝑛 > 0)
[15, 16]. However, this model has been ruled out due to local
gravity constraints and matter instability condition. At the
same time, 𝑓(𝑅) models can satisfy solar system constraints
(for more general viable models see [17–19]).

In most modified gravitational theories, the Einstein
gravity is generalized by changing the geometric part whereas
matter part receives no attention. Bertolami et al. [20]
presented the generalization of 𝑓(𝑅) theory by introducing
non-minimal curvature matter coupling and it is extended to
Lagrangian involving arbitrary function ofmatter Lagrangian
density [21]. Curvature matter coupling results in non-
geodesic motion of test particles and hence an extra force
orthogonal to four-velocity originates [20]. The correspon-
dence between non-minimal coupling in this theory and
scalar-tensor theory has been developed in [22], and it was
shown that non-minimally coupled theory would imply two
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scalar fields. Nesseris [23] studied matter density perturba-
tions to constrain this theory from growth factor as well as
weak lensing observations. This class of models in modified
theory has been extensively studied in the literature [24–27]
(for review on modified theories with curvature matter see
also [28]).

Curvature matter coupling has also been considered by
introducing a Lagrangian having arbitrary dependence on
the trace of energy-momentum tensor named as 𝑓(𝑅, 𝑇)
[29]. In this theory, motion of test particles is nongeodesic
producing extra force and cosmic acceleration may result
due to mutual contribution both from geometric and mater
parts. Recently, this theory has been under consideration and
some interesting results have been obtained [30–36]. This
model is further generalized by incorporating the possible
coupling between energy-momentum as well as the Ricci
tensor and Lagrangian of the form 𝑓(𝑅, 𝑇, 𝑅

𝜇]𝑇
𝜇]) which is

established [37, 38]. In a recent paper [39], we have presented
the field equations for a more general case and formulated
energy conditions corresponding to this modified theory.
The specific functional forms of Lagrangian 𝑓(𝑅, 𝑇, 𝑅

𝜇]𝑇
𝜇])

have been constrained using the energy conditions and the
Dolgov-Kawasaki instability.

The thermodynamic behavior of accelerating universe
driven by DE is one of the major concerns in cosmology.
It has been shown that Einstein field equations can be
obtained using the relation 𝛿𝑄 = 𝑇𝑑𝑆 by considering the
proportionality of horizon area and entropy [40–43]. The
relation between thermodynamics and gravity has been
tested in Einstein as well as Gauss-Bonnet and Lovelock
gravities [44]. Cai and Cao [45] showed that Friedmann
equations in braneworld scenario can be cast to the form of
first law of thermodynamics at the apparent horizon. This
work is also extended in the framework of warped DGP
braneworld [46] and Gauss-Bonnet Braneworld [47].

Akbar and Cai [48] discussed the first law of thermo-
dynamics in scalar tensor and 𝑓(𝑅) gravities at the appar-
ent horizon of FRW universe. They proposed that equilib-
rium thermodynamics can be achieved in these theories by
incorporating the curvature contribution term to effective
energymomentum tensor. However, in nonlinear theories
of gravity there is an issue of non-equilibrium picture of
thermodynamics which was first suggested by Eling et al.
[49] and has been discussed under different circumstances
[50, 51]. Cai and Cao [52] found that in scalar tensor theories
thermodynamics associated with the apparent horizon of the
FRW universe results in non-equilibrium description which
modifies the standardClausius relation.The non-equilibrium
treatment of thermodynamics is also discussed in various
modified theories [53, 54, 57, 59, 62, 63].

We are interested to study the thermodynamic behav-
ior in 𝑓(𝑅, 𝐿

𝑚
) gravity which is a more general modified

theory with curvature matter coupling [55]. This theory can
reproduce every action of non-minimal and arbitrary matter
curvature coupling in 𝑓(𝑅) gravity. In previous studies on
thermodynamic properties in nonlinear theories, it has been
shown that non-equilibrium treatment is necessary in such
type of theories [35, 36, 53, 54, 57, 59, 62, 63]. Here, we
regard the non-equilibrium approach and show that the field

equations in 𝑓(𝑅, 𝐿
𝑚
) gravity can be cast to the form 𝑇𝑑(𝑆 +

𝑆) = −𝑑𝐸 + 𝑊𝑑𝑉, where 𝑑𝑆 is the entropy production term.
Furthermore, we formulate the generalized second law of
thermodynamics (GSLT) and develop constraints by utilizing
some concrete examples in this theory.

The paper is organized as follows. In the next section,
we formulate the field equations in 𝑓(𝑅, 𝐿

𝑚
) gravity and

develop the first lawof thermodynamics (FLT) at the apparent
horizon of FRW universe. Section 3 investigates the validity
of GSLT for some models in 𝑓(𝑅, 𝐿

𝑚
) gravity. In Section 4,

we conclude our findings.

2. 𝑓(𝑅,L
𝑚
) Gravity and First

Law of Thermodynamics

The action of more general modified theory involving maxi-
mal arbitrary curvature matter coupling is of the form [55]

A =
1

𝜅2
∫𝑓 (𝑅,L

𝑚
)√−𝑔𝑑𝑥4, (1)

where the function𝑓(𝑅,L
𝑚
)necessitates an arbitrary depen-

dence on scalar curvature 𝑅 and Lagrangian density L
𝑚

which represents the matter contents. One can recover the
modified 𝑓(𝑅) theories with matter curvature coupling from
action (1). Consider 𝑓(𝑅, 𝐿

𝑚
) = (1/2)𝑓

1
(𝑅) + 𝐺(L

𝑚
)𝑓
2
(𝑅),

where 𝑓
𝑖
and 𝐺(L

𝑚
) are arbitrary functions of 𝑅 and 𝐿

𝑚
,

respectively, it corresponds to 𝑓(𝑅) theory with arbitrary
curvature matter coupling. If we set 𝑓

1
(𝑅) = 𝑓(𝑅), 𝐺(𝐿

𝑚
) =

𝐿
𝑚
and 𝑓
2
(𝑅) = 1+𝜆𝑓

2
(𝑅); then it implies the nonminimally

coupled𝑓(𝑅) gravity.Moreover, the corresponding actions in
pure 𝑓(𝑅) and Einstein gravities can be reproduced by fixing
𝑓
1
(𝑅) = 𝑓(𝑅), 𝐺(𝐿

𝑚
) = 𝐿

𝑚
, and 𝑓

2
(𝑅) = 1 and 𝑓

1
(𝑅) = 𝑅,

𝐺(𝐿
𝑚
) = 𝐿

𝑚
, 𝑓
2
(𝑅) = 1, respectively. The matter energy-

momentum tensor is considered as follows:

𝑇(𝑚)
𝜇] = −

2

√−𝑔

𝛿 (√−𝑔L
𝑚
)

𝛿𝑔𝜇]
, (2)

which implies that

𝑇(𝑚)
𝜇] = 𝑔

𝜇]L𝑚 −
2𝜕L
𝑚

𝜕𝑔𝜇]
(3)

by assuming that the matter Lagrangian depends only upon
the metric tensor rather than on its derivatives.

The field equations in 𝑓(𝑅,L
𝑚
) gravity are

𝜅2

2
𝑃 (𝑅, 𝐿

𝑚
) 𝑇
𝜇] = 𝐹 (𝑅, 𝐿

𝑚
) 𝑅
𝜇]

−
1

2
[𝑓 (𝑅, 𝐿

𝑚
) − 𝑃 (𝑅, 𝐿

𝑚
) 𝐿
𝑚
] 𝑔
𝜇]

− (∇
𝜇
∇] − 𝑔

𝜇]◻)𝐹 (𝑅, 𝐿
𝑚
) ,

(4)

where we put 𝑃(𝑅, 𝐿
𝑚
) = 𝑓

𝐿
𝑚

(𝑅, 𝐿
𝑚
) and 𝐹(𝑅, 𝐿

𝑚
) =

𝑓
𝑅
(𝑅, 𝐿
𝑚
) so that representation of equations is more

convenient and subscripts 𝑅, 𝐿
𝑚

point to the derivatives
with respect to scalar curvature and matter Lagrangian,
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◻ = 𝑔𝛼𝛽∇
𝛼
∇
𝛽
, ∇
𝜇
represents covariant derivative related to

the Levi-Civita connection of the metric. One can retrieve
the field equations in Einstein gravity just by replacing
𝑓(𝑅, 𝐿

𝑚
) = (𝑅/2) + 𝐿

𝑚
. The contraction of (4) implies the

following relation:

𝜅2

2
𝑃 (𝑅, 𝐿

𝑚
) 𝑇 =𝐹 (𝑅, 𝐿

𝑚
) 𝑅 − 2 [𝑓 (𝑅, 𝐿

𝑚
) − 𝑃 (𝑅, 𝐿

𝑚
) 𝐿
𝑚
]

+ 3◻𝐹 (𝑅, 𝐿
𝑚
) .

(5)

We can eliminate the term ◻𝑓
𝑅
(𝑅, 𝐿
𝑚
) from (4) and (5)

so that the field equations become

𝜅2

2
𝑃 (𝑅, 𝐿

𝑚
) (𝑇
𝜇] −

1

3
𝑇𝑔
𝜇])

= 𝐹 (𝑅, 𝐿
𝑚
) (𝑅
𝜇] −

1

3
𝑅𝑔
𝜇])

+
1

6
(𝑓 (𝑅, 𝐿

𝑚
) − 𝑃 (𝑅, 𝐿

𝑚
) 𝐿
𝑚
)

× 𝑔
𝜇] − ∇

𝜇
∇]𝐹 (𝑅, 𝐿

𝑚
) .

(6)

Equation (4) can be sorted out to develop the form of the
effective Einstein field equation as

𝐺
𝜇] = 𝑅

𝜇] −
1

2
𝑅𝑔
𝜇] = 𝜅2eff𝑇

(𝑚)

𝜇] + 𝑇(CM)
𝜇] , (7)

where 𝜅eff = 8𝜋𝐺𝑃(𝑅, 𝐿
𝑚
)/2𝐹(𝑅, 𝐿

𝑚
) involves the effec-

tive gravitational coupling and 𝑇(CM)
𝜇] denotes the energy-

momentum tensor associated with curvaturematter coupling
components defined as

𝑇(CM)
𝜇] =

1

𝐹 (𝑅, 𝐿
𝑚
)
[
1

2
(𝑓 (𝑅, 𝐿

𝑚
) − 𝑅𝐹 (𝑅, 𝐿

𝑚
)) 𝑔
𝜇]

+ (∇
𝜇
∇] − 𝑔

𝜇]◻)

×𝐹 (𝑅, 𝐿
𝑚
) −

1

2
𝑃 (𝑅, 𝐿

𝑚
) 𝐿
𝑚
𝑔
𝜇]] .

(8)

In this work, we assume the FRWmetric

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) (
𝑑𝑟2

1 − 𝑘2𝑟2
+ 𝑟2𝑑Ω2) ,

𝑑Ω2 = 𝑑𝜃2 + sin2𝜃 𝑑𝜙2

(9)

which is necessarily homogenous as well as isotropic and
perfect fluid is taken as matter energy-momentum tensor. In
this framework, the 𝑓(𝑅, 𝐿

𝑚
) field equations take the form

3 (𝐻2 +
𝑘

𝑎2
) = 𝜅2eff𝜌𝑀 + 𝜌CM, (10)

−2(�̇� −
𝑘

𝑎2
) = 𝜅2eff (𝜌𝑀 + 𝑝

𝑀
) + (𝜌CM + 𝑝CM) , (11)

where 𝜌
𝑚
and 𝑝

𝑚
indicate the energy density and pressure

of matter fluid while 𝜌CM and 𝑝CM mark energy density and
pressure of components produced due to matter geometry
coupling translated by the following expressions:

𝜌CM =
1

𝑓
𝑅

[
1

2
(𝑓 − 𝑅𝐹) − 3𝐻(𝐹

𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
) −

1

2
𝑃𝐿
𝑚
] ,

𝑝CM =
1

𝑓
𝑅

[−
1

2
(𝑓 − 𝑅𝐹) + 2𝐻(𝐹

𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2 + 2�̇��̇�
𝑚

×𝐹
𝑅𝐿
𝑚

+ 𝐹
𝐿
𝑚

�̈�
𝑚
+ 𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

+
1

2
𝑃𝐿
𝑚
] ,

(12)

where 𝐻 = ̇𝑎(𝑡)/𝑎(𝑡) is the Hubble parameter and dot in
superscript indicates time derivative. Consequently, the field
equations in 𝑓(𝑅, 𝐿

𝑚
) gravity can be organized as

−2(�̇� −
𝑘

𝑎2
) = 𝜅2eff (𝜌𝑚 + 𝑝

𝑚
)

+
1

𝑓
𝑅

[ − 𝐻(𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
) + 𝐹
𝑅
�̈� + �̇�2

× 𝐹
𝑅𝑅

+ 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚
+ 𝐹
𝐿
𝑚

�̈�
𝑚

+𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

] .

(13)

Now, we propose to formulate the FLT in this modified
theory at the apparent horizon of FRW universe. The condi-
tion ℎ𝛼𝛽𝜕

𝛼
𝑟𝜕
𝛽
𝑟 = 0 implies the radius of dynamical apparent

horizon for FRW geometry as

𝑟
𝐴
= (𝐻2 +

𝑘

𝑎2
)
−1/2

, (14)

which matches the Hubble horizon 𝑟
𝐴

= 1/𝐻 for flat FRW
universe. We differentiate (14) with respect to cosmic time
which yields

1

𝐻𝑟3
𝐴

𝑑𝑟
𝐴

𝑑𝑡
= (�̇� −

𝑘

𝑎2
) . (15)

If we substitute (13) in the above relation andmultiply the rest
with 4𝜋𝑟

𝐴
, it follows that

1

2𝜋𝑟
𝐴

(
4𝜋𝑟
𝐴
𝐹

𝑃𝐺
)𝑑𝑟
𝐴

= 4𝜋𝑟3
𝐴
[𝜌
𝑚
+ 𝑝
𝑚
+

1

4𝜋𝐺𝑃

× ( − 𝐻(𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2

+ 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚
+ 𝐹
𝐿
𝑚

�̈�
𝑚

+𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

) ]𝐻𝑑𝑡,

(16)
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which can be expressed as

1

2𝜋𝑟
𝐴

𝑑 (
𝐴𝐹

2𝑃𝐺
)

= 4𝜋𝑟3
𝐴
[𝜌
𝑚
+ 𝑝
𝑚
+

1

4𝜋𝑃𝐺

× ( − 𝐻(𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
) + 𝐹
𝑅
�̈�

+ 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚
+ 𝐹
𝐿
𝑚

�̈�
𝑚

+𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

) ]𝐻𝑑𝑡

+
𝑟
𝐴

𝑃𝐺
[𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
− 𝐹𝜕
𝑡
(ln𝑃)] 𝑑𝑡,

(17)

where 𝐴 = 4𝜋𝑟2
𝐴
is the area of apparent horizon. In (17), we

have employed the following differential:

𝑑(
𝐴𝐹

2𝑃𝐺
) =

4𝜋𝑟
𝐴
𝐹

𝑃𝐺
𝑑𝑟
𝐴
− 2𝜋𝑟2

𝐴
𝑑(

𝐹

𝑃𝐺
) . (18)

Furthermore,multiplying the above equation by the term (1−

( ̇̃𝑟
𝐴
/2𝐻𝑟
𝐴
)), we find

𝜅sg


2𝜋
𝑑 (

𝐴𝐹

2𝑃𝐺
) = (1 −

̇̃𝑟
𝐴

2𝐻𝑟
𝐴

)4𝜋𝑟3
𝐴

× [𝜌
𝑚
+ 𝑝
𝑚
+

1

4𝜋𝑃𝐺

× ( − 𝐻(𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚

+𝐹
𝐿
𝑚

�̈�
𝑚
+ 𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

) ]𝐻

× 𝑑𝑡 + (1 −
̇̃𝑟
𝐴

2𝐻𝑟
𝐴

)
𝑟
𝐴

𝑃𝐺

× [𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
− 𝐹𝜕
𝑡
(ln𝑃)] 𝑑𝑡,

(19)

where 𝑇 = |𝜅sg|/2𝜋 is the temperature of apparent hori-
zon which includes the surface gravity 𝜅sg = (1/𝑟

𝐴
)(1 −

( ̇̃𝑟
𝐴
/2𝐻𝑟
𝐴
)).

The Bekenstein-Hawking relation [40–43] 𝑆 = 𝐴/4𝐺
defines the horizon entropy in Einstein-gravity. In alternative
theories of gravity, Wald [56] suggested that horizon entropy
is associated with a Noether charge and in 𝑓(𝑅) gravity,
entropy is defined as 𝑆 = 𝐴𝐹/4𝐺 [53, 54, 57]. Bamba and
Geng [53, 54, 57] pointed out that Wald entropy relation
is similar for both metric and Palatini formalisms in 𝑓(𝑅)
theory. Brustein et al. [58] demonstrated that Wald entropy
is equivalent to 𝑆 = 𝐴/4𝐺eff, where 𝐺eff being the effective
gravitational coupling. Therefore, the Wald entropy at the
apparent horizon in 𝑓(𝑅, 𝐿

𝑚
) gravity can be defined as

[35, 36, 53, 54, 57, 59] 𝑆 = 𝐴𝐹/2𝑃𝐺 which reproduces

the corresponding result in 𝑓(𝑅) theory involving arbitrary
curvature matter coupling [59] for 𝑓(𝑅, 𝐿

𝑚
) = (1/2)𝑓

1
(𝑅) +

𝑔(L
𝑚
)𝑓
2
(𝑅). Consequently, (19) can be rewritten as

𝑇𝑑𝑆 = 4𝜋𝑟3
𝐴
(𝜌
𝑚
+ 𝑝
𝑚
)𝐻𝑑𝑡 − 2𝜋𝑟2

𝐴
(𝜌
𝑚
+ 𝑝
𝑚
) 𝑑𝑟
𝐴

+
𝑇𝐴

2𝑃𝐺
[𝑟2
𝐴
( − 𝐻(𝐹

𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚

+𝐹
𝐿
𝑚

�̈�
𝑚
+ 𝐹
𝐿
𝑚
𝐿
𝑚

× (�̇�
𝑚
)
2

)𝐻

+𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
− 𝐹𝜕
𝑡
(ln𝑃) ] 𝑑𝑡.

(20)

Now, we pay attention to matter energy inside a sphere
of radius 𝑟

𝐴
at apparent horizon, that is, 𝐸 = 𝑉𝜌, where

𝑉 = 4/3𝜋𝑟3
𝐴
is the volume of 3-dimensional sphere. The time

derivative of energy relation gives

𝑑𝐸 = 4𝜋𝑟2
𝐴
𝜌𝑑𝑟
𝐴
+ 𝑉 ̇𝜌𝑑𝑡. (21)

If one considers the covariant divergence of (4), then after
some manipulations it leads to

∇𝛼𝑇
𝛼𝛽

= 2∇𝛼 ln [𝑃 (𝑅, 𝐿
𝑚
)]

𝜕𝐿
𝑚

𝜕𝑔𝛼𝛽
, (22)

which implies that the usual continuity equation does not
hold in this modified theory which is similar to other mod-
ified gravities involving matter geometry coupling. The cor-
responding results in 𝑓(𝑅) theory with arbitrary and non-
minimal matter geometry coupling can be reproduced for
particular choices of Lagrangian.

In FRW framework, the energy density meets the follow-
ing equation

̇𝜌 + 3𝐻 (𝜌 + 𝑝) = 2𝜕
𝑡
[𝑃 (𝑅, 𝐿

𝑚
)]

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
. (23)

Using this equation in (21), we obtain

𝑑𝐸 = 4𝜋𝑟2
𝐴
𝜌𝑑𝑟
𝐴
− 3𝑉 (𝜌 + 𝑝)𝐻𝑑𝑡 + 2𝑉𝜕

𝑡
[ln𝑃]

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
𝑑𝑡.

(24)

Hence, (20) can be represented as

𝑇
ℎ
𝑑𝑆
ℎ
= − 𝑑𝐸 + 𝑊𝑑𝑉 +

𝑇𝐴

2𝑃𝐺

× [𝑟2
𝐴
𝐻( − 𝐻(𝐹

𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
) + 𝐹
𝑅
�̈�

+ 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚
+ 𝐹
𝐿
𝑚

�̈�
𝑚

+𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

) + 𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚

−𝐹𝜕
𝑡
(ln𝑃) ] 𝑑𝑡

+ 𝑇
4𝜋𝑉

|𝜅|
𝜕
𝑡
(ln𝑃)

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
𝑑𝑡,

(25)
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where 𝑊 = (1/2)(𝜌 − 𝑝) is the work density. Equation (25)
shows that the field equations in this theory does not obey the
standard form of FLT, 𝑇𝑑𝑆 = −𝑑𝐸 + 𝑊𝑑𝑉 which is satisfied
in Einstein, Lovelock, and Gauss-Bonnet gravities.The above
relation involves additional terms which are produced due
to the non-equilibrium representation of thermodynamics.
Thus the FLT in this theory can be represented as

𝑇
ℎ
𝑑𝑆
ℎ
+ 𝑇
ℎ
𝑑𝑆
ℎ
= −𝑑𝐸 + 𝑊𝑑𝑉, (26)

where

𝑑𝑆
ℎ
=

−𝐴

2𝑃𝐺
[𝑟2
𝐴
𝐻( − 𝐻(𝐹

𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚

+𝐹
𝐿
𝑚

�̈�
𝑚
+ 𝐹
𝐿
𝑚
𝐿
𝑚

(�̇�
𝑚
)
2

)

+𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
− 𝐹𝜕
𝑡
(ln𝑃) ] 𝑑𝑡

−
4𝜋𝑉

|𝜅|
𝜕
𝑡
(ln𝑃)

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
𝑑𝑡

(27)

denotes the entropy production term which is a result of
matter geometry coupling inmore general𝑓(𝑅) gravity at the
apparent horizon of FRW universe.

One can retrieve 𝑑𝑆 in pure 𝑓(𝑅) theory for the Lagran-
gian 𝑓(𝑅, 𝐿

𝑚
) = (1/2)𝑓(𝑅) + 𝐿

𝑚
which is identical with

the results in [53, 54, 57]. It is remarked that we establish
the FLT in more general modified gravity which recovers
the corresponding laws in 𝑓(𝑅) theory involving arbitrary as
well as non-minimal gravitational coupling. For 𝑓(𝑅, 𝐿

𝑚
) =

(1/2)𝑓
1
(𝑅) + 𝑔(L

𝑚
)𝑓
2
(𝑅), we can get the respective FLT

in 𝑓(𝑅) theory having arbitrary coupling which is also
formulated in [59]. If one defines effective entropy as a sum
of horizon entropy and entropy production term 𝑆eff = 𝑆

ℎ
+𝑆,

then FLT can also be represented in the form𝑇
ℎ
𝑑𝑆eff = −𝑑𝐸+

𝑊𝑑𝑉.

3. GSLT in 𝑓(𝑅, 𝐿
𝑚
) Gravity

Here, we investigate the validness of GSLT in the context of
𝑓(𝑅, 𝐿

𝑚
) gravity at the apparent horizon. It states that the

sum of the horizon entropy and entropy of ordinary matter
fluid components always increases in time. The validity of
GSLT has been tested in modified gravities including 𝑓(𝑅),
𝑓(T), 𝑓(𝑅, 𝑇), and 𝑓(𝑅) theories involving matter geometry
coupling. It would be interesting to examine the GSLT in this
modified theory which can reproduce other curvature matter
coupled modified gravities. The entropy associated with the
apparent horizon is given by 𝑆

ℎ
= 𝐴𝐹/2𝑃𝐺 and its time

derivative is

̇𝑆
ℎ
=

2𝜋𝑟
𝐴

𝑃𝐺
[𝑟
𝐴
(�̇� − 𝐹

𝑑

𝑑𝑡
ln [𝑃]) + 2 ̇̃𝑟

𝐴
𝐹] . (28)

The evolution of 𝑆
ℎ
multiplied with 𝑇

ℎ
can be found as

𝑇
ℎ

̇𝑆
ℎ
=

1

𝑃𝐺
(1 −

̇̃𝑟
𝐴

2𝐻𝑟
𝐴

)[𝑟
𝐴
(�̇� − 𝐹

𝑑

𝑑𝑡
ln [𝑃]) + 2 ̇̃𝑟

𝐴
𝐹] .

(29)

The dynamical equation relating the entropy of matter
sources inside the horizon 𝑆in and temperature 𝑇in to the
density and pressure in the horizon is given by

𝑇in𝑑𝑆in = 𝑑 (𝜌
𝑚
𝑉) + 𝑝

𝑚
𝑑𝑉. (30)

The evolution of entropy inside the horizon can be found
using (23) as

𝑇in ̇𝑆in = 4𝜋𝑟2
𝐴
(𝜌
𝑚
+ 𝑝
𝑚
) ( ̇̃𝑟
𝐴
− 𝐻𝑟
𝐴
)

+ 2𝑉𝜕
𝑡
(ln [𝑃])

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
,

(31)

where matter energy density and pressure can be evaluated
from (4) which yields for FRW spacetime as

𝜌
𝑚

=
2

𝜅2𝑃
[
1

2
(𝑃𝐿
𝑚
− 𝑓) − 3 (�̇� + 𝐻2) 𝐹 + 3𝐻�̇�] ,

𝑝
𝑚

=
2

𝜅2𝑃
[
1

2
(𝑓 − 𝑃𝐿

𝑚
) + (�̇� + 3𝐻2 +

2𝜅2

𝑎2
)𝐹

− 2𝐻�̇� − �̈�] .

(32)

Substituting 𝜌
𝑚
and 𝑝

𝑚
in (31), we obtain

𝑇in ̇𝑆in = 8𝜋𝑟2
𝐴
( ̇̃𝑟
𝐴
− 𝐻𝑟
𝐴
)

2

𝜅2𝑃
[2 (

𝜅

𝑎2
− �̇�)𝐹 + 𝐻�̇� − �̈�]

+ 2𝑉𝜕
𝑡
(ln𝑃)

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
.

(33)

Now, we proceed to establish the GSLT in this modified
theory which requires (�̇�

ℎ

̇𝑆
ℎ
+�̇�in ̇𝑆in) ⩾ 0.The temperature of

matter and energy components inside the horizon is assumed
in proportion to temperature of apparent horizon, that is,
𝑇in = 𝑏𝑇

ℎ
, where 0 < 𝑏 < 1. In fact, it is natural to

consider such proportionality relation which results in local
equilibrium by setting the proportionality constant 𝑏 as unity.
In general, the horizon temperature does not match to that
of fluid components inside the horizon and this difference
makes the spontaneous flow of energy between the horizon
and fluid contents so that local thermal equilibrium is no
longer preserved [60].Moreover, themutualmatter geometry
coupling in this theory may also play its role in energy flow
and systems must go through some interaction for some
period of time before achieving the thermal equilibrium.
Thus, the GSLT requires 𝑇

ℎ

̇𝑆tot = �̇�
ℎ
( ̇𝑆
ℎ
+ ̇𝑆in) ⩾ 0, using (29)

and (33), we have

𝑇
ℎ

̇𝑆tot =
1

2𝑃𝐺
(𝐻2 +

𝜅

𝑎2
)
−5/2

× [2𝐻(
𝜅

𝑎2
− �̇�) {

𝜅

𝑎2
+ (1 − 2𝑏) �̇�

+ 2 (1 − 𝑏) × 𝐻2}𝐹

− (
𝜅

𝑎2
+ 𝐻2)(

𝜅

𝑎2
+ �̇� + 2𝐻2) 𝜕

𝑡
(ln𝑃) 𝐹
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+ {
𝜅

𝑎2
(
𝜅

𝑎2
+ �̇� + 3𝐻2) + (1 − 2𝑏) �̇�𝐻2

+ 2 (1 − 𝑏)𝐻
4} (𝐹
𝑅
�̇� + 𝐹
𝐿
𝑚

�̇�
𝑚
)

+ 2𝑏𝐻 (�̇� + 𝐻2)

× {𝐹
𝑅
�̈� + 𝐹
𝑅𝑅

�̇�2 + 2𝐹
𝑅𝐿
𝑚

�̇��̇�
𝑚

+𝐹
𝐿
𝑚

�̈�
𝑚
+ 𝐹
𝐿
𝑚
𝐿
𝑚

× (�̇�
𝑚
)
2

}

+
16𝜋𝑏𝑃𝐺

3
(
𝜅

𝑎2
+ 𝐻2) 𝜕

𝑡
(ln𝑃)

×
𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
] ⩾ 0,

(34)

which is a constraint to meet GSLT in this modified theory
and it counts on the basis of different choices in Lagrangian.
This condition is more comprehensive and one can deduce
the corresponding results in Einstein, 𝑓(𝑅), and 𝑓(𝑅) the-
ories having non-minimal and arbitrary curvature matter
coupling. For 𝑓(𝑅, 𝐿

𝑚
) = (1/2)𝑓

1
(𝑅) + 𝑔(L

𝑚
)𝑓
2
(𝑅), we get

the GSLT in 𝑓(𝑅) gravity with arbitrary matter geometry
coupling and if 𝑔(𝐿

𝑚
) = 𝐿

𝑚
, 𝑓
2
(𝑅) = 1 + 𝜆𝑔(𝑅), then

the corresponding result in 𝑓(𝑅) gravity with non-minimal
coupling can be found [59].

In this setting, we limit our discussion to hypothesis
of thermal equilibrium so that energy would not flow in
the system and horizon temperature is more or less equal
to temperature inside the horizon. This situation would
correspond to the case of late times where universe compo-
nents and horizon would have interacted for long time [61]
while its existence for early or intermediate times would be
ambiguous. Though the assumption of thermal equilibrium
is limiting in some sense to avoid the non-equilibrium
complexities but it has widely been accepted to study the
GSLT [53, 54, 57, 62, 63]. In [35, 36], we have discussed
the GSLT under non-equilibrium picture of thermodynamics
in 𝑓(𝑅, 𝑇) gravity. Here, we consider the case of thermal
equilibrium with 𝑏 = 1 so that horizon temperature is equal
to that of fluid components inside the horizon.

To illustrate the validity of GSLT in 𝑓(𝑅, 𝐿
𝑚
) gravity, we

take concrete model in this modified theory [59]

𝑓 (𝑅, 𝐿
𝑚
) = 𝜆 exp(

1

2𝜆
𝑅 +

1

𝜆
𝐿
𝑚
) , (35)

where 𝜆 > 0 is an arbitrary constant, and if (𝑅/2𝜆) +
(𝐿
𝑚
/𝜆) ≪ 1, then 𝑓(𝑅, 𝑇) ≈ 𝜆 + 𝑅/2 + 𝐿

𝑚
+ ⋅ ⋅ ⋅ represents

the ΛCDMmodel. Substituting model (35) in (34), it implies
that

𝑇
ℎ

̇𝑆tot =
1

4𝐺
(𝐻2 +

𝜅

𝑎2
)
−5/2

× [2𝐻(
𝜅

𝑎2
− �̇�)
2

− (
𝜅

𝑎2
+ 𝐻2)

× (
𝜅

𝑎2
+ �̇� − 2𝐻2) 𝜕

𝑡
(

1

2𝜆
(𝑅 + 2𝐿

𝑚
))

+ {
𝜅

𝑎2
(
𝜅

𝑎2
+ �̇� + 3𝐻2) − �̇�𝐻2}

× 𝜕
𝑡
(

1

2𝜆
(𝑅 + 2𝐿

𝑚
)) + 2𝐻(�̇� + 𝐻2)

× (exp (
1

2𝜆
(𝑅 + 2𝐿

𝑚
)))
−1

× 𝜕
𝑡𝑡
exp (

1

2𝜆
(𝑅 + 2𝐿

𝑚
)) +

32𝜋𝐺

3
(
𝜅

𝑎2
+ 𝐻2)

× 𝜕
𝑡
(

1

2𝜆
(𝑅 + 2𝐿

𝑚
)) ×

𝜕𝐿
𝑚

𝜕𝑔𝜇]

𝑔00
] ⩾ 0,

(36)

which is a constraint to validate GSLT for model (35). To be
more explicit about the above constraint, we choose 𝐿

𝑚
=

𝜌 and set power law cosmology 𝑎(𝑡) = 𝑎
0
𝑡𝑚, (𝑚 > 1) with

𝜌 = 𝜌
0
𝑡−3𝑚. We plot GSLT for flat FRW geometry shown in

Figure 1. To getmore insights of these conditions, we consider
the model of the form 𝑓(𝑅, 𝐿

𝑚
) = 𝛼𝑅 + 𝛽𝑅2 + 𝛾𝐿

𝑚
, where 𝛼,

𝛽 and 𝛾 are arbitrary constants, and hence the GSLT becomes

𝑇
ℎ

̇𝑆tot =
1

2𝛾𝐺
(𝐻2 +

𝜅

𝑎2
)
−5/2

× [2𝐻(
𝜅

𝑎2
− �̇�)
2

(𝛼 + 2𝛽𝑅)

+ 2𝛽 {
𝜅

𝑎2
(
𝜅

𝑎2
+ �̇� − 3𝐻2) − �̇�𝐻2} �̇�

+ 4𝛽𝐻(�̇� + 𝐻2) �̈�] ⩾ 0.

(37)

For the flat FRWuniverse, the above condition depends upon
the parameters 𝛼, 𝛽, and 𝛾 which can be satisfied if 𝛽 < 0 and
(𝛼, 𝛾) > 0.The validity ofGSLT for the secondmodel is shown
in Figure 2.

4. Conclusion

In this paper, we have discussed thermodynamic properties
in more general modified gravity characterized by curvature
matter coupling. We have found that Friedmann equations
can be cast to the fundamental form of FLT 𝑇

ℎ
𝑑𝑆eff = 𝛿𝑄,

where 𝑇
ℎ
is the horizon temperature and 𝑆eff is the effective

entropy which consists of two factors 𝑆eff = 𝑆
ℎ
+ 𝑆, the first

denotes the horizon entropy satisfying the usual FLT and
other factor is the entropy production term. It is remarked
that entropy production term appears due to the non-
equilibrium description in 𝑓(𝑅, 𝐿

𝑚
) gravity. This indicates

that one may need non-equilibrium treatment of thermody-
namics in this theory. The entropy production term appears
to be more general which can reproduce the corresponding
results in Einstein, pure𝑓(𝑅) and𝑓(𝑅) gravity involving non-
minimal and arbitrary curvature matter coupling.
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Figure 1: Evolution of GSLT for the Lagrangian 𝑓(𝑅, 𝐿
𝑚
) = 𝜆 exp((1/2𝜆)𝑅 + (1/𝜆)𝐿

𝑚
), plot (a) shows the bound on parameter 𝜆 for𝑚 = 10,

whereas in plot (b) we set 𝜆 = 2 to find bounds on𝑚. It is evident that GSLT is valid if 𝜆 > 0,𝑚 > 1.
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Figure 2: Evolution of GSLT for 𝑓(𝑅, 𝐿
𝑚
) = 𝛼𝑅 + 𝛽𝑅2 + 𝛾𝐿

𝑚
, plot (a) shows the bound on parameter 𝑚 for 𝛽 = −5, whereas in plot (b) we

set𝑚 = 10 to find bounds on 𝛽. We choose 𝛼 = 𝛾 = 2.

Moreover, in modified theories with explicit matter grav-
ity coupling, we have nondiminishing covariant divergence
of the energy-momentum tensor which demonstrates the
energy flow due to mutual interaction of matter and gravity.
The non-equilibrium treatment can be translated due to
energy flow on the apparent horizon of FRW universe. We
have also examined the time evolution of total entropy
including the horizon entropy and entropy inside the hori-
zon. The proportionality relation between temperature of
apparent horizon and temperature associated with matter
contents inside the horizon is assumed to develop the GSLT.
We have also found constraints on two specific gravita-
tional models 𝑓(𝑅, 𝐿

𝑚
) = 𝜆 exp((1/2𝜆)𝑅 + (1/𝜆)𝐿

𝑚
) and

𝑓(𝑅, 𝐿
𝑚
) = 𝛼𝑅+𝛽𝑅2+𝛾𝐿

𝑚
to secure the GSLT in this theory.

We have checked the validity of GSLT for flat FRW geometry
with local thermal equilibrium and constrained the coupling

parameters. For the first model, GSLT is satisfied if 𝜆 > 0 and
𝑚 > 1, whereas for the second case it requires 𝛽 < 0 and
(𝛼, 𝛾) > 0.
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