
Research Article
Defect Detection and Localization of Nonlinear System Based on
Particle Filter with an Adaptive Parametric Model

Jingjing Wu,1,2 Shujuan Song,1 Wei An,1,2 Deqiang Zhou,1,2 and Hong Zhang1,2

1School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China

Correspondence should be addressed to Jingjing Wu; wjjlady720@jiangnan.edu.cn and Shujuan Song; binannan@aliyun.com

Received 31 July 2015; Accepted 17 November 2015

Academic Editor: Xinggang Yan

Copyright © 2015 Jingjing Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A robust particle filter (PF) and its application to fault/defect detection of nonlinear system are investigated in this paper. First, an
adaptive parametric model is exploited as the observation model for a nonlinear system. Second, by incorporating the parametric
model, particle filter is employed to estimate more accurate hidden states for the nonlinear stochastic system.Third, by formulating
the problem of defect detection within the hypothesis testing framework, the statistical properties of the proposed testing are
established. Finally, experimental results demonstrate the effectiveness and robustness of the proposed detector on real defect
detection and localization in images.

1. Introduction

Fault detection, as a subfield of control engineering, is
to monitor a stochastic system and identify when a fault
occurred and the information of fault such as the type and its
location. Fault detection approaches play a fundamental role
to improve manufacturing process and application process
in a variety of industry contexts [1–7], for example, quality
control in process monitoring [1–3], product manufacturing
[4], medium restoration [5], and facilities maintenance [8].
Advantages of low costs, high automation, and high quality
of defect detection techniques resulted in growing interests
in recent years. Fault/defect detection for quality inspection
includes the use of cameras, eddy current, ultrasonic, X-ray
sensors and other sensors, which offer the measurements
to be analyzed for extraction of the information about the
fault. With the high demands for quality control using
cameras in industry, visual inspection systems attract more
attention in recent years. In a similar vein to fault detection
of linear or nonlinear systems, defect detection in visual
inspection systems can be taken as monitoring the variation
of the measurements from cameras. In this paper, we devote
ourselves to solving the visual defect detection problems from
an unusual perspective of fault detection.

Currently, two rough categories of approaches are avail-
able for defect detection, that is, signal processing-based
and model-based methods. The signal processing algorithms
perform mathematical and statistical analysis tools on the
measurements to extract faults [8–13]. The developed meth-
ods like Gabor filter and wavelet transform have been proven
to be effective solutions to locating the defects with less
prior information in nonlinear systems. In recent years,
defect detectors on the basis of Gabor filter [10] and wavelet
transform [11] are efficient to find defects for web fabrics with
stable repetition of textures, since it is easier to find defects
in frequency domain. Techniques of the signal processing
also cover a number of computational intelligence approaches
like fuzzy logic and neural network [13], which provide some
effective solutions for fault detection in various industrial
problems. However, the data-driven methods suffer from
large computational load and storage space.

The second category is an evolving collection of method-
ologies aiming to exploit themodels of the system in temporal
and spatial space to decide the occurrence of fault/detection
[3, 5–7, 14]. Taking advantages of temporal or spatial models
with the prior information, the model-based method can
achieve robustness even in a scene with heavy amount
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of noises. This paper focuses on techniques of the defect
detection of this category.

Various model-based approaches for defect/fault detec-
tion have been proposed in the past decades [3, 5, 6, 15]. Since
the system state completely represents the system’s internal
(hidden) status and condition containing the fault informa-
tion, the intrinsic problem in themodel-basedmethodologies
is the estimation of the system states from measurements
of sensors. One of the most popular components of model-
based algorithms is the Bayesian method [16], which yields
the posterior distribution of the system state containing the
hidden state such as the occurrence and the fault type.
Bayesian filter and its variations have been effective solutions
to visual inspection of surface defects of materials and fault
detection in process control [3], for example, chemical pro-
cess. For the linear Gaussian system, Kalman filter [15–17] has
been exploited to detect surface defects in visual inspection
systems. Particle filter, as an implementation algorithm of
Bayesian filter for nonlinear and non-Gaussian systems, has
been used for fault detection of chemical process [3, 18].
However, state estimation and fault detection still remain
a challenge due to the absence of suitable models for the
actual application context.The linear Gaussianmodels in [15]
cannot meet the requirements of the defect detection and
localization in the actual visual inspection systems, due to the
complicated intensity distributions of background pixels.

In this paper, a new intelligent defect detection algorithm
without prior knowledge based on PF is presented. We
formulate the visual defect detection problem to estimate
the hidden states using PF and decide the occurrence or
locations of defects in 2D images by chi-square test. In our
method, intensity of the 2D image (the same vein as the
control system) along each row or column line is assumed
as a time series or a random process {𝑥𝑘}

𝑁

𝑘=1
. To detect

faults/defects in the image (the system), reasonable state and
measurement models are proposed firstly for particle filter.
Then, with the proposed models, particle filters along rows
and columns are implemented to estimate states and the
measurement innovations (residuals). Finally, abrupt changes
in the measurement innovations are used to locate defects
in the inspection images by chi-square test. Tests on the
real database demonstrate the effectiveness of the proposed
algorithm.

2. Problem Formulation of Defect Detection

The defect detection in a visual inspection system is to
identify the occurrence of the defect and its location from the
measurements of camera sensors, that is, the digital image of
the inspected object. A measurement 𝑧𝑘 in a digital image is
the gray level or intensity of the pixel.Then the pixel intensity
along each row or column line in an image of 𝑀 × 𝑁 pixels
is assumed as a time series or a random process {𝑧𝑘}

𝑁

𝑘=1
or

{𝑧𝑘}
𝑀

𝑘=1
, where 𝑘 is one-dimensional coordinate of the relevant

pixel on the scan line (i.e., the time step of the random
process).

When the inspected target is free from defects, the inten-
sity of pixels along each scan line takes on small variations.

Therefore, the gray level along a scan line in a defect-free
image can be defined as a white Gaussian state series {𝑥𝑘}

𝑁

𝑘=1

or {𝑥𝑘}
𝑀

𝑘=1
. Due to subtle intensity changes for defect-free

areas, the state sequence can be modeled by the following
discrete time linear Gaussian dynamical model; that is,

𝑥𝑘 = 𝐹𝑘𝑥𝑘−1 + V𝑘, (1)

where 𝑥𝑘 is the state in the time series, 𝐹𝑘 is the state
transition model, and V𝑘 is the zero-mean white Gaussian
noise sequences with variance 𝜎

2

V,𝑘. For defect inspection
problem in this paper, the dynamical mode uses the random
walk model with 𝐹𝑘 = 1. Each state in a Gaussian series can
also be written as

𝑥𝑘 ∼ N (𝐹𝑘𝑥𝑘−1, 𝜎
2

V,𝑘) , (2)

where N(𝐴, 𝐵) denotes a Gaussian distribution with expec-
tation 𝐴 and variance 𝐵.

However, due to the influence of defects, uneven illumi-
nation, and the geometrical structure of the inspected object,
the actual measurements usually follow nonlinear model,
which can be formulated by a transition function approximat-
ing the Markov transition relation between the state estimate
𝑥𝑘 of the defect-free and the actual measurement 𝑧𝑘 of a pixel
(defect-free or defective).Therefore, the measurement model
for an arbitrary pixel can be defined as

𝑧𝑘 = 𝑔𝑘 (𝑥𝑘) + 𝑤𝑘, (3)

where 𝑔𝑘(⋅) denotes the transition function from the state
estimate 𝑥𝑘 to themeasurement 𝑧𝑘 and𝑤𝑘 is zero-meanwhite
Gaussian noise sequences with variance 𝜎2

𝑤,𝑘
.

In terms of the established models, Bayesian filter can be
exploited to yield the state estimate of 𝑥𝑘 for each pixel along
a scan line of an image by Bayes recursion below [17]:

𝑝𝑘|𝑘−1 (𝑥𝑘 | 𝑧1:𝑘−1)

= ∫𝑓𝑘|𝑘−1 (𝑥𝑘 | 𝑥) 𝑝𝑘−1 (𝑥 | 𝑧1:𝑘−1) 𝑑𝑥,
(4)

𝑝𝑘 (𝑥𝑘 | 𝑧1:𝑘) =
𝑔𝑘 (𝑧𝑘 | 𝑥𝑘) 𝑝𝑘|𝑘−1 (𝑥𝑘 | 𝑧1:𝑘−1)

∫ 𝑔𝑘 (𝑧𝑘 | 𝑥) 𝑝𝑘|𝑘−1 (𝑥𝑘 | 𝑧1:𝑘−1) 𝑑𝑥
, (5)

where 𝑓𝑘|𝑘−1(⋅ | ⋅) is the transition density defined by (1) or
(2) and 𝑔𝑘(⋅ | ⋅) is the likelihood function defined by (3). The
posterior density 𝑝𝑘(𝑥𝑘 | 𝑧1:𝑘) includes all information of the
state at time 𝑘 and the state estimate 𝑥𝑘 of the 𝑘th pixel in a
scan line can be obtained by maximum a posteriori (MAP)
criterion.

Once the state estimate 𝑥𝑘−1 at time step 𝑘 − 1 (i.e.,
intensity of the 𝑘 − 1th pixel along the scan line) is obtained,
the difference between the predicted measurement 𝑧𝑘|𝑘−1 and
the actual measurement 𝑧𝑘 is defined as residual ]∗

𝑘
, which

can be calculated by

]∗
𝑘
= 𝑧𝑘 − 𝑧𝑘|𝑘−1. (6)

Here, 𝑧𝑘|𝑘−1 can be derived by (1) and (3) with the form

𝑧𝑘|𝑘−1 = 𝑔𝑘 (𝑥𝑘|𝑘−1) = 𝑔𝑘 (𝐹𝑘 ∗ 𝑥𝑘−1) , (7)
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Figure 1: An image for inspecting the surface defect on the base desk of a hard disk and its histogram. (a) The image of the inspected object.
(b) The histogram of gray levels of pixels along a column line in (a).

where 𝑥𝑘|𝑘−1 is the predicted state using (1). It can be seen
from (6) and (7) that a residual ]∗

𝑘
reveals the difference

between the actual measurement of a pixel and the defect-
free pixel, which can be used to decide the occurrence of a
fault/defect.When themeasurement 𝑧𝑘 is aGaussian variable,
the statistic ‖]∗

𝑘
‖
2

Σ−1
= (]∗
𝑘
)
󸀠
Σ
−1]∗
𝑘
is chi-square distributed.

Then a chi-square test [17] will declare detection of a defect if
󵄩󵄩󵄩󵄩]
∗

𝑘

󵄩󵄩󵄩󵄩
2

Σ−1
> 𝜆 = 𝜒

2

𝑛
(𝛼) , (8)

where 1 − 𝛼 is the level of confidence, 𝑛 indicates the degrees
of freedom, and 𝜆 is the detection threshold.

3. Particle Filter Based on Adaptive
Parametric Model

3.1. Adaptive Parametric Measurement Model. As explained
in Section 2, it is important to warrant that the defect infor-
mation is revealed by residual ]∗

𝑘
of the state and the mea-

surement. To attain this purpose, the state model about the
defect-free object based on random walk model is presented
in (1) and (2). Furthermore, it is also necessary to design an
accurate measurement model which can closely approximate
the real measurement contaminated by noise, defects, and
other disturbances. As shown in Figure 1, the measurements
along a scan line in a complex visual inspection system follow
multimodel distribution.

In order to obtain an accurate model, the Gaussian
mixture model is exploited to approximate the multimodel
distribution of measurements in the image of the inspected
object. Assume that at time 𝑘 − 1 (i.e., the 𝑘 − 1th pixel in a
scan line), the probability density of the measurement can be
approximated by a Gaussian mixture model (GMM) as

𝑧𝑘−1 ∼

𝐺

∑
𝑚=1

𝜋𝑘−1,𝑚N (𝑧𝑘−1 | 𝜇𝑘−1,𝑚, 𝜎𝑘−1,𝑚) , (9)

where 𝜋𝑘−1,𝑚 is the weight of the𝑚th Gaussian component in
themixturewith∑𝐺

𝑚=1
𝜋𝑘−1,𝑚 = 1,𝜇𝑘−1,𝑚 is themean,𝜎𝑘−1,𝑚 is

the variance, and 𝐺 is the Gaussian component number with
𝐺 = 3∼5. Then, the measurement likelihood function can be
designed as

𝑝 (𝑧𝑘 | 𝑥𝑘) =

𝐺

∑
𝑚=1

𝜋𝑘,𝑚N (𝑧𝑘; 𝜇𝑘,𝑚, 𝜎
2

𝑘,𝑚
) . (10)

All the parameters {𝜋𝑘,𝑚, 𝜇𝑘,𝑚, 𝜎
2

𝑘,𝑚
}
𝐺

𝑚=1
of Gaussian items

in (10) can be automatically updated by the model (9) at
time 𝑘 − 1 using 𝑘-means approximation [19] in Algorithm 1.
The number of Gaussian distributions 𝐺 is manually set by
making a tradeoff among the complexity of the pixel intensity
model, the available memory, and the computational power.
On the one hand, due to more ideal illumination and regular
geometrical structure of the inspection condition, subtle
changes of illumination of the desk base surface and only
repetitive changes of scene elements may occur in the real
inspected images (see Figure 1(a)). Thus, it is reasonable to
simply model the values of a particular pixel along a scan
line as a mixture of a fixed number of Gaussian distributions.
On the other hand, less Gaussian distributions can alleviate
the computation load. Considering the above elements, the
value of 𝐺 should be as small as possible, on the premise that
the number of distributions is able to represent the value of
each pixel along each scan line of the inspected image. For
example, in this paper, 𝐺 is set to be 3 in the application of
desk base inspection.

In addition, 𝜋𝑘,𝑚, 𝜇𝑘,𝑚, and 𝜎𝑘,𝑚 can be computed by the
𝑘-means approximation in Algorithm 1. It should be noticed
that the weight 𝜋𝑘,𝑚 of a Gaussian distribution is updated
according to

𝜋𝑚,𝑘 = (1 − 𝛼) 𝜋𝑚,𝑘−1 + 𝛼 (𝑀𝑚,𝑘−1) , (11)

where 𝛼 is the learning rate and 𝑀
𝑖

𝑚,𝑘−1
is 1 for the model

matched by 𝑧𝑘 (i.e., |𝑧𝑘 − 𝜇𝑘,𝑚| < 2.5𝜎𝑘,𝑚) and 0 for the
remaining models otherwise. If none of the 𝐺 distributions
matches 𝑧𝑘, the least probable distribution is replaced with a
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Input: 𝑧𝑘, {𝜋𝑚,𝑘−1, 𝜇𝑚,𝑘−1, 𝜎𝑚,𝑘−1}
𝐺

𝑚=1

Output: {𝜋𝑚,𝑘, 𝜇𝑚,𝑘, 𝜎𝑚,𝑘}
𝐺

𝑚=1

Step 1. Update weights of the 𝐺 Gaussian items by 𝜋𝑚,𝑘 = (1 − 𝛼)𝜋𝑚,𝑘−1 + 𝛼(𝑀𝑚,𝑘−1),
where 𝛼 is the learning rate,𝑀𝑚,𝑘−1 is 1 for the model matched by 𝑧𝑘 and 0 for the
remaining models. If none of the 𝐺 distributions matches 𝑧𝑘, the least probable distribution
is replaced with a distribution with 𝑧𝑘 as its mean, a high variance, and low weight.
Step 2. Update parameters of the Gaussian item: ∀𝑧𝑘 satisfies |𝑧𝑘 − 𝜇𝑘,𝑚| < 2.5𝜎𝑘,𝑚, compute

𝑧𝑚,𝑘 = 𝑧𝑘
𝜇𝑚,𝑘 = (1 − 𝜌)𝜇𝑚,𝑘−1 + 𝜌𝑧𝑚,𝑘,
𝜎
2

𝑚,𝑘
= (1 − 𝜌)𝜎

2

𝑚,𝑘−1
+ 𝜌 (𝑧

𝑚,𝑘
− 𝜇
𝑚,𝑘

)
𝑇
(𝑧
𝑚,𝑘

− 𝜇
𝑚,𝑘

)

with 𝜌 = 𝛼N(𝑧𝑚,𝑘; 𝜇𝑚,𝑘, 𝜎𝑚,𝑘).

Algorithm 1: The update of GMM in the likelihood by 𝑘-means approximation.

distribution with 𝑧𝑘 as its mean, a high variance, and a low
weight.

Once parameters {𝜋𝑘,𝑚, 𝜇𝑘,𝑚, 𝜎
2

𝑘,𝑚
}
𝐺

𝑚=1
at time 𝑘 are

obtained, the likelihood function (10) can be updated and be
used to implement PF or Bayes recursion instead of𝑔𝑘(⋅). Due
to the better ability of fitting the complex distribution of pixel
values, the proposed adaptive measurement model can help
to represent the system more correctly.

3.2. Particle Filter with the Adaptive Model. As analyzed in
Section 2, state is required to be estimated for defect detec-
tion. Since the proposedmeasurementmodel in Section 3.1 is
Gaussian and nonlinear, Bayesian filter in (4) and (5) can be
solved by particle filter [18]. Particle filter is based on Monte
Carlo approximation, which is able to effectively deal with
nonlinear and non-Gaussian problems [18]. In terms of the
proposed state model in (1) and the measurement likelihood
in (10), particle filter with adaptive model is summarized
below.

Step 1 (initializing). Draw 𝑁 particles from prior density of
states 𝑝(𝑥0). Assign weights 𝜔 = 1/𝑁 with 𝑁 particles for
filtering.

Step 2 (important sampling). Firstly, the particles {𝑥(𝑖)
𝑘−1

}
𝑁

𝑖=1

of 𝑝(𝑥𝑘−1 | 𝑧1:𝑘−1) in (4) are propagated by the state model
𝑝(𝑥
(𝑖)

𝑘
| 𝑥
(𝑖)

𝑘−1
), which can be obtained using (1) or (2) with the

form

𝑝 (𝑥
(𝑖)

𝑘
| 𝑥
(𝑖)

𝑘−1
) ∼ N (0, 𝜎

2

V,𝑘) . (12)

Secondly, given a new observation 𝑧𝑘, each sampled
particle 𝑥(𝑗)

𝑘
from (12) is weighted by the proposed adaptive

likelihood in (10) with the form

𝑤
(𝑖)

𝑘
∝ 𝑝(𝑧𝑘 | 𝑥

(𝑖)

𝑘
) . (13)

Finally, the weights are normalized by

𝜔
(𝑗)

𝑡
=

𝜔
(𝑗)

𝑡

∑
𝑁

𝑗=1
𝜔
(𝑗)

𝑡

. (14)

Step 3 (resampling). Resample new particles from the par-
ticles {𝑥

(𝑖)

𝑘
, 𝜔
(𝑖)

𝑘
}
𝑁

𝑖=1
in Step 1 according to roulette method,

where the probability of choosing a particle is proportional
to its weight. After resampling, the resampled particles
{𝑥
(𝑖)

𝑘
, 1/𝑁}

𝑁

𝑖=1
are with equal weights, which can approximate

the posterior distribution 𝑝𝑘(𝑥𝑘 | 𝑧1:𝑘) in (5) at time 𝑘.

Step 4 (state extraction). The state estimate 𝑥𝑘 can be
extracted by using either the minimum mean square error
criterion:

𝑥𝑘 ≈
1

𝑁

𝑁

∑
𝑖=1

𝑥
(𝑖)

𝑘
(15)

or the maximum a posteriori (MAP) criterion:

𝑥𝑘 = argmax
𝑥
𝑘

𝑝 (𝑥𝑘 | 𝑧1:𝑘) ≈ argmax
𝑥
𝑘

𝜔
(𝑖)

𝑘
. (16)

4. Defect Detection and Localization
Based on PF

When the state estimates {𝑥𝑘}
𝑁

𝑘=1
or {𝑥𝑘}

𝑀

𝑘=1
of pixels along

each row or column scan line are generated by the proposed
PF in Section 3, the state estimates can be employed to estab-
lish the statistic for detecting and locating defects. To yield
the statistic for chi-square test, the residual ]∗

𝑘
for each pixel

should be computed firstly using (6). Under the Gaussian
assumption, since the residual sequences {]∗

𝑘
}
𝑁

𝑘=1
and {]∗

𝑘
}
𝑀

𝑘=1

are Gaussian-distributed, the normalized residual squared
statistic (NRSS) 𝜀𝑘 is approximately chi-square distributed
with the form

𝜀𝑘 = ]∗󸀠
𝑘
𝑆
−1

𝑘
]∗
𝑘
, (17)

where 𝑆
−1

𝑘
denotes the covariance of ]∗

𝑘
. In terms of the

principle of a check of the goodness of fit, 𝜀𝑘 is employed as
the statistic and the fault/defect can be located along the scan
lines by the chi-square test:

𝜀𝑘 > 𝜆 = 𝜒
2

𝑛
(𝛼) , (18)

where 1−𝛼 denotes the level of confidence, 𝑛 is the degrees of
freedom with 𝑛 = dim(𝑧𝑘), and the detection threshold is 𝜆.
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Input: measurements in scan lines

PF based on adaptive model

Statistic computation

Chi-square test for edge location

{�∗k }
N×M

k=1
{�∗k }

M×N

k=1

{𝜀k}
N×M

k=1
{𝜀k}

N×M

k=1

Output: Θ̂(M×N)

Figure 2: Procedure of the proposed detector.

Here, 𝜆 can be referred to in the chi-square distribution table
in terms of 𝛼 and 𝑛. If the statistic 𝜀𝑘 for a pixel satisfies (18),
an alarm indicating a defect point is given.

When the chi-square tests along all row lines are com-
pleted, the potential defect points are stored in the detection
mask Θ(𝑀 × 𝑁), which is an 𝑀 × 𝑁 matrix with value
1 for an edge point and with value 0 for a defect-free
point. Similarly, the mask Θ󸀠(𝑀 × 𝑁) along columns can be
obtained. Considering different sensitivity of both tests along
row and column directions, the final mask Θ̂(𝑀 × 𝑁) (see
Figure 3(b)) can be calculated by

Θ̂ (𝑖, 𝑗) = Θ (𝑖, 𝑗) | Θ
󸀠
(𝑖, 𝑗) , (19)

where 𝐴(𝑖, 𝑗) denotes detection result of the 𝑖th row 𝑗th pixel
in the image and “|” denotes logical OR operator. Based on
all of the above, the proposed defect detector using PF with
adaptive model is described in Figure 2. In addition, in order
to locate accurately the occurrence of a defect with lower false
alarms, the cumulative sum of the statistic 𝜀𝑘 is calculated to
distinguish the defect from the image (see Figure 3(a)).

5. Experimental Results

5.1. Experimental Setup. The VACE protocol [20] is intro-
duced here to evaluate the detection performance of the
proposed algorithm, which uses two scores, namely, multiple
object detection accuracy (MODA) and multiple object
detection precision (MODP). The MODP and MODA mea-
sures are directly proportional to the area overlap between the

system output and the ground truth. Higher scores of MODP
and MODA indicate better performance in defect detection
precision and accuracy, respectively. Denote 𝐺(𝑡)

𝑖
and 𝐷

(𝑡)

𝑖
as

the 𝑖th ground truth object and its associated detected object
(defect) in the 𝑡th frame, respectively. MODP andMODA are
defined as

MODP

=
∑
𝑁frames
𝑖=1

∑
𝑁mapped
𝑡=1

[
󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑡)

𝑖
∩ 𝐷
(𝑡)

𝑖

󵄨󵄨󵄨󵄨󵄨
/
󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑡)

𝑖
∪ 𝐷
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𝑖

󵄨󵄨󵄨󵄨󵄨
]

∑
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𝑗=1

𝑁
𝑗

mapped

,
(20)

where ∑
𝑁mapped
𝑖=1

∑
𝑁frames
𝑡=1

[|𝐺
(𝑡)

𝑖
∩ 𝐷
(𝑡)

𝑖
|/|𝐺
(𝑡)

𝑖
∪ 𝐷
(𝑡)

𝑖
|] quantifies

the spatial overlap ratio between the ground truth and the
detected object in a sequence of frames, 𝑁mapped is the
number of mapped objects over the entire sequence, and
𝑁
𝑗

mapped refers to the number of mapped objects in the 𝑗th
frame. Consider

MODA = 1 −
∑
𝑁frames
𝑖=1

(𝑐𝑚 (𝑚𝑖) + 𝑐𝑓 (fp𝑖))

∑
𝑁frames
𝑖=1

𝑁𝑖
𝐺

, (21)

where 𝑚𝑖 is the number of missed detects, fp𝑖 is the total
number of false positives, 𝑐𝑚(⋅) and 𝑐𝑓(⋅) are the cost functions
for𝑚𝑖 and fp𝑖, and𝑁

𝑖

𝐺
is the number of ground truth objects

in the 𝑖th frame. In our experiments, the ground truth detects
are annotated manually according to annotation guidelines
for VACE [15]. The best possible match between ground
truth and detected objects in a global sense can be solved by
Hungarian algorithm.
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Figure 3: A sample result of defect detection. (a) Defect locations using the accumulative sum of NSSRs. (b) Defect locations using NSSR.

5.2. Experimental Results and Discussion

5.2.1. Defect Detection Experiment. The proposed detector is
tested by the defect image database, which contains multiple
kinds of defects on the surface of the desk base of hard disks.

A sample result using the proposed defect detector is
shown in Figure 3. Figure 3(a) plots the accumulative sum of
NSSRs for row and column scan lines and marks the defect
location with red circles, whose centers are calculated by
abrupt changes in the response curve of NSSRs. Figure 3(b)
shows another defect location result of the same inspected
part by amask image in (19) directly usingNSSR of each pixel.
Figure 3 indicates that both methods on the NSSRs and their
accumulative sum are effective to locate defects in an image.
In the following experiments, each of the location methods is
chosen arbitrarily.

Figure 4 shows the detection results of various types
of defects, for example, corrosion, hard blister, pin holes,
and crack. It is shown that the proposed detector is able
to accurately and automatically identify and locate defective
areas from complex background with much less false alarms.
As well known, uneven illumination (see Figures 4(a) and
4(b)) and geometrical structure (see Figure 4(a)) lead to
scattered discontinuities in the defect-free areas, which make
defect detectionmore difficult. To alleviate it, amore accurate
adaptive measurement model is proposed for PF, which can

inhibit the influence of discontinuities in the defect-free
pixels.

5.2.2. Comparison Experiment. To evaluate the performance
of the proposed detector further, we compare the proposed
detector (DET PF) with the detector in [15] (DET KAL) and
Otsu thresholding (DET THR). Figure 5 shows the com-
parison result of DET PF and DET KAL. Since DET KAL
employs a single Gaussian model as the measurement model,
it cannot accurately approximate the measurements of mul-
timodel distribution. It can be seen from Figure 5(b) that
DET KAL is not able to locate defects in a complicated
background (i.e., complicated intensity distribution of pixels
in defect-free areas). Figure 5 indicates that the proposed
detector based on PF with a robust model outperforms
DET KAL in fault detection for nonlinear system.

To quantify the performance difference of the three
methods, we compute their performance scores according to
evaluation method presented in Section 5.1. Figure 6 shows
the accuracy and the precision scores (i.e., MODA and
MODP scores) of the three defect detectors applied to the
test database. It can be observed that the proposed detector
achieves higher performance scores than common threshold-
ing DET THR method and DET KAL.
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Figure 4: Continued.
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Figure 4: Application of the proposed method to inspect various defects.
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Figure 5: Sample comparison detection results of detectors. (a) Detection results of DET PF. (b) Detection results of DET KAL.



10 Mathematical Problems in Engineering

MODP
MODA

MODP
MODA

DET_THR DET_CHI DET_PF
0.45

0.64

0.66

0.80

0.85

0.91

1

0.8

0.6

0.4

0.2

0

Figure 6: Comparison result of evaluation score for three defect detectors.

5.2.3. Sensitivity Analysis of Parameters. The parameters
involved in the proposed detector, such as Gaussian model
noise sequences𝑤𝑘 and V𝑘 in (1), (2), and (3) and the decision
threshold 𝜆 in (17), can be preset manually according to the
statistical characteristics of the gray level or the intensity
of the inspected image. As mentioned in Section 2 of this
paper, 𝑤𝑘 and V𝑘 are zero-mean white Gaussian sequences
and are proportional to their standard deviations 𝜎𝑤 and
𝜎V.

Figure 7 illustrates the accuracy and precision transitions
of defect detection performance when the parameters 𝜎𝑤,
𝜎V, and 𝜆 of the detector are changed. When the value of
one parameter with log

2
scale at a time are changed and the

other parameter values are fixed, then the average values of
the correspondingMODP andMODAmeasures are obtained
and plotted in Figure 7. As shown in Figures 7(a) and 7(b), the
detector is sensitive to𝜎𝑤 and𝜎V. Both𝜎𝑤 and𝜎V represent the
model errors between the chosen system models (i.e., 𝜎𝑤 for
dynamical models and 𝜎V for the measurement model) and
the truth. Smaller and larger 𝜎𝑤 generally leads to divergence
of the particle filter and a degraded detection precision,
namely, decreasing values ofMODAandMODP, respectively.
Similarly, choices of 𝜎V depend on the measurement model
error, which can be determined practically in terms of image
quality, and a smaller 𝜎V would be chosen for an image of
higher quality.The theoretical value of the decision threshold
𝜆 can be computed according to [17]. As shown in Figure 7(c),
a small variation of the detection performance scores is
related to theoretical value of the decision threshold 𝜆. It can
be seen that, in a real application of the proposed detector,
quantities of 𝜎𝑤, 𝜎V, and 𝜆 can be manually heuristically
chosen from several tests.

5.2.4. Computational Complexity Analysis and Comparison.
The computational complexity of the proposed method
depends on two main steps: the 𝑘-means approximation
based adaptive measurement model learning and particle

filter. Indeed, at time 𝑘, the 𝑘-means approximation step
requires calculation of cost:

𝐶𝑎,𝑘 = 𝐺𝑘 ∗ 𝐽𝑘, (22)

where𝐺 is the number ofGaussian items and 𝐽𝑘 is the number
of pixels in the inspected image.

The particle filter requires

𝐶𝑏,𝑘 = (
4

3
𝑝
3

𝑘
+ 2𝑝
2

𝑘
+ (4𝑝

2

𝑘
+ 𝑃𝑘) ∗ 𝑁𝑘) ∗ 𝐽𝑘, (23)

where 𝑃𝑘 denotes the state dimension in the PF and 𝑁𝑘
denotes the number of particles. In the application to the
desk base of hard disk, 𝑃𝑘 is 1 and 𝑁𝑘 is 200. Thus, in the
experiment, the computational load is 𝐶𝑏,𝑘 ≈ 5 ∗ 𝑁𝑘 ∗ 𝐽𝑘 =

1000𝐽𝑘.
Furthermore, in our experiments, the proposed defect

detection algorithm was carried out by an Intel 2.2 GHz CPU
PC. Detection was done at an average rate of 20 frames
per second (i.e., 50ms per image) for images with size of
1024 ∗ 768 without code optimization. In comparison with
the similar method (MR) in [15], MR is able to process the
a test image in about 60ms. MR suffers more intensively
computational load, which may be induced by the matrix
inversion operation in Kalman filter with constant velocity
state model and multidimensional vector of the state. From
the above analysis, with code optimization, the proposed
method will be a promising solution to defect detection in
real time.

6. Conclusions

This paper presents a novel methodology for automatic
fault/defect detection based on PF for nonlinear systems.The
defect/fault detecting framework in a stochastic dynamical
system based on PF and chi-square test is proposed first. To
alleviate the scattered discontinuities from the uneven illu-
mination and geometrical structure of the inspected objects,
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Figure 7: Sensitivity analysis of parameters used in the detector. (a) Average evaluation scores for the standard deviation of the dynamical
model. (b) Average evaluation scores for the standard deviation of the observation model. (c) Average evaluation scores for the decision
threshold.

an adaptive measurement model is designed and estimation
method of the hidden states for nonlinear system based on
PF is presented in detail. Third, the statistical properties
of the hidden states are employed to establish an effective
statistic for defect/fault defection by chi-square test. Finally,
the improved PF with adaptive parametric model and the
fault detection framework are applied to identify the defects
in visual inspection system. Experiments demonstrate that
this proposedmethodology candetectmost defects efficiently
with high quality in nonlinear system, which can be exploited
to deal with fault detection problems in other industry fields.
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