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At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not
economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with
chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a
chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It
used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the
maximum power point tracking (MPPT) for chaotic extraction of eigenvalue. The range of extension field was determined by
neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis.
Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances
or the temperatures are changed.

1. Introduction

This study focused on solar photovoltaic fault diagnosis.
Solar energy is generated from the sunlight, which is an
inexhaustible renewable energy, as compared to other green
energies. At present, the solar photovoltaic system has been
used in many fields, and current research focuses are the use
of this technology, such as efficient storage, environmental
issues, and subsequent maintenance. The analysis based on
fault diagnosis technology can save labor cost greatly.

Many studies have proposed fault diagnosis technologies
for photovoltaic system. Most of traditional fault diagnosis
technologies are based on intelligent algorithms including
neural network [1–3]. For example, in 2009, Wu et al. used
BP neural network for fault diagnosis, the diagnostic rate
was very high, but a large amount of data was required
for learning and training. The convergence of samples was
time consuming [4]. In 2011, Syafaruddin et al. used three-
layer artificial neural network for fault diagnosis and pro-
vided more accurate diagnostic result than one-layer fault
diagnosis. However, this method was also time consuming
[5]. In 2011, Shimakage et al. discussed photovoltaic system

fault diagnosis and used measurement and observation for
diagnosis. They recorded the power generated by the faulted
photovoltaic system and compared it with the presently mea-
sured power.However, the data for comparisonwere required
and time was required to create the database [6]. In 2012,
Zhao et al. proposed a decision tree-based diagnostic method
for photovoltaic cell.Thediagnostic rate of thismethodwas as
high as 99.8%, but more than 1,000 times of intercomparison
were required in the course of diagnosis [7]. In 2014, Tadj et al.
proposed a GISTEL (gisement solaire par télédetection: solar
radiation by teledetection)model to improve the photovoltaic
cell diagnosis on fuzzy logic estimated satellite image. The
method was difficult to be implemented [8]. In 2014, Hsieh
et al. used chaotic extension theory for diagnosis, and the
accuracy rate was very high. However, due to the limitation of
extension theory, the diagnostic rate decreased greatly when
the temperature and irradiance changed. This study aims to
remedy the defects in the literature [9].

In the literature [9], 10-series 2-parallel solar photovoltaic
array was used as the model of fault diagnosis. Chaotic
synchronization system was combined with extenics for fault
diagnosis. However, the classical domain cannot identify
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Figure 1: 10-series 2-parallel schematic diagram.
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Figure 2: MPPT control system schematic diagram.

Table 1: Solar panel model and specifications.

Solar panel model SM 1611
Maximum power (𝑃MAX) 1.65W
Open-circuit voltage (𝑉OC) 3.0 V
Short-circuit current (𝐼SC) 0.8 A

the fault state accurately as long as the irradiance and tem-
perature have changed. This study uses BP neural network,
so as to remedy the defect of unavailable diagnosis when
the irradiance and temperature change, and uses the center
of error dynamic trajectories of two chaotic subsystems as
eigenvalue, to overcome the decrease in diagnostic rate that
resulted from undervoltage at low light level.

2. Architecture of Solar Power System

The fault diagnosis module used in this paper is 10-series 2-
parallel photovoltaic, as shown in Figure 1, and MPPT, the
system architecture, is shown in Figure 2; the matlab 2010 is
used for simulation.The specifications of SM1611 photovoltaic
cell are shown in Table 1 [9].

The photovoltaic cell is set as short circuit to simulate
nine fault states to be illustrated by Table 2, and the I-V
and P-V characteristic curves at different irradiances and
temperatures are observed.

3. Research Method

3.1. Chaos Synchronization Theory. The chaos synchroniza-
tion theory designs a slave system to synchronize a master
system. The chaos synchronization system consists of two
subsystems, a master system and a slave system, representing
the relation between master and servant. This paper uses
Lorenz chaos synchronization system, which is highly sen-
sitive to parametric variation, to capture the voltage signal of
photovoltaic system and extract the kinematic trajectory of
dynamic error.The center of this kinematic trajectory is used

Table 2: Solar photovoltaic system fault category.

Fault
category Fault condition (short circuit set in faulted solar cell)

Case 1
(C1)

There is no fault in two-series connected
photovoltaic cells.

Case 2
(C2)

One solar cell fault occurs in any series branch of
two-series branch photovoltaic system.

Case 3
(C3)

Two solar cells have faults in any series branch of
two-series branch photovoltaic system.

Case 4
(C4)

Three solar cells have faults in any series branch of
two-series branch photovoltaic system.

Case 5
(C5)

One solar cell fault occurs in both of the two-series
branches of two-series branch photovoltaic system.

Case 6
(C6)

Two solar cells have faults in both of the two-series
branches of two-series branch photovoltaic system.

Case 7
(C7)

In the two-series branch photovoltaic system, one
solar cell has fault in one-series branch and two solar
cells have faults in the other branch.

Case 8
(C8)

In the two-series branch photovoltaic system, one
solar cell has fault in one-series branch and four
solar cells have faults in the other branch.

Case 9
(C9)

In the two-series branch photovoltaic system, two
solar cells have faults in one-series branch and three
solar cells have faults in the other branch.

as the eigenvalue of fault. The architecture of Lorenz chaos
synchronization system is expressed as follows [10]:

Master:
{{

{{

{

𝑥̇
1
= 𝛼 (𝑥

2
− 𝑥
1
)

𝑥̇
2
= 𝛽𝑥
1
− 𝑥
1
𝑥
3
− 𝑥
2

𝑥̇
3
= 𝑥
1
𝑥
2
− 𝛾𝑥
3
,

Slave:
{{

{{

{

̇𝑦
1
= 𝛼 (𝑦

2
− 𝑦
1
)

̇𝑦
2
= 𝛽𝑦
1
− 𝑦
1
𝑦
3
− 𝑦
2

̇𝑦
3
= 𝑦
1
𝑦
2
− 𝛾𝑦
3
,

(1)

where 𝛼, 𝛽, and 𝛾 are system parameters and 𝑥 and 𝑦 are
the state variables. The master-slave system error state can be
expressed as 𝑒
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This paper uses the final dynamic errors ̇𝑒
1
, ̇𝑒
2
, and ̇𝑒

3
to

draw the dynamic error trajectory diagram for observation.

3.2. Extension Theory. The extension theory solves contra-
diction problem quantitatively and qualitatively to change it
into compatibility problem.Thedifference between extension
theory and fuzzy theory is that the range of fuzzy set is
⟨0, 1⟩, whereas the extension is a real number extended from
⟨0, 1⟩ to ⟨−∞,∞⟩ [11]. The extension theory is characterized
by a small amount of calculation and simplicity, and it has
high accuracy rate in evaluating multiple parameters and
complex construction. This paper uses this feature to judge
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Figure 4: Neural network architecture.

the eigenvalue captured by Lorenz chaos synchronization
system to identify the fault category of photovoltaic system.

3.2.1. Matter-Element Theory. In the extension theory, the
matter-element is the basic element describing things. The
general matter-element model is the mathematical model
applied to extension, defined as follows [12]:
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where 𝑅 is the matter-element, 𝑃 is the name of the matter-
element, 𝐶 is the eigenvector, and 𝑉 is the magnitude vector
corresponding to 𝐶.

3.2.2. Extension Set. The extension set means the range of
set is extended from −∞ to ∞ to represent the extensibility
of thing characteristics, the correlation function is defined
as (4), and the correlation grade of extension set can be
expressed as Figure 3 [13].
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Figure 5: System diagnosis process of chaotic extension neural
network.
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where 𝐾 is the correlation grade, 𝑁
𝑜
is the classical domain,

𝑁
𝑠
is the neighborhood domain, and𝑁

𝑜
∈ 𝑁
𝑠
.

3.3. Neural Network. The neural network is a computational
theory derived from human brain structure, and it consists
of many layers of neurons. The neural network is capable
of calculation, memorization, reasoning, and logical deci-
sion and readjustment. The forward error backpropagation
algorithm proposed by Rvomelhart and Mcclelland (1986)
has excellent effect on computing nonlinear system. This
paper uses this feature to calculate the eigenvalue changed
at different temperatures and irradiances and uses BP neural
network to determine the classical domain andneighborhood
domain of extension theory.

The neural network consists ofmultiple layers of neurons;
the input end is called input layer and the output end is called
output layer.The hidden layer is between the output layer and
input layer. The input layer and the output layer are the basic
structures forming the neural network; the hidden layer is
dispensable. The basic structure is shown in Figure 4 [14].

3.4. Chaotic Extension Neural Network Diagnosis System
and Process. Figure 5 shows the system diagnosis process of
chaotic extension neural network. First, the measured irradi-
ance, temperature, and𝑉MPPT are recorded, and the recorded
irradiance and temperature are imported into the BP neural
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Figure 6: Schematic diagram of system diagnosis of chaotic extension neural network.
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Figure 7: Three-dimensional diagram of normal chaotic dynamic
error at 500W/m2 40∘C.

network system to obtain the extension classical domain
range of chaos center eigenvalue at current irradiance and
temperature, and then the recorded voltage is imported into
the chaos synchronization system to obtain a kinematic
trajectory of chaotic dynamic system. The center point of
kinematic trajectory is taken as the basis of diagnosis. Finally,
the fault category of photovoltaic system can be identified as
long as the obtained signal is imported into the diagnostic
system of chaotic extension neural network.

4. Simulation Results and Comparison

This study aims to remedy the defect of unavailable diagnosis
at varying irradiance and temperature in the literature [9], so
the BP neural network is adopted. Figure 6 is the schematic
diagram of system diagnosis.

4.1. Simulation Results. This study uses matlab 2010 and nn
toolbox for simulation. The fault category is the short circuit
in the solar panel of photovoltaic array, so as to simulate one
normal state and eight fault states (i.e., C1∼C9), as shown in
Table 2.

The P-V and I-V characteristic curves are different in
different states. The additional noise makes the kinematic
trajectory of chaos system easier to be identified. Figure 7 is
the three-dimensional diagram of chaotic dynamic error in
the normal state of 500W/m2 40∘C; the chaos center points
in various states are taken as the range of extension classical
domain, and the BP neural network is used to decide the
chaos center points at different temperatures and irradiances.

Table 3: Sunshine intensity in different time intervals.

Time interval (UTC + 08:00) Irradiance value (W/m2)
7:00∼8:00 158∼395
8:00∼9:00 395∼656
9:00∼10:00 656∼730
10:00∼11:00 730∼870
11:00∼12:00 870∼932
12:00∼13:00 870∼914
13:00∼14:00 870∼913
14:00∼15:00 870∼912
15:00∼16:00 632∼870
16:00∼17:00 158∼280

The sunshine intensity is about 400W/m2 ∼ 1000W/m2
during 8:00∼16:00 in Taiwan, as shown in Table 3 [15], and
the temperature is about 25∘C∼50∘C; the simulation is based
on the conditions [9]. Figures 8(a), 8(b), 9(a), and 9(b) show
the P-V and I-V characteristic curves at 1000W/m2 25∘C and
500W/m2 40∘C.

First, the irradiance of 400W/m2∼1000W/m2 is divided
into intervals of 100 irradiance; the temperature is divided
into 25∘C, 30∘C, 40∘C, and 50∘C intervals as the input ends
of BP neural network. The voltage of each interval is taken
for chaos signal extraction; the obtained signal center point
is used as the output end of neural network. Figures 10 and 11
show the ̇𝑒

1
− ̇𝑒
3
dynamic error plane and center of different

faults at 1000W/m2 25∘C and 500W/m2 40∘C.The data of ̇𝑒
3

center point of each interval are obtained. Table 4 shows the
center point values at various irradiances and temperatures.
The data are imported into the BP neural network of nn tool
for training to calculate the center point of chaotic kinematic
trajectory generated in different conditions. In Table 3, the
center point adds ±0.5 as the range of extension classical
domain, and then the fault voltage signal is imported for fault
diagnosis.

4.2. Comparison. The literature [9] simulated fault diagnosis
at 1000W/m2 25∘C, so this study used 1000W/m2 25∘C,
1000W/m2 30∘C, and 900W/m2 25∘C for comparison, as
shown in Tables 5(a), 5(b), 6(a), 6(b), 7(a), and 7(b).

Table 8 compares the diagnostic rates and shows the
diagnostic method of the literature [9]. When the irradiance
is unchanged and the temperature rises by 5∘C, the diagnostic
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Table 4: Center point values at different irradiances and temperatures.

Data Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

1000W/m2

25∘C 510.4643 466.6346 403.0097 336.9965 440.9046 367.1505 392.7802 270.0989 318.5866

1000W/m2

30∘C 423.9461 384.2504 331.8281 279.6135 360.4166 296.4365 319.305 223.3225 257.5316

1000W/m2

40∘C 303.6795 273.2271 238.4073 203.3484 253.9672 205.7853 224.6499 162.0302 179.1338

1000W/m2

50∘C 423.9461 384.2504 331.8281 279.6135 360.4166 296.4365 319.305 223.3225 257.5316

900W/m2

25∘C 457.1445 423.7284 371.5272 308.6055 403.0104 340.6735 362.7715 247.7087 296.5857

900W/m2

30∘C 386.6972 353.5165 306.1361 256.1142 333.0595 276.7268 297.0517 204.9426 240.1221

900W/m2

40∘C 280.6887 253.7645 218.3704 186.4827 236.5171 192.9238 209.3046 148.5407 167.4806

900W/m2

50∘C 210.7214 189.524 165.4722 141.7511 144.5628 141.4557 154.9977 112.7255 122.8688

800W/m2

25∘C 391.5921 370.5262 333.048 280.6498 356.0653 308.557 326.1221 223.9556 272.0152

800W/m2

30∘C 341.6574 316.5865 278.4199 231.5121 300.314 253.4934 270.7338 185.3674 221.2131

800W/m2

40∘C 253.9414 231.2014 200.1783 168.4703 216.3469 178.0942 192.5487 134.2771 154.3977

800W/m2

50∘C 192.0345 173.5387 150.5305 127.9922 161.1028 130.758 142.5223 101.6299 113.2707

700W/m2

25∘C 314.5517 304.8765 284.1958 248.2921 297.1806 267.8527 279.592 199.9536 241.466

700W/m2

30∘C 286.7018 271.0453 244.428 207.0795 259.892 225.1551 238.491 164.6638 199.2278

700W/m2

40∘C 222.272 204.5738 179.3767 149.4428 192.5778 160.7518 172.9791 119.1263 140.088

700W/m2

50∘C 170.4388 155.0974 134.6042 113.3157 118.4572 118.4572 128.6777 89.93955 102.556

600W/m2

25∘C 233.7565 230.7093 223.2524 205.8939 227.9525 215.5746 221.084 174.1138 201.5134

600W/m2

30∘C 222.609 215.5159 201.5031 177.5427 209.7437 189.2676 197.7411 144.0344 171.6018

600W/m2

40∘C 184.113 172.3014 154.2809 130.2548 163.7463 139.8199 149.3071 103.04 123.3908

600W/m2

50∘C 145.0369 133.3973 117.3126 97.81224 125.1117 104.0237 112.428 77.50333 90.74045

500W/m2

25∘C 159.2883 158.5788 156.8393 152.0567 157.8894 154.6332 156.2005 138.8777 150.2812

500W/m2

30∘C 156.1902 154.0336 149.3204 139.0552 152.0642 144.0444 147.6893 119.561 135.6136

500W/m2

40∘C 139.2521 133.2785 123.1959 107.7763 128.4807 113.8041 119.9614 86.82071 102.6594

500W/m2

50∘C 114.9432 107.4587 96.52619 81.99123 101.7915 86.67798 92.8941 64.3971 76.65465

400W/m2

25∘C 97.18495 97.04757 96.744 95.95195 96.91125 96.31457 96.61014 93.35858 95.54372

400W/m2

30∘C 96.67736 96.20672 95.20266 92.80305 95.74832 49.29442 49.44406 48.24918 48.96747

400W/m2

40∘C 91.52255 89.52814 85.85849 79.17138 87.73116 81.62739 84.39876 67.59447 76.26249

400W/m2

50∘C 80.47037 76.90738 71.29433 62.91227 73.94753 65.43214 69.12599 51.00417 59.25853
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Table 5: 1000W/m2 25∘C diagnostic result.

(a) Original literature

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 −0.71277 −0.82783 −0.98066 −0.76204 −0.8813 −0.84332 −1 −0.94555

C2 −0.72198 1 −0.77112 −0.97482 −0.68079 −0.84335 −0.79216 −1 −0.92876

C3 −0.97026 −0.91917 1 −0.9819 −0.88336 −0.88328 −0.8429 −1 −0.94815

C4 −1 −0.95903 −0.88299 1 −0.93033 −0.8293 −0.86864 −0.88656 −0.81035

C5 −0.89264 −0.83442 −0.85419 −0.98472 1 −0.90089 −0.86786 −1 −0.95529

C6 −1 −0.93853 −0.82443 −0.91072 −0.89546 1 −0.80291 −0.93911 −0.85451

C7 −0.98944 −0.92881 −0.81628 −0.97739 −0.88633 −0.84873 1 −1 −0.93314

C8 −1 −0.92787 −0.79398 −0.75559 −0.87732 −0.69945 −0.76872 1 −0.53752

C9 −1 −0.94868 −0.85341 −0.8261 −0.91271 −0.78616 −0.83544 −0.78829 1

(b) This paper

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 −1 −0.98248 −0.97801 −0.98897 −0.97954 −0.98146 −0.976 −0.97732

C2 −0.47293 1 −0.62539 −0.88383 −0.25053 −0.79562 −0.68466 −1 −0.92394

C3 −0.89219 −0.62946 1 −0.64614 −0.40071 −0.37748 −0.0395 −1 −0.76833

C4 −1 −0.89251 −0.60889 1 −0.80349 −0.28261 −0.5355 −0.61376 −0.1127

C5 −0.62227 −0.20589 −0.35382 −0.79961 1 −0.64747 −0.45607 −1 −0.8688

C6 −1 −0.82528 −0.36424 −0.29859 −0.68056 1 −0.24494 −0.81261 −0.48768

C7 −0.97836 −0.73257 −0.07283 −0.59351 −0.52725 −0.28489 1 −1 −0.73387

C8 −0.97527 −0.97663 −0.98023 −0.99133 −0.97776 −0.98436 −0.98115 1 −1

C9 −1 −0.9291 −0.74203 −0.16318 −0.87039 −0.52683 −0.69363 −0.52549 1

Table 6: 1000W/m2 30∘C diagnostic result.

(a) Original literature

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 −0.12676 0.535734 0.893778 −0.16441 1 0.280185 0.713481 −1 −0.42615

C2 −1 −0.37627 0.781551 0.200473 0.060822 0.796451 1 −0.88258 −0.1439

C3 −1 −0.63702 0.036782 1 −0.38265 0.512455 0.163909 0.131216 0.844341

C4 −1 −0.75659 −0.30474 0.341188 −0.58601 0.014244 −0.21949 1 0.560711

C5 −1 −0.52001 0.370992 0.683991 −0.18365 1 0.539099 −0.35383 0.350138

C6 −1 −0.68808 −0.10905 0.718689 −0.46948 0.29972 0.000199 0.927234 1

C7 −1 −0.93896 −0.82566 −0.66369 −0.89619 −0.74567 −0.80428 −0.75234 1

C8 −1 −0.79017 −0.40065 0.156169 −0.64312 −0.12567 −0.32716 1 0.345408

C9 −1 −0.79017 −0.40065 0.156169 −0.64312 −0.12567 −0.32716 1 0.345408

(b) This paper

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 −1 −0.98075 −0.97562 −0.98721 −0.97681 −0.97904 −0.9731 −0.97443

C2 −0.50963 1 −0.62158 −0.87545 −0.30151 −0.81663 −0.7059 −1 −0.93444

C3 −0.91719 −0.63621 1 −0.63327 −0.37768 −0.46009 −0.13406 −1 −0.80697

C4 −1 −0.87978 −0.58433 1 −0.77377 −0.14027 −0.46523 −0.61615 −0.22971

C5 −0.67223 −0.26196 −0.32826 −0.77891 1 −0.6745 −0.47794 −1 −0.88363

C6 −1 −0.83391 −0.42575 −0.16331 −0.68747 1 −0.26122 −0.74861 −0.46405

C7 −1 −0.75352 −0.1478 −0.51948 −0.5362 −0.30847 1 −0.95434 −0.72744

C8 −0.96412 −0.96588 −0.97019 −0.9827 −0.96743 −0.97668 −0.97193 1 −1

C9 −1 −0.93576 −0.77789 −0.32037 −0.87912 −0.54062 −0.71426 −0.48932 1
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Figure 8: P-V and I-V characteristic curves at 1000W/m2 25∘C.
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Figure 9: P-V and I-V characteristic curves at 500W/m2 40∘C.
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Table 7: 900W/m2 25∘C diagnostic result.

(a) Original literature

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0.39087 1 0.35864 −0.39016 0.900709 −0.07243 0.23286 −1 −0.57939

C2 −0.13222 0.533484 0.909789 −0.15757 1 0.290808 0.727889 −1 −0.42149

C3 −1 −0.69818 −0.1379 −0.17831 −0.48667 1 −0.03219 −0.76564 −0.36617

C4 −1 −0.68808 −0.10905 0.718689 −0.46948 0.29972 0.000199 0.555377 1

C5 −0.97245 −0.92459 1 −0.92894 −0.89105 −0.89051 −0.85263 −1 −0.95137

C6 −1 −0.87885 −0.65397 1 −0.79396 −0.49521 −0.61154 −0.695 −0.47851

C7 −1 −0.76003 −0.31456 −0.19902 −0.59186 1 −0.23051 −0.70642 −0.36204

C8 −1 −0.79017 −0.40065 0.156169 −0.64312 −0.12567 −0.32716 1 0.345408

C9 −1 −0.68808 −0.10905 0.718689 −0.46948 0.29972 0.000199 0.921613 1

(b) This paper

Status Case
C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 1 −1 −0.97775 −0.97193 −0.98589 −0.9741 −0.97647 −0.96965 −0.97134

C2 −0.42441 1 −0.60899 −0.88998 −0.21619 −0.7852 −0.67089 −1 −0.91837

C3 −0.81912 −0.57699 1 −0.66532 −0.35669 −0.34659 0.00116 −1 −0.75167

C4 −1 −0.90157 −0.64017 1 −0.81906 −0.34539 −0.5728 −0.6241 −0.0134

C5 −0.56918 −0.16613 −0.32758 −0.8108 1 −0.63062 −0.43403 −1 −0.85962

C6 −1 −0.82945 −0.37656 −0.38985 −0.68651 1 −0.25984 −0.88577 −0.52306

C7 −0.89864 −0.67586 −0.03513 −0.61682 −0.48165 −0.25189 1 −1 −0.71569

C8 −0.97645 −0.97778 −0.98132 −0.99383 −0.9789 −0.9853 −0.98223 1 −1

C9 −1 −0.92758 −0.73526 −0.05418 −0.86688 −0.51838 −0.6857 −0.56027 1

Table 8: Comparison of diagnostic rates.

State Category
Diagnostic rate in

literature [9]
Diagnostic rate in this

paper
1000W/m2

25∘C 100% 100%

1000W/m2

30∘C 11.11% 100%

900W/m2

25∘C 22.23% 100%

rate decreases to 22.23% as the range of chaotic kinematic
trajectory is changed. When the irradiance decreases to
1000W/m2 and the temperature is unchanged, the diagnostic
rate is only 11.11%. The diagnostic rate will decrease greatly if
the temperature or irradiance changes.

5. Conclusion

The chaotic extension neural network diagnosis proposed in
this paper is integrated with error backpropagation neural
network. It can remedy the defect of large decrease in
diagnostic rate when the irradiance and temperature have
changed in the original literature effectively.The defect in the
original literature is remedied, and the high diagnostic rate
in the original literature is maintained. In comparison to the
original neural network diagnosis, the addition of extension

theory reduces the time of repeated training. In addition, as
the chaos synchronization theory is used, when the diagnosis
is difficult due to undervoltage caused by the environment,
the signal can be amplified by using the advantages of chaos
theory for diagnosis.
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