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Changes in the level of a time series are usually attributed to an intervention that affects its temporal evolution. The resulting time
series are referred to as interrupted time series and may be used to identify the events that caused the intervention and to quantify
their impact. In the present paper, a heuristic method for level change detection in time series is presented.Themethod uses higher-
order statistics, namely, the skewness and the kurtosis, and can identify both the existence of a change in the level of the time series
and the time instance when it has happened.The technique is straightforwardly applicable to the detection of outliers in time series
and promises to have several applications. The method is tested with both simulated and real-world data and is compared to other
popular change detection techniques.

1. Introduction

Univariate time series analysis, in which only a single
observational unit (or subject) is being studied, is very
common in scientific experiments as well as in commercial
applications. When an event that affects the evolution of
a specific phenomenon occurs, the resulting time series is
referred to as an interrupted one. This event may act as an
intervention in or an interruption of the normal evolution
of the response time series, which, in the absence of the
intervention, is usually assumed to be a pure ARIMAprocess.
The intervention breaks the time series into two segments,
namely, the preintervention and the postintervention ones.
The affected time series usually present a change in level
and/or slope, which can be either permanent or temporary.
The analysis of interrupted time series, or time series quasi-
experiments [1], has many applications in various areas of
interest, such as in testing and measuring the impacts of new
traffic laws, the impacts of gun control laws, the impacts of
air pollution, and the impacts of psychological treatments.
Moreover, intervention models can be used to model and

forecast the response series and/or to analyze the impact of
the intervention.

The analysis of interrupted time series is performed by
statistically comparing the two segments of the series before
and after the intervention.Most of the interrupted time series
analysis methods require a priori knowledge of the time
instance of the event. Then, the pre- and postintervention
parts of the series are compared in order to identify changes
in the underlying model of the time series. One usually uses
the preintervention data (also called training, estimation or
Phase I data) to predict the evolution of the time series after
the intervention. The derived prediction is then compared to
the actual postintervention part [2, 3].

Furthermore, specific characteristics of the expected
intervention, such as its time dependence (abrupt or grad-
ual in onset) as well as its time duration (permanent or
temporary), are crucial parameters for the performance
of the analysis. McDowall et al. [4] have proposed three
intervention components, each associated with a distinct
pattern of impact.The three intervention components permit
the analyst to test rival impact hypotheses.
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The most problematic part of the above process is the
model identification step [5]. This is due to three reasons,
namely, the need of adequate number of data points, the need
for an adequate degree of mathematical sophistication, and
the fact that even if the above are being satisfied there is still a
chance of incorrectmodel identification. In order to eliminate
the model identification step, several suggestions have been
made [6–8]. All of them assume that most time series can be
represented satisfactorily by a single autoregressive ARIMA
model of some order. The application of other traditional
statistical methods such as two sample t-test comparisons
of the pre- and postintervention parts of the time series is
invalid because they ignore the dependence between succes-
sive observations of the time series [9]. Under the assumption
of normality, generalized likelihood ratio tests may also be
applied to detect change points when the process parameters,
that is, the mean value and the variance, differ before and
after the change point. This approach is more sensitive to
the normality assumption than the t-test. A discussion on
such generalized likelihood tests, their ability to cope with
successive change points, and the impact of initial parameter
estimation (i.e., estimation or training or Phase I data) can be
found in [10].

Intervention analysis has also been used as a method for
financial fraud detection [11], as well as an outlier detection
method for improving ARIMA forecasting [12]. It is noted
that all the above methods need a priori knowledge of
the time of intervention. If this is unknown, then more
sophisticated methods may be applied, which iteratively
model probable interventions to all the successive points in
the time series and try to identify the position that causes the
observed behavior [11].

There are also methods that can identify an unknown
change point based on the normality assumption. The
assumption of thesemethods is that the series follow a normal
distribution 𝑁(𝜇
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charts and the cumulative sum (Cusum) charts fall in this
category [10].

The detection of change points in time series has, also,
drawn much attention in data mining. It is recognized as
event change detection [13] and is closely related to activity
monitoring [14]. Outlier detection is also of great interest,
since it is closely related to fraud detection and rare event
discovery. Yamanishi and Takeuchi [15] propose a unifying
framework for dealing with both outlier and change point
detection. In this framework, a probabilisticmodel of the data
source is incrementally learned using an online discounting
learning algorithm, and then the score of any given data is
calculated to measure its deviation from the observed model.
We should also mention that Matsumoto and Yosui use a
sequential Monte-Carlo scheme to detect changes [16].

In the present paper, an automated method based on
higher-order statistics for the identification of an intervention
in a time series is presented. A preliminary version of this
research has been published in [17], and parts of the original

publication are included here under permission by IEEE.The
method includes the identification of both the existence of
the intervention and the time point when it has happened.
Theproposed framework can also be applied for the detection
of outliers in time series. The method is based on the
behavior of higher-order statistics, namely, the skewness and
the kurtosis of the data, computed in a sliding window over
the data sequence. This approach has been recently used
in the separation of weak biomedical signals from noise
[18], in the identification of the arrival of important seismic
events [19], and in the compression of signals for telemedicine
applications [20]. The method is demonstrated by means of
both simulated and real-world data. The initial motivation
for this work came from a problem of fraud detection in
a telecommunications network. In fact, telecommunications
data are usually represented as vectors of features. Any or
all of the features may serve as useful indicators of a user’s
deviation from a hypothesized normal behavior (profile).
Nevertheless, wewanted to test if there would be possibility to
detect such deviations from simple univariate representations
of a user’s behavior, for example, the number of phone
calls per day. The examples in Section 4 show that such an
approach is feasible. However, as long as telecommunications
fraud detection is concerned, interrupted time series analysis
can only serve as an extra tool within a larger fraud detection
framework.This is because only special cases of fraudmay be
detected from each indicator.

The paper proceeds as follows. In Section 2, an introduc-
tion to higher-order statistics (HOS) is given. In Section 3,
the description of the proposed method is presented. Experi-
mental results are presented in Section 4, which include both
simulated and real-world examples. A comparison between
the proposed method and previous ones is carried out in
Section 5. Finally, the conclusions are discussed in Section 6.

2. Higher-Order Statistics (HOS)

In this study, two higher-order statistics (HOS), namely, the
skewness and the kurtosis, are used to detect changes in
the evolution of a stochastic process. The values of these
statistics may indicate a deviation from Gaussianity and may
also reflect the existence of a nonstationary process. These
attributes are used, first for the detection of a change in the
level of the series and then for the estimation of the exact time
instance of the intervention.

Skewness is a measure of the asymmetry of the data
around the sample mean. If skewness is negative, the data are
spread out more to the left of the mean than to the right. If
skewness is positive, the data are spread outmore to the right.
The skewness is defined by
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where 𝜇 is the mean of the random variable 𝑋, 𝜇
𝑖
is the ith

central moment, and𝐸(⋅) represents the expected value of the
quantity in the parenthesis. We note that the skewness of a
random variable with normal or, in general, with symmetric
probability distribution function equals zero.
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Kurtosis is a measure of how outlier-prone a distribution
is. The kurtosis of the normal distribution is equal to 3.
Distributions that are more outlier-prone than the normal
distribution have kurtosis greater than 3; distributions that
are less outlier-prone have kurtosis less than 3. Kurtosis is
given by
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Usually the kurtosis is normalized (kurtosis excess) by sub-
tracting 3 in order to have a value of 0 for normal distribu-
tions. If the kurtosis is highly positive (or 𝛾

2
> 3), the activity

distribution is highly peaked and the data is likely to contain
an outlier.

In the presence of sample data, skewness and kurtosis are
calculated by means of their unbiased estimators 𝑔
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,

respectively. For an 𝑁-sample sequence x = {𝑥(𝑛) := 𝑛 =
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respectively, where 𝑚̂ and 𝜎̂ are the estimates of themean and
the standard deviation of 𝑥(𝑛), respectively, and 𝜅

𝑖
the ith 𝜅-

statistic. For a normal distribution, the expected values of 𝑔
1

and 𝑔
2
are 0 and −6/(𝑁−1), respectively, while the variances

of the aforementioned statistics are given by [22]
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1
) =
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(𝑁 − 3) × (𝑁 − 2) × (𝑁 + 3) × (𝑁 + 5)
.

(5)

3. The Proposed Heuristic Method

As already mentioned, the aim is to detect any significant
changes in the level of a time series. The approach presented
here is actually a heuristic method that yielded after the
observations that follow. So, a brief example will be used to
demonstrate it.

Let us examine the case of a time series 𝑥(𝑡) with an
intervention occurring at time point 𝑡 = 40 (Figure 1(a)).
The intervention has the effect of raising the level of the
series. In particular, the whole sequence is a white gaussian
noise signal, 𝑁(0, 1), superimposed on a step function 𝑢(𝑡 −
40). The skewness and the kurtosis of 𝑥(𝑡) are calculated
by means of a sliding window of size W, and the behavior
of the two statistics in the vicinity of the intervention is
examined. The proper size of the window needs to be
identified, and it will be discussed later. The next three
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Figure 1: A time series 𝑥(𝑡) with an intervention occurring at time
point 𝑡 = 40, its skewness (b), kurtosis (c), and their product (d) are
estimated for a window size𝑊 = 14.

subplots (Figures 1(b), 1(c), and 1(d)) depict the skewness, the
kurtosis, and the product of the two statistics, respectively,
which are derived by means of a moving window of size
𝑊 = 14. The presence of prevalent peaks at the time point
of the intervention is clear. In fact, this point behaves as
an outlier among the data inside the window. There is also
another prevalent extreme point 𝑊 − 2 time lags after the
first. This is due to the sliding window which has now only
one point from the low (preintervention) level of the series
and all others form the postintervention set. The low point
behaves as an outlier for the new window position.

In the skewness plot (Figure 1(b)), one can see a max-
imum at the time point of the intervention as well as a
minimum at 𝑊 − 2 time points after that. In the kurtosis
plot (Figure 1(c)), there are two successive maxima, the first
at the time point of the intervention and the second 𝑊 − 2

time points later. Last, their product plot (Figure 1(c)) has
obviously amaximum at the first point and aminimum𝑊−2

points later. In fact the skewness-kurtosis product embodies
the behavior of both statistics. In all cases the second peak,
either positive or negative, confirms the significance of the
first one and differentiates it from random fluctuations.

Under the considerations of the previous paragraphs and
if we can assume that the time series under study is generated
from a normal process, 𝑁(𝜇, 𝜎), then the proposed method
involves the following steps.

(1) The size,𝑊, of the sliding window is decided.
(2) The 𝑊-sample sliding window is moved over the

time series 𝑥(𝑡) with one sample difference between
successive windows. For each new position, 𝑗, the two
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statistics, 𝑔
1𝑗
and 𝑔

2𝑗
, in the window 𝑤𝑗 = {𝑥(𝑘) : 𝑘 =

𝑗−𝑊+1, 𝑗−𝑊+2, . . . , 𝑗}, (𝑗 = 𝑊,𝑊+1, . . . , 𝑁−𝑊+1)

are estimated.
(3) The values of the two statistics are thresholded by

means of the Chebychev-Bienaymé inequality [23]:
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where 𝑎 = 1 − 𝑞 is the level of significance. Its
value is set equal to 0.05, throughout our experi-
mentations, which means a confidence level of 95%.
The thresholding procedure actually means that all
the values of skewness and kurtosis that fall within
the aforementioned intervals are set equal to their
expected values.

(4) The values of the two statistics form two new time
series, 𝑔

1
(𝑡) and 𝑔

2
(𝑡), (𝑡 = 𝑊,𝑊+1, . . . , 𝑁). In these

series, all the localminima andmaxima are identified.
(5) The product of each estimated value of the 𝑔

1
(𝑡) with

the corresponding value of 𝑔
1
(𝑡) is also computed.

(As the expected value of skewness is 0 and we have
already thresholded it, in step 3, the product of the two
statistics is suppressed to 0 whenever skewness is 0.)

(6) All pairs of successive minima and maxima at a
distance of𝑊 − 2 are identified, and the position as
well as the type (minimum or maximum) of the first
one is recorded.

(7) All positions recorded in the previous step are the
identified points of intervention.

As stated earlier, the proposed method can be applied to
signals for which the underlying process (i.e., the one that
generates the time series) can be assumed Gaussian. If this
is not the case, the method is altered by omitting step 3
and the bracketed part of step 5. A voting procedure is then
applied which uses the minima and maxima identified in
the three statistics (skewness, kurtosis, and their product).
During the voting procedure, the time instances of each
minimum (or maximum) are compared with those from the
other series and the onewith themore hits is voted as themost
probable position of the intervention. If none of the identified
points is equal to any of the others, then the absence of any
intervention is decided. Both approaches gave similar results.
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Figure 2: Unidentified interventions in regard to the level of the
intervention and the size of the window used.

The approach to be followed depends on the specific
application. In all the simulations that follow, the decision is
considered correct if a detected change point is locatedwithin
one time point before or after the true change point.

4. Experimental Results

4.1. Dependence on the Size of the Intervention. First, we
examine the dependence of the identification ability of the
method on the size of the intervention and the size of the
sliding window used. It is obvious that the bigger the size
of the window, the better the normal approximation of the
sample would be. However, large windows will affect the
“online” detection ability of the method. Moreover, real-
world applications usually suffer from small sample sizes.
So, first 1000 white noise 𝑁(0, 1) sequences, of length 100
time points, were generated and for each one of them
an intervention was created at a specific time point. The
algorithm was applied to each sequence using window sizes
that incremented, by 2, from 𝑊 = 6 to 𝑊 = 30. The level
of the intervention was incremented by 𝑠, where 𝑠 is the
standard deviation of the original signal. The percentage of
unidentified interventions for sizes of intervention ranging
from 0 to 9𝑠 is shown in Figure 2. One can see that the
identification ability stabilizes after𝑊 = 10. On the contrary,
the ARIMA approach demands at least 50 points before and
50 after the intervention. Additionally, the method has an
identification percentage better than 65% for intervention
sizes equal to 4𝑠, which improves dramatically for higher
interventions.

4.2. Dependence on the Window Size. In order to further
explore the trade-off for various window sizes, we considered
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Figure 3: (a) True positive rate versus the window size and (b) false positive rate versus window size, with and without the use of thresholds.

two sets (A and B) of 1000 time series each. Set A consisted of
1000 time series with interventions, whereas set B consisted
of 1000 time series without interventions. Each series consists
of 100 time instances. We use two plots to show how the
true positive (TP) and the false positive (FP) rates depend
on the window size and on the thresholding procedure that
is described in steps 3 and 5 of the proposed algorithm. In
Figure 3(a), the true positive rate versus the window size is
given.The line depicted with squares was derived by applying
to set A an intervention of size 5𝑠 and by omitting step
3 of the method. That is without skewness and kurtosis
thresholding. The line which is depicted with circles was
produced from the same set of time series using thresholding
with 𝑎 = 0.05. For the third line (triangles), the intervention
in the series had a level of 7𝑠, where 𝑠 is the standard
deviation of the signal before the intervention. All lines
were plotted for window sizes ranging from 8 to 28 with
increments of 2. In Figure 3(b), the false positive rate versus
the window size is depicted. Since this plot was produced
from set B (i.e., without real interventions), only two lines
are drawn, one derived by applying thresholding and one
without. A dramatic improvement in the TP percentage with
the implementation of step 3 (thresholding) is observed. For
window size 𝑊 = 12, we get a good percentage of TP
hits while the FP rate reduces significantly. By incrementing
the window size, the outcome improves. In fact, the trade-
off is not only between the sensitivity and the specificity
of the method but also in the size of the window used.
Larger window sizes lead to better performance but have two
countereffects. First, if one uses large windows then he loses
the “real-time” detection of the intervention. Second, many
real-world time series are small in size, so large window sizes
may even cover the whole data set. Adding to this, small
intervention sizes will not produce statistically significant

changes inside large windows, which is also evident by the
decline in the TP rate for larger window sizes.

4.3. Performance with Stationary Time Series. Additional
simulations were done in order to test the performance of
the method with autoregressive data. Eleven sets of 1000
ARIMA(1,0,0) time series each were simulated. Each set of
the time series was generated for different values of the
autoregressive coefficient 𝜑

1
ranging from −1

∗
= −1 + 𝑒 to

1
∗
= 1 − 𝑒, where 𝑒 > 0 is chosen arbitrarily small, with steps

of 0.2. An intervention of size 5𝑠 was added at a specific time
point and the identification ability of the method was tested.
Thepercentage of unidentified interventions for each data set,
for increments of size 2 to the window size, is depicted in
Figure 4. One can see that the performance degrades near the
stability boundaries |𝜑

1
| = 1.

To further investigate the performance of the proposed
method, we consider time series that follow two alternative
AR(2) models. The preintervention part follows the AR
model

𝑦 (𝑘) = 0.4 ⋅ 𝑦 (𝑘 − 1) − 0.5 ⋅ 𝑦 (𝑘 − 2) + 𝑎 (𝑘) , (8)

where 𝑎(𝑘) is Gaussian random variable with mean 0 and
variance 1. An intervention of size 4𝑠 occurs at time point
𝑘 = 101 and after that the process follows a different AR
model, given by

𝑦 (𝑘) = 0.2 ⋅ 𝑦 (𝑘 − 1) − 0.3 ⋅ 𝑦 (𝑘 − 2) + 𝑎 (𝑘) . (9)

The resulting data sequence along with the skewness-kurtosis
product for window size 16 is presented in Figure 5. One may
observe that the proposed method correctly identifies the
intervention.
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Figure 5: Intervention identification for a process that changes after
the intervention.

4.4. Multiple Change Point Detection. The method was also
evaluated by a numerical simulation, which involved a dataset
with many change points. The data set consists of 1000
records. The changes in level occur at time points 𝑡 = 𝑘 ∗

100, 𝑘 = 1, 2 . . . , 9 and are equal in size to 4𝑠. Figure 6
shows the simulated time series as well as the skewness-
kurtosis product, derived by use of a sliding window of
size 18. The arrows in the plot point out the local maxima,
which are followed by a minimum at a distance of −2. These
maxima indicate the change points. All maxima are followed
by minima at distances dictated by the size of the window
used. Random fluctuations do not have a minima follower.
It should be noted that the window size sets a limit to the
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Figure 6: Change level detection for a simulated dataset with
multiple change points.

proximity of successive change points that can be identified.
Thus, change points that are closer to each other than the
window size may go unidentified.

4.5. Outlier Detection. The following example emphasizes
the ability of the proposed method to detect outliers. It is
drawn from a case of superimposed fraud in the telecommu-
nications network of an organization and demonstrates how
the different modeling approaches can affect a data mining
problem.

The daily behavior of the user under study is plotted
in Figure 7. All data correspond to eight years (from Jan
1998 to Dec 2005) of user behavior. Figure 7(a) shows the
number of all chargeable outgoing daily calls of a particular
user (calls). The corresponding call duration per day (dur)
is depicted in Figure 7(b), while the charging units per day
(units) are given in Figure 7(c). Days with zero number of
calls are not taken into account. This is because one way to
identify cases of fraudulent behavior is to spot any statistical
differences of the user’s behavior before and after the fraud
has been perpetrated. In this sense, days with zero number
of calls do not hold neither legitimate nor fraudulent usage,
and of course not any combination of them, so these days
do not contribute any additional knowledge to the problem.
Moreover, if these days were taken into account, they would
had mitigated the effect of the fraudster’s behavior.

Visual observation of each plot reveals different features;
that is, in Figure 7(a) there is an interestingly high number
of outgoing calls at day 144 while in Figure 7(c) there is
an apparent outbreak in the charging units after day 175.
In Figure 7(d), the inverse of the mean cost per sec per
day is plotted. Here, two points (p1 and p2) stem out as
outliers. It is interesting to notice that p1, day 42, stands in
a position with no particular interest in the three previous
plots.Thorough examination of theCall Detail Record (CDR)
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Figure 7: Several views of the daily behavior of a telecom user.

output of the organization’s Public Branch Exchange (PBX)
for the particular user revealed that at p1 the user placed
four calls to mobile destinations (since then he had never
made more than 2 calls per day). This is an example of a case
that would have caused a false alarm in a fraud detection
system [14]. Nevertheless, it is a deviation from the user’s
normal behavior. At p2 some calls are made to satellite
services that are not associated with the user’s own telephone
set. In this case, another person, that is, the fraudster, got
access to the legitimate user’s PIN and used it for his own
expensive calls. All behavior following p2 is dominated by the
fraudster’s activity which is superimposed over the legitimate
user’s one. It is, also, obvious that the parametric structure of
this sequence changes after p2. The process of Figure 7(d) is
differentiated as presented in Figure 8(a), in order tomake the
points of extreme behavior more prevalent. Differentiation,
also, helps to make the process stationary about a constant
mean level. The following are two plots of the skewness-
kurtosis product for window sizes𝑊 = 10 (Figure 8(b)) and
𝑊 = 18 (Figure 8(c)). Both give exact identification of all

the time points of interest. The larger the window used, the
smaller the random fluctuations of the statistics are.

5. Comparison with Other Approaches

In order to further illustrate the method, the following
comparisons were considered.

5.1. The Cincinnati Data. First, our method was applied on
the Cincinnati data which were also used by McDowall et al.
to introduce intervention analysis [4]. The daily number of
calls toCincinnatiDirectoryAssistancewas recorded for each
month from January 1962 to December 1976. In March 1974,
the 147th month of the series, Cincinnati Bell initiated a 0.20
USD charge for each call to Directory Assistance. There was
no charge for these calls prior to this time. This intervention
is exactly identified by our method at time position 147
(Figure 9).

5.2. Comparison with the Continuous Wavelet Transform.
The performance of our method is also compared to the
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Figure 8: Fraud detection through outlier detection.
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Figure 9: The Cincinnati data.

Continuous Wavelet Transform (CWT). The CWT has been
used in numerous signal processing problems ranging from
discontinuity detection and change point identification [24]
to signal compression [20]. Given awavelet function 𝜓(𝑡), the
CWT is the transformation of a signal 𝑓(𝑡) to the wavelet
coefficients 𝑐(𝛼, 𝑏) according to

𝑐 (𝑎, 𝑏) =
1

√|𝑎|

∫

∞

−∞

𝑓 (𝑡) 𝜓
∗
(
𝑡 − 𝑏

𝑎
)𝑑𝑡. (10)

The variables 𝑎 and 𝑏, scale and position, are the new
dimensions after the wavelet transform and the ∗ represents
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Figure 10: Exact change point detection. Comparison with the
CWT.TheCWTperforms better for smaller intervention sizes while
the proposed heuristic method is better for larger interventions.

operation of the complex conjugate [25]. The wavelet coeffi-
cients give a measure of the signal’s similarity (or correlation)
at some position 𝑏 with a scaled version of the basis wavelet.
Given the fact that several families of wavelets exist, each
one with varying qualities, the success of a method based on
wavelets relies on the selection of the appropriate wavelet.

For the purpose of our comparisons, we employ the
Haar wavelet, which is discontinuous and resembles a step
function. Decomposing a time series with a change in the
level bymeans of theHaarwavelet is expected to yieldwavelet
coefficients with a minimum (or a maximum, depending
on whether the change in the level is positive or negative,
resp.) at the change point. Figure 10 gives the percentage of
identification over the same set of 1000 time series for various
intervention sizes. The window size that was used in the
implementation of our proposed method (HOS) is𝑊 = 18.
Wavelets have better performance for small interventions but
for larger ones our method gives a more precise output.

It should be noted that the overall performance of the
CWT was better but only with the use of the Haar wavelet.
Other wavelets were also used, for example, the Daubechies
D4, theDaubechies D10, and theMexican Hat, but they could
not detect the change in the level.

As regards outlier detection, the Haar wavelet is not
appropriate. In this case, one should use another wavelet. On
the contrary, the proposed heuristic method needs not to be
altered, as it can cope with both changes in the level and
outlier detection, see Section 4.5.

5.3. Comparison with the SDAR Algorithm. We also compare
ourmethod with the SDAR algorithm that was introduced by
Yamanishi and Takeuchi [15]. In [15], a probabilistic model
of the data source has been proposed that is incrementally
learned using an online discounting learning algorithm, and
then the score of any given data is calculated to measure its
deviation from the observedmodel.This frameworkmay deal
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with both outlier and change point detection. In order to
evaluate their method, Yamanishi and Takeuchi used a data
sequence whose data between the change points was drawn
according to the following AR(2)model:

𝑥 (𝑘) = 0.6 ⋅ 𝑥 (𝑘 − 1) − 0.5 ⋅ 𝑥 (𝑘 − 2) + 𝑎 (𝑘) , (11)

where 𝑎(𝑘) is Gaussian random variable with mean 0 and
variance 1. The dataset consists of 10000 records. The change
points occur at time 𝑗 × 1000, (𝑗 = 1, 2, . . . , 9). The difference
between the value of the (𝑗 − 1)th change point and that of
the 𝑗th change point equals 𝑗. We use the same data sequence
to compare the SDAR algorithm with our heuristic HOS
approach.

The simulated dataset is depicted in Figure 11(a).
Figure 11(b) shows the scores calculated by SDAR. In
Figure 11(c), the skewness-kurtosis product is plotted. The
arrows on the upper half of the plot (Figure 11(c)) point out
the detected change points while the arrows on the lower
half part of the plot point out the minima that follow and
confirm the change point detection. One can see that both
methods detect the same change points.

A drawback of the SDAR algorithm, against our
approach, is that it cannot perform on time series with few
data points. This is because the algorithm tries to learn the
model parameters incrementally and needs several data in
order to converge to the parameter values. Moreover, its
implementation implies that the data generating process
is AR(2), as its name also implies, which may not always
be the case. The heuristic HOS approach makes no such
assumption. However, it is interesting to note how the SDAR
scores reflect the degree of changes in the level of the time
series which cannot be achieved with the HOS.

6. Conclusions and Discussion

In the present paper, a method for the detection of changes
in the level of a time series is presented. The method is a
heuristic method based on an observation on how certain
higher-order statistics, namely, the skewness and the kurtosis
of the process, behave in the presence of a change in the
level of the series. It can also be applied to detect outliers
in the evolution of a time series. The method is tested with
both simulated and real-world data. The latter are examples
taken from the telecommunications industry. In particular,
one is an interrupted time series which resulted after a change
in service pricing policy, while the other is an example of
superposition fraud. The proposed method maintains high
specificity with the proper selection of the window size and
can be applied to time series with only few data points.
Adding to these, the method works with one scan of the data
so it can be used for online detection of outliers or of changes
in the level.

There was some consideration regarding the size of the
window which in fact defines the sample size used and how
this size affects the efficiency of the tests.The reader is referred
to the work of Shapiro et al. [26] for an extensive study
of various tests for normality. There, results are included
which exhibit that a combination of skewness and kurtosis
usually provides a sensitive judgment of nonnormality which
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Figure 11: Detection of multiple change points in a time series.
Comparison of the proposed heuristic HOS approach with the
SDAR algorithm.

can be achieved with samples sizes less than 20. Compared
with other intervention detection methods, our approach
shows promise as it works on time series without any prior
knowledge of the underlying process, the time and type of the
intervention, or the size of the time series. It may also cope
with time series with few data points.

Further research may include the study of the behavior
of the method with different ARIMA processes and experi-
mentationwithmore real-world problems.Morework should
also be added to check the behavior of the method in the case
of interventions due to impulsive or exponential noise, while
an appropriate extension to the approach may enhance its
sensitivity for small interventions. It would also be interesting
to extend themethod in order to cope withmultidimensional
data.
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