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Theperiodical in timeproblem for singularly perturbed secondorder linear ordinary differential equation is considered.Thebound-
ary layer behavior of the solution and its first and second derivatives have been established. An example supporting the theoretical
analysis is presented.

1. Introduction and Preliminaries

In this paper we investigate the equation

𝐿𝑢 ≡ 𝜀𝑢
󸀠󸀠
+ 𝑎 (𝑡) 𝑢

󸀠
+ 𝑏 (𝑡) 𝑢 = 𝑓 (𝑡) , 0 < 𝑡 < 𝑇, (1)

with the periodic conditions

𝑢 (0) = 𝑢 (𝑇) , 𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) , (2)

where 𝜀 ∈ (0, 1] is the perturbation parameter, 0 < 𝛼 ≤ 𝑎(𝑡) ≤

𝑎
∗, 0 < 𝛽 ≤ 𝑏(𝑡) ≤ 𝑏

∗, and 𝑓(𝑡) are the 𝑇-periodic functions
satisfying 𝑎, 𝑏, 𝑓 ∈ 𝐶

1
[0, 𝑇].

Periodical in time problems arise inmany areas ofmathe-
matical physics and fluidmechanics [1–3]. Various properties
of periodical in time problems in the absence of boundary
layers have been investigated earlier by many authors (see,
e.g., [4, 5] and references therein).

The qualitative analysis of singular perturbation situa-
tions has always been far from trivial because of the boundary
layer behavior of the solution. In singular perturbation cases,
problems depend on a small parameter 𝜀 in such a way that
the solution exhibits a multiscale character; that is, there are
thin transition layers where the solution varies rapidly while
away from layers and it behaves regularly and varies slowly
[6–8].

We note that periodical in space variable problems and
also their approximate solutions were investigated by many
authors (see, e.g., [9–13]).

In this note we establish the boundary layer behaviour for
𝑢(𝑡) of the solution of (1)-(2) and its first and second deriva-
tives. The maximum principle, which is usually used for
periodical boundary value problems, is not applicable here;
because of this we use another approach which is convenient
for this type of problems. The approach used here is similar
to those in [9, 14, 15].

Note 1. Throughout the paper 𝐶 denotes the generic positive
constants independent of 𝜀. Such a subscripted constant is
also independent of 𝜀, but its value is fixed.

Lemma 1. Let 𝛿(𝑡) ≥ 0 be the continuous function defined on
[0, 𝑇] and 𝑐

0
(𝑡), 𝜌(𝑡) ∈ 𝐶[0, 𝑇] and 𝛾, 𝜇 are given constants. If

𝛿
󸀠

(𝑡) + 𝑐
0
(𝑡) 𝛿 (𝑡) ≤ 𝜌 (𝑡) , 𝛿 (0) ≤ 𝜇𝛿 (𝑇) + 𝛾, (3)

then

𝛿 (𝑡) ≤ (1 − 𝜇𝑒
−∫
𝑇

0
𝑐0(𝑠)𝑑𝑠)

−1

× (𝛾𝑒
−∫
𝑇

0
𝑐0(𝜂)𝑑𝜂 + ∫

𝑇

0

𝜌 (𝑠) 𝑒
−∫
𝑇

𝑠
𝑐0(𝜂)𝑑𝜂𝑑𝑠) 𝑒

−∫
𝑇

0
𝑐0(𝜂)𝑑𝜂

+ ∫

𝑡

0

𝜌 (𝑠) 𝑒
−∫
𝑇

𝑠
𝑐0(𝜂)𝑑𝜂𝑑𝑠

(4)
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provided that

1 − 𝜇𝑒
−∫
𝑇

0
𝑐0(𝑠)𝑑𝑠 > 0. (5)

Proof. Inequality (4) can be easily obtained by using first
order differential inequality containing initial condition.

2. Asymptotic Estimate

We now give a priori bounds on the solution and its deriva-
tives for problem (1)-(2).

Theorem 2. The solution 𝑢(𝑡) of the problem (1)-(2) satisfies
the bound

𝜀
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󵄨󵄨󵄨󵄨󵄨

2

+ |𝑢|
2
≤ 𝐶∫

𝑡

0

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨

2

𝑑𝑠, (6)

provided that

𝛾 = 𝜆
0
min
[0,𝑇]

(2𝑏 (𝑡) − 𝑎
󸀠

(𝑡)) − 𝑏∗ > 0, (7)

where

𝑏∗ = max
[0,𝑇]

𝑏
󸀠

(𝑡) , 0 < 𝜆
0
<

(𝛼 + √𝛼2 + 8𝛽)

4
.

(8)

Proof. Consider the identity

𝐿𝑢 (𝑢
󸀠
+ 𝜆𝑢) = (𝑢

󸀠
+ 𝜆𝑢)𝑓 (𝑡) (9)

with parameter 𝜆 > 0which will be chosen later. By using the
equalities

𝜀𝑢
󸀠󸀠
𝑢
󸀠
=

𝜀

2
[(𝑢
󸀠
)
2

]

󸀠

,

𝜆𝑢
󸀠󸀠
𝑢 = 𝜆(𝑢

󸀠
𝑢)
󸀠

− 𝜆(𝑢
󸀠
)
2

,

𝜆𝑎 (𝑡) 𝑢
󸀠
𝑢 =

𝜆

2
𝑎 (𝑡) (𝑢

2
)
󸀠

=
𝜆

2
[𝑎 (𝑡) 𝑢

2
]
󸀠

−
𝜆

2
𝑎
󸀠

(𝑡) 𝑢
2
,

𝑏 (𝑡) 𝑢
󸀠
𝑢 =

1

2
𝑏 (𝑡) (𝑢

2
)
󸀠

=
1

2
[𝑏 (𝑡) 𝑢

2
]
󸀠

−
1

2
𝑏
󸀠

(𝑡) 𝑢
2
,

(10)

and the inequalities

𝑢
󸀠
𝑓 (𝑡) ≤ 𝜇

1
(𝑢
󸀠
)
2

+
1

4𝜇
1

𝑓
2

(𝑡) , 𝜇
1
> 0,

𝜆𝑢𝑓 (𝑡) ≤ 𝜆𝜇
2
𝑢
2
+

𝜆

4𝜇
2

𝑓
2

(𝑡) , 𝜇
2
> 0,

(11)

in (9), we have

{𝜀𝑢
󸀠2
+ 2𝜀𝜆𝑢

󸀠
𝑢 + 𝜆𝑎 (𝑡) 𝑢

2
+ 𝑏 (𝑡) 𝑢

2
}
󸀠

≤ −2 {𝑎 (𝑡) − 𝜀𝜆 − 𝜇
1
} 𝑢
󸀠2

+ {𝑏
󸀠

(𝑡) + 𝜆𝑎
󸀠

(𝑡) − 2𝜆𝑏 (𝑡) + 2𝜆𝜇
2
} 𝑢
2

+ {
1

2𝜇
1

+
𝜆

2𝜇
2

}𝑓
2

(𝑡) .

(12)

Denoting now 𝛿(𝑡) = 𝜀𝑢
󸀠2

+ 2𝜀𝜆𝑢
󸀠
𝑢 + 𝜆𝑎(𝑡)𝑢

2
+ 𝑏(𝑡)𝑢

2 and
choosing 𝜇 = 1/2, we arrive at

𝛿 (𝑡) ≥
𝜀

2
𝑢
󸀠2
+ {𝛽 + 𝜆 (𝛼 − 2𝜆𝜀)} 𝑢

2
. (13)

After taking 𝜆 = 𝜆
0
< (𝛼 + √𝛼2 + 8𝛽)/4, the last inequality

reduces to

𝛿 (𝑡) ≥ 𝐶
0
(𝜀𝑢
󸀠2
+ 𝑢
2
) , (14)

where

0 < 𝐶
0
= min {

1

2
, 𝛽 + 𝜆

0
(𝛼 − 2𝜆

0
𝜀)} . (15)

On the other hand for the function 𝛿(𝑡) holds the follow-
ing inequality clearly:

𝛿 (𝑡) ≤ 𝜀 (1 + 𝜆) 𝑢
󸀠2
+ (𝑏
∗
+ 𝜀𝜆 + 𝜆𝑎

∗
) 𝑢
2

≤ 𝜀 (1 + 𝜆
0
) 𝑢
󸀠2
+ (𝑏
∗
+ 𝜆
0
+ 𝜆
0
𝑎
∗
) 𝑢
2
.

(16)

For the right-hand side of inequality (12), we have

2 {𝑎 (𝑡) − 𝜀𝜆 − 𝜇
1
} 𝑢
󸀠2

+ {−𝑏
󸀠

(𝑡) − 𝜆𝑎
󸀠

(𝑡) + 2𝜆𝑏 (𝑡) − 2𝜆𝜇
2
} 𝑢
2

≥ 2𝜀 {𝛼 − 𝜀𝜆
0
− 𝜇
1
} 𝑢
󸀠2

+ {−𝑏∗ − 𝜆
0
𝑎
󸀠

(𝑡) + 2𝜆
0
𝑏 (𝑡) − 2𝜆

0
𝜇
2
} 𝑢
2

≥ 𝛼𝜀𝑢
󸀠2
+

𝛾

2
𝑢
2
.

(17)

Taking into account 𝜀 ≤ 1 and 𝛾 > 0, after choosing 𝜇
1
=

(𝛼 − 2𝜆
0
)/2 and 𝜇

2
= 𝛾/4𝜆

0
, we have

𝛿
󸀠

(𝑡) ≤ −𝐶
1
𝛿 (𝑡) + 𝜌 (𝑡) , 𝛿 (0) = 𝛿 (𝑇) , (18)

where

0 < 𝐶
1
= min{

𝛼

1 + 𝜆
0

,
𝛾

2 (𝑏∗ + 𝜆
0
+ 𝜆
0
𝑎∗)

} ,

𝜌 (𝑡) = {
1

2𝜇
1

+
𝜆

2𝜇
2

}𝑓
2

(𝑡) .

(19)

From (18) by using Lemma 1, we have

𝛿 (𝑡) ≤
𝑒
−𝐶1𝑡

1 − 𝑒−𝐶1𝑇
∫

𝑇

0

𝜌 (𝑠) 𝑒
−𝐶1(𝑡−𝑠)𝑑𝑠 + ∫

𝑡

0

𝜌 (𝑠) 𝑒
−𝐶1(𝑡−𝑠)𝑑𝑠

(20)

which proves Theorem 2.

Note 2. As it is seen from (6)

|𝑢 (𝑡)| ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩2
, (21)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

= ∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝑓
2

(𝑠)
󵄨󵄨󵄨󵄨󵄨

1/2

𝑑𝑠. (22)
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Theorem 3. Under the assumptions of Theorem 2, the follow-
ing asymptotic estimates for the derivatives hold true:

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑘)

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 {1 + 𝜀

1−𝑘
𝑒
−𝛼𝑡/𝜀

} , 0 ≤ 𝑡 ≤ 𝑇, 𝑘 = 0, 1, 2.

(23)

Proof. The case 𝑘 = 0 directly follows from the identity (4).
For 𝑘 = 1, the problem (1)-(2) can be rewritten as

𝜀𝑢
󸀠󸀠
+ 𝑎 (𝑡) 𝑢

󸀠
= 𝐹 (𝑡) , 0 < 𝑡 < 𝑇, (24)

|𝑢 (0)| ≤ 𝐶, (25)

𝑢
󸀠

(0) = 𝑢
󸀠

(𝑇) , (26)

where

𝐹 (𝑡) = 𝑓 (𝑡) − 𝑏 (𝑡) 𝑢 (27)

and by virtue of Theorem 2

|𝐹 (𝑡)| ≤ 𝐶. (28)

The solution of (24)–(26) can be expressed as

𝑢
󸀠

(𝑡) = 𝑢
󸀠

(0) 𝑒
−(1/𝜀) ∫

𝑡

0
𝑎(𝑠)𝑑𝑠

+
1

𝜀
∫

𝑡

0

𝐹 (𝑠) 𝑒
−(1/𝜀) ∫

𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑑𝑠,

(29)

and taking into account (26), we have

𝑢
󸀠

(0) = (1 − 𝑒
−(1/𝜀) ∫

𝑇

0
𝑎(𝑠)𝑑𝑠

)

−1
1

𝜀
∫

𝑇

0

𝐹 (𝑠) 𝑒
−(1/𝜀) ∫

𝑇

𝑠
𝑎(𝜉)𝑑𝜉

𝑑𝑠.

(30)

Thus we get

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(0)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶𝛼
−1

(1 − 𝑒
−𝛼𝑇/𝜀

)

1 − 𝑒−𝑎
∗
𝑇/𝜀

≤ 𝐶𝛼
−1
. (31)

The relation (29) along with (31) leads to (23) for 𝑘 = 1

immediately.
Next for 𝑘 = 2, from (1) we have

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠󸀠

(0)
󵄨󵄨󵄨󵄨󵄨
=

1

𝜀

󵄨󵄨󵄨󵄨󵄨
𝑓 (0) − 𝑏 (0) 𝑢 (0) − 𝑎 (0) 𝑢

󸀠

(0)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶

𝜀
. (32)

Differentiating now (1), we obtain

𝜀𝑢
󸀠󸀠󸀠

+ 𝑎 (𝑡) 𝑢
󸀠󸀠
= 𝑓
󸀠

(𝑡) − 𝑏
󸀠

(𝑡) 𝑢 − 𝑏 (𝑡) 𝑢
󸀠
− 𝑎
󸀠

(𝑡) 𝑢 ≡ 𝜑 (𝑡) .

(33)

Under the smoothness conditions on data functions and
boundness of 𝑢(𝑡) and 𝑢

󸀠
(𝑡), we deduce evidently
󵄨󵄨󵄨󵄨𝜑 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐶. (34)

The solution of (33) is

𝑢
󸀠󸀠

(𝑡) = 𝑢
󸀠󸀠

(0) 𝑒
−(1/𝜀) ∫

𝑡

0
𝑎(𝑠)𝑑𝑠

+
1

𝜀
∫

𝑡

0

𝜑 (𝑠) 𝑒
−(1/𝜀) ∫

𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑑𝑠.

(35)

The validity of (23) for 𝑘 = 2 now easily can be seen by using
(32)–(34) in (35).

3. Example

Consider the particular problem with

𝑎 (𝑡) = 4, 𝑏 (𝑡) = 3, 𝑓 (𝑡) = 3𝑡, 𝑇 = 1. (36)

The solution of this problem is given by

𝑢 (𝑡) = 𝐴
1
𝑒
−((2−√4−3𝜀)/𝜀)𝑡

+ 𝐴
2
𝑒
−((2+√4−3𝜀)/𝜀)𝑡

+ 𝑡 −
4

3
,

(37)

where

𝐴
1
=

2 + √4 − 3𝜀

2√4 − 3𝜀 (1 − 𝑒−(2−
√4−3𝜀)/𝜀)

,

𝐴
2
=

√4 − 3𝜀 − 2

2√4 − 3𝜀 (1 − 𝑒−(2+
√4−3𝜀)/𝜀)

.

(38)

For the first derivative we have

𝑢
󸀠(𝑡)

= −
3

2√4 − 3𝜀 (1 − 𝑒−(2−
√4−3𝜀)/𝜀)

𝑒
−((2−√4−3𝜀)/𝜀)𝑡

−
3

2√4 − 3𝜀 (1 − 𝑒−(2+
√4−3𝜀)/𝜀)

𝑒
−((2+√4−3𝜀)/𝜀)𝑡

+ 1

(39)

from which it is clear that the first derivative of 𝑢(𝑡) is uni-
formly bounded but has a boundary layer near 𝑡 = 0 of
thickness 𝑂(𝜀).

The second derivative

𝑢
󸀠󸀠

(𝑡)

= −
3

𝜀
(

2 − √4 − 3𝜀

2√4 − 3𝜀 (1 − 𝑒−(2−
√4−3𝜀)/𝜀)

𝑒
−((2−√4−3𝜀)/𝜀)𝑡

+
2 + √4 − 3𝜀

2√4 − 3𝜀 (1 − 𝑒−(2+
√4−3𝜀)/𝜀)

𝑒
−((2+√4−3𝜀)/𝜀)𝑡

)

(40)

is unbounded while 𝜀 values are tending to zero.
Therefore we observe here the accordance in our theoret-

ical results described above.
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