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The main objective of cancer phase I clinical trials is to determine a maximum tolerated dose
(MTD) of a new experimental treatment. In practice, most of these trials are designed so that three
patients per cohort are treated at the same dose level. In this paper, we compare the safety and
efficiency of trials using the escalation with overdose control (EWOC) scheme designed with three
or only one patient per cohort. We show through simulations that the number of patients per
cohort does not impact the proportion of patients given therapeutic doses, safety of the trial, and
efficiency of the estimate of the MTD. Additionally, we present guidelines and tabulated values on
the number of patients needed to design a phase I cancer clinical trial using EWOC to achieve a
given accuracy of the estimate of the MTD.

1. Introduction

Cancer phase I clinical trials are small studies whose main objective is to determine a
maximum tolerated dose (MTD) of a new experimental drug or combination of known drugs
for use in a phase II trial. Patients are typically accrued to the trial sequentially in cohorts of
size m and dose level assignment to a given cohort of patients is dependent upon the dose
levels and toxicity outcomes of the previously treated cohorts of patients. A large number
of statistical methodologies which account for the sequential nature of the data generated
by such designs have been proposed in the literature, see [1, 2] for a comprehensive review
of such methods. In particular, the continual reassessment method (CRM) proposed by [3]
and its modifications [4–8] and escalation with overdose control (EWOC) described in [9–
15] are Bayesian adaptive designs that produce consistent sequences of doses and can be
easily implemented in practice using published tutorials and free interactive software, see,
for example, [16–19].
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The work we present here has been motivated by the frequent requests by clinicians
and review committees at Cancer Center Institutions the authors worked at on (1) the number
of patients that should be included in each cohort, and (2) the number of patients required to
conduct a phase I cancer clinical trial. Denote by mP a design that treats patients in successive
cohorts of sizem simultaneously at the same dose level. For a given fixed number of patients
in the trial, an advantage of an mP design with m > 1 over a 1P design is a shorter time of
completion of the trial. However, it is not clear how the two designs compare with respect to
safety of the trial and efficiency of the estimate of the MTD using EWOC. Goodman et al. [5]
argue for the use of more than one patient per dose level in a modified version of the CRM
to reduce the duration of the trial and toxicity incidence associated with the original CRM.
In this paper, we compare a 3P design with a 1P design in terms of the number of patients
given therapeutic doses, that is, doses in a neighborhood of the “true” MTD. In addition,
safety of the trial and efficiency of the estimate of the MTD will be compared using extensive
simulations.

The number of patients that are enrolled in a cancer phase I clinical trial is typically
between 12 and 40 and trial duration depends on the study design and length of the study
cycle to resolve toxicity outcome. An increasing number of clinicians we work with inquire
about the number of patients they need to accrue in order to estimate the MTD with an
acceptable degree of accuracy. We are not aware of any published methodologies for sample
size determination (SSD) in cancer phase I clinical trials based on power calculation or
precision of some Bayes estimates using either frequentist or Bayesian adaptive designs.
As a point of fact, most sample size recommendations are based on prespecified stopping
rules, see, for example, [20] on selecting the number of patients by considering different
stopping rules using the CRM. Lin and Shih [21] and Ivanova [22] describe sample size
recommendations based on the expected number of patients allocated to each dose selected
from a set of prespecified dose levels.

In this paper, we address the SSD problem using the traditional approach; we estimate
the sample size based on a desired accuracy of the Bayes estimate on the average. Specifically,
we seek the smallest number of patients so that the posterior variance of the MTD on the
average over all possible trials is no more than a specified margin. This procedure is not
based on a specific stopping rule and consequently preserves the coherent nature of EWOC,
see [15] for the coherence EWOC.

This paper is organized as follows. Section 2 describes dose escalation with overdose
control using cohorts of size m. In Section 3, we present two criteria to sample size deter-
mination in this Bayesian setting. Comparisons of designs that treat cohorts of size m > 1
simultaneously over the ones that treat one patient at a time are presented in Section 4. In
that section, we also give tabulated values relating the number of patients on the trial and the
corresponding average posterior variance and length of the highest posterior density interval.
Section 5 contains some concluding remarks and discussion.

2. mP Design Using EWOC

EWOC is a Bayesian adaptive design permitting precise determination of the MTD while
directly controlling the likelihood of an overdose. It is the first statistical method to directly
incorporate formal safety constraints into the design of cancer phase I clinical trials. Zacks
et al. [10] and Tighiouart and Rogatko [15] discuss statistical properties and coherence of
the method, and a comparison of EWOC with alternative phase I design methods is given
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in [9]. Babb and Rogatko [11] provide a summary of Bayesian phase I design methods
and Tighiouart et al. [12] studied the performance of EWOC under a richer class of prior
distributions for the model parameters. The defining property of EWOC is that the expected
proportion of patients treated at doses above the MTD is equal to a specified value α, the
feasibility bound. This value is selected by the clinician and reflects his/her level of concern
about overdosing. Zacks et al. [10] showed that among designs with this defining property,
EWOC minimizes the average amount by which patients are underdosed. This means that
EWOC approaches the MTD as rapidly as possible, while keeping the expected proportion
of patients overdosed less than the value α. Zacks et al. [10] also showed that, as a trial
progresses, the dose sequence defined by EWOC approaches the MTD (i.e., the sequence
of recommended doses converges in probability to the MTD). Eventually, all patients beyond
a certain time would be treated at doses sufficiently close to the MTD.

EWOC has been used to design over a dozen of phase I studies approved by the
Research Review Committee and the Institute Review Board of the Fox Chase Cancer
Center, Philadelphia, Winship Cancer Institute, Atlanta, and Cedars Sinai Medical Center,
Los Angeles (see [23–29] for some of the published trials).

We adopt the-logistic-based model to represent the dose-toxicity relationship the
following:

Prob(DLT | Dose = x) =
exp

(
β0 + β1x

)

1 + exp
(
β0 + β1x

) , (2.1)

where (β0, β1) ∈ (−∞,∞) × (0,∞) so that the probability of dose limiting toxicity (DLT) is an
increasing function of dose. The MTD γ is defined as the dose expected to produce DLT in a
specified proportion θ of patients. Let ρ0 be the probability of a DLT at the starting dose. To
facilitate interpretation of model parameters by the clinicians, we further parameterize model
(2.1) in terms of (ρ0, γ), see [9, 12] for more details. Suppose we plan to enroll n patients in
the trial in cohorts of size m. Dose levels in the trial are selected in the interval [Xmin, Xmax]
and an mP design proceeds as follows. We first specify prior distributions for ρ0 and γ . Then,
the first cohort of m patients receives the dose x1 = Xmin. Let d1 be the number of toxicities
observed among the firstm patients. The likelihood given the observed data thus far is

L1
(
ρ0, γ | D1

)
= p

(
ρ0, γ, x1

)d1
(
1 − p

(
ρ0, γ, x1

))m−d1 , (2.2)

where

p
(
ρ0, γ, x1

)
=

exp
{
ln
[
ρ0/

(
1 − ρ0

)]
+ ln

[
θ
(
1 − ρ0

)
/ρ0(1 − θ)

](
x1/γ

)}

1 + exp
{
ln
[
ρ0/

(
1 − ρ0

)]
+ ln

[
θ
(
1 − ρ0

)
/ρ0(1 − θ)

](
x1/γ

)} (2.3)

and D1 = {(x1, d1)}. Let Π1(x) be the marginal posterior cumulative distribution function
(cdf) of the MTD γ given D1. The second cohort of m patients receives the dose x2 = Π−1

1 (α)
so that the posterior probability of exceeding the MTD is equal to the feasibility bound α. In
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general, the likelihood of the data after observing the toxicity outcomes of the ith cohort ofm
patients is

Li

(
ρ0, γ | Di

)
=

i∏

j=1

p
(
ρ0, γ, xj

)dj
(
1 − p

(
ρ0, γ, xj

))m−dj , (2.4)

where xj is the dose assigned to the jth cohort ofm patients, p(ρ0, γ, xj) is given by (2.3)with
x1 replaced by xj , and Di = {(x1, d1), . . . , (xi, di)}. The (i + 1)st cohort of m patients receives
the dose xi+1 = Π−1

i (α) where Πi(x) is the marginal posterior cdf of γ given Di. This process
is repeated until a total of k cohorts are enrolled in the trial. This completes the description
of an mP design. For a given sample size n, we propose to compare the performance of a 1P
with a 3P design by estimating the percent of patients treated within a neighborhood of the
true MTD. Other comparisons include safety and efficiency of the estimate of the MTD under
the two designs.

3. Sample Size Determination

An increasing number of clinicians inquire about the number of patients they need to accrue
in the design of cancer phase I trials to achieve a specific goal. Sample size recommendation
based on the expected number of patients treated at each dose level in “3 + 3” designs
and A + B designs have been studied in [21, 22], respectively. However, these methods apply
to a prespecified set of discrete doses and it is not clear how they can be applied to continuous
doses. Unlike the frequentist approach, there is no consensus on a specific Bayesian method
for the SSD problem, see Adcock [30] for a review of Bayesian approaches. In this paper, we
present numerical results based on the posterior variance of the MTD and highest posterior
density (HPD) interval, see [31].

Denote by Var(γ | Dn) the posterior variance of the MTD given that n patients have
been accrued to the trial. The first criterion is to find the smallest n that satisfies

EDn

[
Var

(
γ | Dn

)] ≤ η, (3.1)

where the above expectation is taken with respect to the marginal distribution of the data
and η is specified by the clinician. In other words, we require an estimate of the MTD within
a given accuracy as measured by the posterior variance on the average overall possible trials.
In the second criteria, we seek the smallest n such that

EDn[l(Dn)] ≤ d, (3.2)

where l(Dn) is the length of the HPD interval (a, a + l(Dn)) determined by the constraint on
the coverage probability

P
[
γ ∈ (a, a + l(Dn)) | Dn

]
= 1 − α1. (3.3)

This is also known as the average length criteria (ALC) because for each realization
of a trial Dn, the corresponding HPD interval is determined by (3.3) and the lengths of these
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HPD intervals are averaged out with respect to the marginal distribution of the data in (3.2).
The tolerance values of the average length of the HPD interval d and coverage probability
1-α1 are prespecified by the clinician. Since both the posterior distribution of the MTD and
marginal distribution of the data are intractable, Monte Carlo averages were used to estimate
the left hand sides of (3.1) and (3.2). Details on the computation of Var(γ | Dn) and l(Dn) can
be found in [9, 18].

4. Numerical Results

The simulation results presented below all assume that the feasibility bound α = 0.25 and
that the dose levels are standardized so that the starting dose for each trial is x1 = 0 and
all subsequent dose levels are selected from the unit interval. Independent uniform prior
distributions were put on the parameters ρ0 and γ on the intervals [0, θ], [0, 1], respectively.

4.1. Comparison of Designs 3P with 1P

We simulate trials under different scenarios corresponding to different values of ρ0 and γ . For
the 1P design, the first patient receives dose 0 and the next dose x2 is determined as described
in Section 2. The second response y2 is then generated from the logistic model (2.3). This
process is repeated until a trial of n patients is generated. The same process applies to the
3P design except that 3 patients will be given the same dose at each stage of the trial and
3 responses are generated from model (2.3) independently instead of 1. Since 0 ≤ ρ0 ≤ θ
and 0 ≤ γ ≤ 1, we considered 12 scenarios corresponding to combinations of three values
of ρ0, {θ/4, θ/2, 3θ/4} with four values of γ , 0.2, 0.4, 0.6, and 0.8. We will refer to θ/4, θ/2,
3θ/4 as low, intermediate, and high values for ρ0, respectively. Similarly, 0.2 and 0.4 will
be referred to as low values for the MTD γ and 0.6 and 0.8 as high values. The same value
θ = 0.3 was used in all simulations. For each design, each sample size n = 12, 18, 24, 30,
and each combination of (ρ0, γ), we simulated 5000 trials and calculated the proportions of
patients given therapeutic doses, that is, doses in an ε-neighborhood of the true MTD, for
ε = 0.05, 0.1, 0.15, 0.2.

Table 1 gives the estimated proportions of patients given doses in an ε-neighborhood
of the true MTD under designs 1P and 3P and the difference in these proportions between
the two designs for low values of the true MTD γ and different sample sizes. Table 2 gives
the corresponding estimates for high values of the true MTD and Table 3 gives the average of
these estimates across the 12 combination of (ρ0, γ). For low values of the true MTD, design
1P assigns more patients to doses near the MTD than design 3P in general and the difference
can be as high as 16% for ε = 0.05, (ρ0, γ) = (0.4, 0.075), and n = 12. For high values of
the MTD, Table 2 shows that design 1P always assigns more patients to doses near the MTD
than design 3P and the highest difference is about 16% for ε = 0.2, (ρ0, γ) = (0.6, 0.075),
and n = 12. The estimated difference in the proportions of patients given doses in an ε-
neighborhood of the true MTD between the 1P design and 3P design averaged across the
12 entertained scenarios for (ρ0, γ) for different sample sizes show that the proportion of
patients given therapeutic doses under design 1P is always greater than the corresponding
proportion under design 3P, the largest of these differences is about 5%. The practical impact
of this difference is unimportant because of the relatively small number of patients involved
in phase I cancer clinical trials. In Tables 4 and 5, we present differences in (i) the proportions
of patients exhibiting DLT, (ii) the proportions of patients given doses above the “true” MTD,
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Table 3: Estimated proportions of patients given doses in an ε-neighborhood of the true MTD under
designs 1P and 3P and differences between these proportions on the average.

Sample size n
12 18 24 30

0.05

1P 0.1436 1P 0.1625 1P 0.1781 1P 0.1920
3P 0.0924 3P 0.1230 3P 0.1459 3P 0.1644
diff. 0.0512 diff. 0.0395 diff. 0.0322 diff. 0.0276

ε

0.10

1P 0.2956 1P 0.3200 1P 0.3405 1P 0.3587
3P 0.2860 3P 0.3101 3P 0.3322 3P 0.3497
diff. 0.0096 diff. 0.0099 diff. 0.0083 diff. 0.0090

0.15
1P 0.4115 1P 0.4412 1P 0.4640 1P 0.4839
3P 0.3888 3P 0.4239 3P 0.4516 3P 0.4714
diff. 0.0227 diff. 0.0173 diff. 0.0124 diff. 0.0125

0.20

1P 0.4988 1P 0.5340 1P 0.5589 1P 0.5801
3P 0.4517 3P 0.4991 3P 0.5333 3P 0.5564
diff. 0.0471 diff. 0.0349 diff. 0.0256 diff. 0.0237

(iii) the bias, and (iv) the mean square error between the 1P and 3P designs. Table 6 gives the
average values of these statistics, averaged across the 12 entertained scenarios for (ρ0, γ).
Based on (i) and (ii), the results indicate that the two designs are equally safe and that no
practical gain is achieved in terms of the efficiency of the estimate of the MTD according
to (iii) and (iv). From an ethical point of view, we recommend the 1P design to prevent
the occurrence of three simultaneous DLTs if we were to use the 3P design. This should be
discussed with the clinician after assessing the importance of the length of the trial.

4.2. Sample Size Determination

In this section, we present tabulated values for average posterior standard deviation of the
MTD and average length HPD interval that are achieved for even sample sizes n = 6, . . . , 40
and selected values of θ, the target probability of DLT. Table 7 summarizes the results for
θ = 0.3. For a given sample size n, each entry in the table was calculated according to the
following algorithm:

Set j = 1.

(i) Generate (ρ0,j , γj) ∼ Uniform [0, θ] × [0, 1] and independently.

(ii) Simulate a trial of n patients Dn,j according to the EWOC algorithm described in
Section 4.1 with (ρ0,j , γj) as the true model parameters.

(iii) Calculate the posterior variance Var(γ | Dn,j) and HPD (aj , aj + l(Dn,j)) using (3.3).

(iv) Repeat steps (i)–(iii) for j = 2, . . . ,M.
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Table 6: Estimated proportions of patients exhibiting DLTs, treated above the MTD, MSE, and bias of the
MTD under designs 1P and 3P and differences between these proportions on the average.

Sample size n
12 18 24 30

Proportion of DLTs

1P 0.2546 1P 0.2580 1P 0.2607 1P 0.2616
3P 0.2444 3P 0.2523 3P 0.2563 3P 0.2595
diff. 0.0102 diff. 0.0057 diff. 0.0044 diff. 0.0021

Proportion above the MTD

1P 0.1895 1P 0.2001 1P 0.2040 1P 0.2067
3P 0.1685 3P 0.1888 3P 0.1984 3P 0.2029
diff. 0.0210 diff. 0.0113 diff. 0.0056 diff. 0.0038

MSE

1P 0.0427 1P 0.0394 1P 0.0371 1P 0.0351
3P 0.0429 3P 0.0395 3P 0.0365 3P 0.0344
diff. −0.0002 diff. −0.0001 diff. 0.0006 diff. 0.0007

Bias

1P 0.0186 1P 0.0190 1P 0.0181 1P 0.0193
3P 0.0271 3P 0.0261 3P 0.0259 3P 0.0244
diff. −0.0085 diff. −0.0071 diff. −0.0078 diff. −0.0051

The left hand sides of (3.1) and (3.2) are estimated by

EDn

[
Var

(
γ | Dn

)] ≈ 1
M

M∑

j=1

Var
(
γ | Dn,j

)
,

EDn[l(Dn)] ≈ 1
M

M∑

j=1

l
(
Dn,j

)
.

(4.1)

In the numerical results presented here, we took M = 1000. When θ = 0.3, Table 7
shows that with 6 patients, we can estimate the MTD with an average posterior standard
deviation equal to 25% of the range of the dose and that a 17% decrease in the average
posterior standard deviation is achieved when increasing the sample size from 6 to 40
patients. Similarly, the average length of the 90%HPD interval is 74% of the dose range when
6 patients are enrolled in the phase I trial and a reduction of 16% of this length is achieved
when increasing the number of patients from 6 to 40. Figures 1 and 2 show the average
posterior standard deviation and average lengths of the 95% HPD intervals as functions of
the sample size n and target probability of DLT θ.

4.3. Illustrative Example

A randomized phase I clinical trial of the combination bortezomib and melphalan as
conditioning for autologous stem cell transplant in patients with multiple myeloma was
designed using EWOC and the results published in [27]. patients are randomized to arm
A where a fixed dose of melphalan (100mg/m2) is given before bortezomib and arm B
where the same fixed dose of melphalan is given after bortezomib. The doses available for
bortezomib are 0.4, 0.7, 1.0, 1.3, and 1.6mg/m2 with the first patient in either arm receiving
1.0mg/m2. For each arm, the MTD is defined to be the dose level of bortezomib that when
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Table 7: Average posterior standard deviation and average length of HPD of the posterior distribution of
the MTD that are achieved for a given sample size for θ = 0.3.

n Mean SD Length of 90% HPD Length of 95% HPD
6 0.2453 0.7386 0.8161
8 0.2399 0.7238 0.8040
10 0.2351 0.7111 0.7925
12 0.2309 0.6985 0.7818
14 0.2281 0.6913 0.7755
16 0.2248 0.6821 0.7678
18 0.2221 0.6748 0.7608
20 0.2197 0.6673 0.7546
22 0.2176 0.6624 0.7500
24 0.2153 0.6557 0.7439
26 0.2136 0.6505 0.7395
28 0.2119 0.6455 0.7352
30 0.2102 0.6410 0.7313
32 0.2085 0.6350 0.7257
34 0.2072 0.6313 0.7221
36 0.2057 0.6262 0.7176
38 0.2050 0.6240 0.7162
40 0.2036 0.6200 0.7123

administered in combination with 100mg/m2 of melphalan (either before or after) to a
patient results in a probability equal to θ = 0.33 that a dose limiting toxicity will be manifest.
In this trial, we start at α = 0.3 and increase α in small increments of 0.05 until α = 0.5, this
value being a compromise between the therapeutic aspect of the Bortezomib and its toxic
side effects. Since the doses in this trial are discrete, the dose allocated to the next patient
is obtained by rounding down the dose recommended by EWOC algorithm to the nearest
discrete dose, see [9, 15] on how to conduct a trial in the presence of a prespecified set of
discrete doses.

Figure 3 shows all the possible dose sequences that could be realized for the first four
patients, assuming that only one patient is treated at each dose and a selected situation for
patient 5. The principal investigator (PI) wanted to determine the number of patients to
accrue in each arm so that the posterior standard deviation of the MTD is no more than
one-fifth the range of the dose level. This statistical constraint combined with the logistics
such as availability of the resources for the PI, number of patients available, and limits on the
duration of the trial leads us to select 20 patients per arm. In fact, a sample size of 20 results
in an average posterior standard deviation ED20[(Var(γ | D20))

1/2] ≈ 0.228; This is just below
one-fifth the range of dose levels 0.4–1.6.

5. Concluding Remarks

The objectives of this paper are to provide a rational for the choice of cohort sizes and number
of patients to accrue in a phase I cancer clinical trial when the Bayesian adaptive design
EWOC is used. In these trials, patients are typically enrolled in cohorts of size three for
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Figure 1: Estimated mean posterior standard deviation as a function of the number of patients accrued to
the trial for different target probabilities of DLT θ.
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Figure 2: Estimated mean length of HPD of the posterior distribution of the MTD as a function of the
number of patients accrued to the trial for different target probabilities of DLT θ.

no apparent reason other than being in agreement with the traditional “3 + 3” design and
shortening the duration of the trial. We have shown through simulations that the two designs
are equally safe and that no practical gain is achieved in terms of the efficiency of the estimate
of the MTD. Depending on how important the length of the trial is to the clinician and the
institution, we recommend using one patient per dose level to avoid seeing simultaneous
toxic events when a group of patients is treated at the same dose level as was the case in
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Figure 3: All the possible dose sequences that could be realized for the first four patients and a selected
situation for patient 5. It assumes no simultaneous treatment of patients.

a recent phase I trial of the drug TGN1412, see [32]. In that trial, six volunteers were given
what was believed to be a safe dose of an anti-inflammatory drug TGN1412. Shortly after,
all 6 were admitted into intensive care due to severe reactions including swelling of the head
and neck.

The simulation results were obtained by generating the toxicity responses using
the logistic model (2.3). This assumption may not be true in practice and the operating
characteristics of EWOC may be sensitive to model misspecification. However, for the
purpose of model comparisons between 1P and 3P designs, any model misspecification for
the probability of toxicity response will affect the two designs the same way.

In the second part of the paper, we addressed the SSD problem by giving tabulated
values of the number of patients to accrue in a cancer phase I clinical trial as a function of
the posterior standard deviation and length of the HPD interval of the MTD on the average
over all possible trials. Although this aspect of the trial never received much emphasis in the
literature due to the relatively small number of patients and logistical issues associated with
such trials, we felt that providing a measure of the accuracy of the estimate of the MTD that
can be achieved for a given sample size would help the clinicians understand what can and
cannot be achieved during this phase of the trial. Our results show that in general, there is
17% decrease in the average posterior standard deviation of the MTD when the sample size
increases from 6 to 40 patients and that for a sample size of 20 patients, the average posterior
standard deviation of the MTD is about one-fifth the range of the dose levels. Although
this decrease in the average posterior standard deviation seems modest, we note that this
is dependent upon the use of prior distribution for the MTD. A more informative prior based
on past data will result in smaller average posterior standard deviations and narrower HPD
intervals.
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