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Introduction. Although lead paint and leaded gasoline have not been used in the US for thirty years, thousands of US children
continue to have blood lead levels (BLLs) of concern.Methods. We investigated the potential association of modeled air lead levels
and BLLs ≥ 10𝜇g/dL using a large CDC database with BLLs on children aged 0–3 years. Percent of children with BLLs ≥ 10𝜇g/dL
(2000–2007) by county and proportion of pre-50 housing and SES variables were merged with the US EPA’s National Air Toxics
Assessment (NATA) modeled air lead data. Results. The proportion with BLL ≥ 10𝜇g/dL was 1.24% in the highest air lead counties,
and the proportion with BLL ≥ 10𝜇g/dL was 0.36% in the lowest air lead counties, resulting in a crude prevalence ratio of 3.4.
Further analysis using multivariate negative binomial regression revealed that NATA lead was a significant predictor of % BLL ≥
10 𝜇g/dL after controlling for percent pre-l950 housing, percent rural, and percent black. A geospatial regression revealed that air
lead, percent older housing, and poverty were all significant predictors of % BLL ≥ 10𝜇g/dL. Conclusions. More emphasis should
be given to potential sources of ambient air lead near residential areas.

1. Introduction

Although blood lead levels (BLL) in US children have
been dramatically reduced over the past 40 years [1], lead
poisoning events continue to occur. The Lead-Based Paint
Poisoning Prevention Act legislation was passed in 1971, and
by 1978 the use of lead-based paint in residential housing
was banned [2]. Regulations phasing out lead in gasoline
were implemented in 1973. The elimination of lead from
these two sources has resulted in a dramatic reduction in
BLLs. However, there are still subgroups of children in both
urban and rural areas with high BLLs. Data evaluated from 26
states that are part of the Centers for Disease Control (CDC)

Childhood Lead Poisoning Prevention Program (CLPPP)
and have data available on the CDC Environmental Public
Health Tracking Network (Tracking Network) revealed that
almost 95,000 children between 0 and 3 years of age had
confirmed blood lead ≥10 𝜇g/dL from 2000 to 2007 with an
estimated 7,000 children in 2006 alone.

In 2002, over 9,000 industrial sites reported lead releases
to the US Environmental Protection Agency (EPA) Toxic
Release Inventory (TRI) [3]. Lead is one of the EPA [4]
Criteria Air Pollutants that have been established as harm-
ful to either human health or the environment. The cur-
rent National Ambient Air Quality Standards for lead are
0.15 𝜇g/m3 for a rolling 3-month average and 1.5 𝜇g/m3 for
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a quarterly average. The contribution of industrial sources to
BLLs has been studied in select industrial communities [5–8];
however, a rigorous systematic evaluation of ambient air lead
and its possible contribution to blood lead in US children has
not been done at the county level or census tract level.

Aside frommany occupational studies [9–12] that link air
and dust lead from lead smelters, battery reclamation, and
mining jobs with high BLLs among workers, there have been
very few studies that specifically examined the contributions
of lead in air and lead in soil to childhood BLLs [13–20].
Although a great deal has been accomplished tominimize the
exposure to lead paint in the US, little research has been done
to quantify the modest but consistently higher childhood
BLLs among those living in areas near industrial sources
emitting lead.

A review article by Levin et al. [19] estimates that lead
paint and dust from household sources account for up to 70%
of BLL ≥ 10 𝜇g/dL in US children, but more than 30% of these
children do not have exposure to lead paint in their home.
Most recently, Miranda et al. [20] evaluated children’s BLLs
by proximity to airports with planes using avgas, a leaded
fuel used in small aircraft. The highest BLLs were in children
within 500m of an airport, but there was an impact within
1000m. The US EPA [21] has determined that exposure to
lead from avgas may be through inhalation directly from air
or ingestion from soil after the lead has deposited.

Although BLLs in the US have fallen considerably with
the removal of lead in gasoline and the considerable efforts of
the Healthy Homes and Lead Poisoning Prevention Branch
(HHLPPB) at CDC, Housing and Urban Development
(HUD), and state and local health departments, there are
counties in the US where as many as 10% of screened
children have a BLL ≥ 10 𝜇g/dL. Clusters of higher BLLs raise
considerable concern that we have not completed the task.
The Tracking Network houses over five million childhood
blood lead results by county and the proportion of children
per county who have confirmed BLLs ≥ 10𝜇g/dL. Given the
availability of these data and the information on air lead levels
by census tract and county from the USEPA National-Scale
Air Toxics Assessment (NATA), we evaluated the linkage
of these two comprehensive databases to determine the
overall relationship at the ecological level as the first step in
understanding the role of ambient air lead to childhood blood
lead poisoning. The purpose of this investigation is to utilize
air lead exposure and biomonitoring data on childhood blood
lead screening available on the Tracking Network to develop
methods to characterize populations who may be at higher
risk of lead poisoning.

2. Methods

The Tracking Network uses data collected by state and
local childhood lead poisoning prevention programs to track
childhood BLL. It is recommended that high-risk children
are screened for blood lead between the ages of 0–3. The
results of these tests are provided to state and local public
health programs, funded in part by HHLPPB. The state and
local departments then share information with the HHLPPB

to compile a national database. To conduct a comprehensive
nation-wide evaluation of the impact of air lead on children’s
BLLs, theUniversity of Pittsburgh requested childhood blood
lead data from the HHLPPB for 1644 (52%) of the 3220 US
counties.

Some states mandatorily test all children aged 0–3, while
others test only a “targeted” population most at risk for lead
poisoning, usually those who receive Medicaid or live in
older housing. Data included the number of children ages 0–
3 found to have BLL ≥ 10 𝜇g/dL and the number of children
who had blood lead testing for each year 2000–2007 by
county. Summary information, including the total number
of children tested per county for all years available, was
calculated using SPSS version 18. For the following analysis,
only those counties with at least 50 children tested over the
eight year period were selected (𝑛 = 1508 counties). The
excluded counties tested an average of four children per year
and had an average population of 29,372. For 2007, only 77 of
the 1508 (5%) had reported lead data at the time of the data
request. Therefore, 2007 data is also not presented. Annual
percent high and a summary total ≥10 𝜇g/dL, total tested, and
percent ≥10 𝜇g/dL per county were calculated using SPSS.

2.1. NATA Data (2002 and 2005). Every three years since
1996, EPA has compiled a national-scale air toxics assessment
(NATA). The assessment is a state-of-the-science tool that
provides estimates of the concentrations, exposures, and
broad estimates of the risk from breathing air toxics. In 2002,
NATA evaluated 180 of the 187 Air Toxics, including lead
and lead compounds. The 2005 NATA estimated 177 of the
187 air toxics. The NATA assessment involves compiling a
national air toxics emissions inventory of outdoor stationary
and mobile sources (National Emissions Inventory, NEI).
These sources include major stationary sources, for example,
large waste incinerators and factories; area and other sources,
for example, dry cleaners, small manufacturers, andwildfires;
and both on road and nonroad mobile sources, for example,
cars, trucks, planes, and boats.

We conducted a sensitivity analysis of the validity of
NATA estimates. The EPA monitors to which we compared
the NATA estimates exist for these regulatory purposes.
Under the Clean Air Act, EPA sets and reviews national air
quality standards for lead. We compared the average yearly
measurement from these leadmonitors to the NATA concen-
tration estimate in the census tract in which the monitor sits.
The over 200 lead monitors measure concentrations of lead
throughout the country. Quartiles of NATA concentrations
and quartiles of monitor readings were compared using
weighted Kappa statistics.

We used modeled ambient concentrations of lead and
lead compounds at the county level for the 2005 National-
Scale Air Toxic Assessment (NATA downloaded from the
EPA website) [22]. There were notable improvements from
the 2002 to 2005 NATA estimates, which include inclusion of
19,000 airports as point sources, onroad and nonroad inven-
tories were updated, and the state-of-the-art Community
Multi-Scale AirModeling (CMAQ)model was used. Because
of these improvements, the 2005 model was used. These air
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lead levels weremerged by FIPS code to the county of interest
and its corresponding blood lead testing data.

2.2. 2000 Census Data. Additional county-level census vari-
ables that were downloaded to explore their predictive value
for childhood BLLs include percentage of older (pre-1950)
housing, percent living in poverty, and racial makeup of the
county. The three types of data (health, EPA NATA, and
Census) were merged by FIPS code using SPSS.

In addition, counties were classified into the following
based upon the NCHS Urban Rural Classification Scheme
Methodology [23]. They were classified into (1) Central
counties of a metro area with more than a million people, (2)
fringe counties of a metro area of more than amillion people,
(3) counties in a metro area of 250,000 to 999,999 people,
(4) counties in a metro area of 50,000 to 24,999 people, (5)
micropolitan counties (20,000 to 49,999, adjacent to a metro
area), and (6) noncore counties, with a population between
20,000 and 49,999 and not adjacent to a metro area or a
population under 20,000 whether or not they are adjacent to
a metro area. For this analysis, classification no. 1 is “Urban,”
no. 2–5 are “Suburban,” and no. 6 is “Rural.”

2.3. Data Analysis. First, we compared the mean proportion
of children with high BLL who reside in the top 10% (highest
decile) of high air lead counties with the proportion with
high BLL who reside in the counties with the lowest air
lead (lowest decile). Second, a nonparametric correlation
matrix was created and analyzed to determine the degree of
interrelationship between percent pre-1950 housing, poverty,
race, rural (as defined by the National Center for Health
Statistics), and percent of children with BLL ≥ 10 𝜇g/dL.

In order to utilize the relationship between the proportion
of children with high BLL and demographic/census variables
such as NATA air lead estimate in 2005, percent pre-1950
housing, rural, AfricanAmericans, and percent of population
at less than 185% of poverty, we first applied multiple linear
regression.However, our response variable andmodel did not
meet the assumptions of normality and linearity. Therefore,
we used Box-Cox transformationwith parameter 0.297 (indi-
cating a cube root transformation) to improve normality and
linearity. The Box-Cox generalizes power transformations as
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𝜃 = −1 reciprocal transformation.

2.4. Negative Binomial Regression. As an alternative to using
the proportion of children with high BLL as the dependent
variable, we modeled the counts of children with high BLL
among total number of children tested per county from
2000 to 2007 (offsetting the number of children tested) using
Poisson regression. Because the Poisson regression models
indicated overdispersion (variance exceeding the mean) our
final models were based on negative binomial regression.
These models were used to investigate the dependence of
counts of children with high blood levels on the NATA
air lead estimates without and with adjustment for the
demographic and census variables noted above.

The negative binomial log linear regression for the rate is

log(
𝜇

𝑛
) = 𝛼 + 𝛽𝑥,

log (𝜇) − log (𝑛) = 𝛼 + 𝛽𝑥,

𝜇 = 𝑛𝑒
𝛼+𝛽𝑥
,

(2)

where𝜇 is the expected value of counts (ex: the expected value
of children with high BLLs), 𝑛 is index of the time or space
(ex: total number of children tested per county), and − log(𝑛)
is an adjustment term which is referred to as an offset, and
each subject may have a different value of 𝑛.

2.5. Spatial Linear Regression. Counties in our sample are
spatially related to each other by virtue of being spatial
neighbor and therefore subject to common underlying expo-
sures. Spatial autocorrelation (or dependence) is measured in
terms of first-order (i.e., only adjacent counties) contiguity
where the dependent variable or error term for each county
is correlated with observations for the dependent variable
or error term at contiguous locations. Aspatial forms of
regression are applied to all of the data within a county,
quantifying global relationships between variables, assuming
no spatial correlation.These results serve as our baseline anal-
ysis. If the relationship across space between the independent
variable(s) and dependent variables does not change, and
error terms are independent between counties, the aspatial
regression would provide our final results.

However, as we detected significant spatial correlation
among residuals from the aspatial regression, we next con-
sidered spatial regression allowing correlated residual terms.
However, as the dependent variable did not approximate
the normal distribution, the cube root of the term percent
≥10 𝜇g/dL was taken, as spatial regression uses a multiple
linear regression. We begin with general formulation of
spatial regression model defined as a spatial lag model and
also referred to as the spatial autoregressivemodel.The spatial
lag model is expressed as follows:

𝑌 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀,

𝜀 ∼ 𝑁 (0, 𝜎
2
𝐼
𝑛
) ,

(3)

where 𝑌 is an 𝑛 by 1 vector of observations on the dependent
variable (percent with BLL ≥ 10𝜇g/dL), 𝑋 is the matrix of
county characteristics, 𝑊

𝑦
is the row-standardized spatial
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Figure 1: Mean concentrations of Pb from criteria air pollutant lead monitors by NATA percentile.

weight matrix, and the parameter 𝜌 is a coefficient on the
spatial lag of the dependent variable. “Wy” captures the
extent to which BLLs are affected by levels in contiguous
counties. 𝛽 denotes the vector of coefficients associated with
the independent variables and 𝜀 denotes the error terms (25).
The blood level data by county is only available for selected
counties in theUS, and as such the boundary file has “islands”
where no data are available for BLL. We therefore cannot
calculate a contiguitymatrix that expresses the neighborhood
structure. We are therefore limited to using a distance matrix
for a spatial weight matrix using the centroids of each county
with BLL data. This avoids problems of “islands” in the data.

ArcGIS version 10 provides the polygons representing all
the counties in our sample. GeoDa (a freely downloadable
software package) version 0.9.5-i by Luc Anselin was used to
develop and estimate the spatial lag.

3. Results

The sensitivity analysis of lead monitor readings and NATA
air lead estimates indicated a correlation of 𝑅 = 0.91 (𝑃 <
.001) and a Kappa of 0.424, which indicates good agreement
(26). See Figure 1.

In 2000, the proportion of children <36 months of age
with BLL ≥ 10 𝜇g/dL ranged from 8.89% (IL) to 0.42% (KY,
WA). In 2006, this ranged from 2.45% (CT) to 0.42% (LA).
The proportion of childrenwith BLL≥ 10 𝜇g/dL in general fell
from 2000 to 2006, amongmost states for example, Michigan
from 4.06% in 2000 to 0.98% in 2006 and Ohio from 3.5%
in 2000 to 1.21% in 2006 and among those tested in Illinois
8.89% were over 10 𝜇g/dL in 2000 and 3.52% in 2004. Clearly,
pockets of children at high risk for childhood lead poisoning
remain across the country. See Table 1.

When the counties that were included in the sample were
stratified into highest and lowest deciles of air lead, we found
that the highest ten percent of air lead included those coun-
ties with total concentrations greater than 0.00297𝜇g/m3
while the counties with the lowest decile of air lead had
concentrations below 0.000526𝜇g/m3. The proportion with

Total percent elevated of lead

0.001–1.5
1.51–3
3.1–5
5.1–7
7.1+

0

Figure 2: Cumulative percentage of children with BLL ≥ 10𝜇g/dL
by county, 2000–2007.

BLL ≥ 10 𝜇g/dLwas 1.24% in the highest air lead counties, and
the proportion with BLL ≥ 10 𝜇g/dL was 0.36% in the lowest
air lead counties, resulting in a crude prevalence ratio of 3.4.
See Figure 2.

The counties included in this analysis had a range of
poverty (from 2.6 to 41.1%), minority (from 0.3 to 86.5%
Black), and older housing (from 0.8 to 66.7%). Population
within a county ranged from less than 2000 to over five
million. As these have been established as important inde-
pendent predictors of lead burden, these were controlled for
in the analysis. See Table 2.

BLL ≥ 10 𝜇g/dL by county were moderately correlated
with NATA lead (𝑟 = 0.15, 𝑃 < .001) and older housing (𝑟 =
0.37, 𝑃 < .001) by county. The census covariates (poverty,
rural, Black) were all highly correlated with NATA exposure
estimates (𝑃 < .001).

A negative binomial regression was considered with
blood lead data as the dependent (predicted) variable and
air lead, percent pre-1950 housing, and percent rural as the
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Table 1: Percentage of children with BLL ≥ 10𝜇g/dL by state and year, 2000–2006.∗

State 2000 2001 2002 2003 2004 2005 2006 Universal testing
US 1.55 1.39 1.32 1.07 0.97 0.75 0.70
AZ 2.29 2.13 4.95 1.25 0.47 — — Targeted
CO — — — — — — — Mandatory
CT 4.50 4.20 3.95 3.90 3.27 2.99 2.45 Mandatory
FL 0.96 0.86 0.50 0.36 0.30 — — Targeted
GA 0.76 0.62 0.53 0.31 0.22 0.18 — Targeted
IA 2.21 1.98 1.87 1.69 1.53 1.12 0.89 Mandatory
IL 8.89 6.75 5.00 4.26 3.52 — — Targeted
KS 2.50 1.64 1.10 1.03 1.21 0.62 0.46 Mandatory
KY 0.42 0.57 0.59 0.39 0.41 0.30 0.53 Targeted
LA — — 1.09 0.78 0.46 0.37 0.42 Mandatory
MD 1.98 1.20 0.98 0.77 0.54 0.32 0.23 Targeted
ME 2.13 1.91 1.74 1.62 1.80 1.30 — Targeted
MA — — 1.13 1.05 0.92 0.83 0.66 Mandatory
MI 4.06 2.91 2.27 1.89 1.65 1.16 0.98 Targeted
MS 1.88 1.21 0.93 0.78 0.67 0.59 0.54 Targeted
MO 2.27 1.92 1.64 1.40 1.08 0.92 0.89 Targeted
NH 2.10 2.27 2.18 1.91 1.38 1.45 — Targeted
NJ 0.90 1.25 1.59 1.47 1.19 1.03 0.84 Mandatory
OH 3.53 2.72 2.21 1.98 1.65 1.37 1.21 Targeted
OK 1.13 0.94 0.96 0.75 0.80 0.73 — Targeted
PA 7.04 6.52 4.99 3.38 2.63 2.52 1.95 Targeted
RI 5.27 3.56 3.07 2.71 2.14 — — Mandatory
UT 0.36 0.23 0.19 0.66 0.61 0.58 0.76 Targeted
VA 1.06 0.73 0.71 0.83 0.77 0.64 0.44 Targeted
WA 0.42 0.49 0.41 0.49 0.29 0.23 0.17 Targeted
WI 2.64 2.47 2.12 1.91 1.60 1.25 1.20 Targeted
—: Data not available.
∗Data provided by CDC Tracking (2/2011).

Table 2: Descriptive statistics of 1508 counties with 50 or more
children tested for blood lead.

Percent
below
poverty

Percent
rural

Percent
Black

Percent
pre-50 Population NATA

2005

Mean 13.6 56.8 10.6 25.7 97366 0.0013
Min 2.6 0 0.26 0.78 1844 0.0005
Max 41.13 100 86.5 66.7 5376741 0.0149

predictive/independent variables.The advantage of a negative
binomial regression is that it weights each county by number
of children tested. The result of univariate binomial regres-
sion analysis shows that county-level NATA for 2002, NATA
for 2005, percentage of pre-1950 housing per county, rural
classification of the county, and county-specific percentage
below poverty are statistically significant while percentage
black is borderline significant (𝑃 = 0.074). See Table 3.
The correlation among these explanatory variables has been
examined and percent black and percent below poverty
have a positive, significant correlation (0.54) whereas others
appear to have a relatively weak relationship. In addition,

Table 3: Results of univariate negative binomial regressions predict-
ing number of children with BLL ≥ 10𝜇g/dL by county.

Univariate negative binomial regression
Coef. 95% CI

NATA02 66.897∗ (35.0818, 98.7209)
NATA05 99.736∗ (56.7037, 142.768)
% pre50 housing 0.035

∗ (0.0320, 0.0385)
Urban (ref) —
Suburban −0.689∗ (−1.0317, −0.3466)
Rural −0.803∗ (−1.1508, −0.4551)

% Black −0.003 (−0.0063, 0.00029)
Targeted/mandatory 0.033 (−0.1035, 0.1697)
% below poverty −0.019∗ (−0.0268, −0.0098)
∗
𝑃 < 0.0001.

the collinearity diagnostics indicates that none of explanatory
variables in amultiple regressionmodel are highly correlated.

In the univariate negative binomial regression, propor-
tion black andmandatory or targeted testing in a county were
not significant. In multivariate negative binomial regression,
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NATA modeled air lead was a significant predictor of child-
hood blood lead (% ≥ 10 𝜇g/dL) after adjusting for % pre-l950
housing, rural classification, and percent of black children by
county. Because NATA 2005 was a slightly better predictor
in the univariate model, these NATA estimates were entered
into the multivariate model. Percent below poverty was not
significant inmultivariate analysis.

The negative binomial loglinear regression for the rate is

log(
𝜇

𝑛
) = 𝛼 + 𝛽𝑥,

log (𝜇) − log (𝑛) = 𝛼 + 𝛽𝑥,

𝜇 = 𝑛𝑒
𝛼+𝛽𝑥
,

log (𝜇) = 𝛽
0
+ 𝛽
1
∗NATA05 + 𝛽

2
∗ pre50 + 𝛽

3
∗ suburban

+ 𝛽
4
∗ rural + 𝛽

5
∗ black + log (tottest) .

(4)

The percent change in the relative risk of total number of
BLL≥ 10𝜇g/dL increases 36% for every 0.01𝜇g/m3 increase in
NATA air lead value, 5% for every unit increase in % pre-1950
housing, and 1% for every unit increase in % black people per
county. Children living in suburban and rural areas decrease
their relative risk by 14% and 34% relative to those living in
the urban areas. Children living in mandatory counties are
36% less likely to have BLL ≥ 10 𝜇g/dL than those living in
targeted counties. See Table 4.

Finally, the results of a geospatial regression further
solidified the relationship between childhood blood lead and
air lead and older housing. The cube root transformation of
the proportion of children with a BLL ≥ 10 𝜇g/dL was chosen
as the dependent variable to satisfy normality. The analysis
revealed that poverty, pre-1950 housing, and air lead levels
were all significant predictors of BLL ≥ 10 𝜇g/dL (Table 5).
The 𝑅2 value was 0.420 (𝑃 < .001), and air lead, percent
older housing, percent black, and urban/suburban were all
significant predictors (𝑃 < .001). The coefficient of NATA05
indicates that the cube root of percent elevated is predicted
to increase 72.8 when NATA05 is increased by one and
decrease by 0.23 when urban/suburban/rural jumps to the
next category. See Table 5.

After accounting for spatial autocorrelation of the resid-
uals, R-squared increased to 0.39. All independent variables
remain statistically significant. The likelihood ratio test of
spatial error dependence is significant. Therefore, we con-
clude that a spatial lag model is fitted better than the OLS
model using cube-root transformation of percent elevated
BLLs.

4. Discussion

It is well known that a child’s home environment has
the clearest relationship with a child’s BLL [1]. Childhood
BLL have decreased with the removal of lead from paint
and gasoline. There remain, however, 250,000 US children
annually who exhibit BLL ≥ 10 𝜇g/dL which can affect their
mental and physical health. This study was the first to use

Table 4: Multivariate negative binomial regression using robust
variance estimation predicting number of children with BLL ≥
10𝜇g/dL per US county.

Negative binomial regression
Variables Relative risk Robust SE P value 95% CI
NATA∗ 1.36 0.176 0.017 (1.06, 1.75)
% pre50 housing 1.05 0.002 0.000 (1.04, 1.05)
Urban-rural

Urban (reference)
Suburban 0.86 0.135 0.337 (0.63, 1.17)
Rural 0.66 0.110 0.013 (0.48, 0.92)

% Black 1.01 0.002 0.000 (1.00, 1.01)
Targeted/mandatory
testing 0.64 0.041 0.000 (0.56, 0.72)

Note: the predictor of NATA05 air lead was scaled to 100∗ (the original
NATA05 air lead).

Table 5: Results of spatial lag regression.

Spatial lag regression
Variables 𝛽 SE Z value P value
NATA05 50.83515 10.4221 4.8776 <0.001
% pre50 housing 0.0125 0.00113 11.0852 <0.001
Urban-rural 0.0972 0.0293 3.3193 <0.001
% below poverty 0.0107 0.0022 4.9392 <0.001
Targeted/mandatory testing −0.2067 0.0347 −5.953 <0.001
R-squared: 0.386367
Sq. Correlation: —
Sigma-square: 0.219
S.E of regression: 0.4681
Log likelihood: −1010.7
Akaike info criterion: 2035.4
Schwarz criterion: 2072.62

a national data base on childhood BLL over an eight-year
period to link proportion children with a BLL ≥ 10𝜇g/dL
in children with NATA 2005-modeled air lead as well as
percent pre-1950 housing, race, and poverty. While many of
the primary risks have been removed from our environment,
the task of eliminating childhood lead poisoning [19] has
not been completed. Air lead has been identified [13–20]
as a contributor to childhood BLL in smaller scale studies.
These studieswere conducted in distinctmetro areas andnear
significant sources of air lead and soil lead such as nearby
smelters and lead producing areas. This national assessment
of the contribution of air lead to childhood BLLs, controlling
for known risk factors such as older housing and poverty
levels, will help to quantify the increase in BLL that may be
attributed to differences in air lead throughout the US.

Our research group recognizes that there are limitations
to epidemiologic methods. While ecologic studies are gen-
erally quicker and less cumbersome to conduct, they are
prone to the ecologic fallacy and other forms of bias, which
can arise from the absence of detailed information on the
joint distribution of exposure and outcome within the groups
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under study. As such, ecologic studies are most useful as
hypothesis generating and not hypothesis testing investiga-
tions, often providing important clues to occupational and
environmental determinants of disease. For example, in the
mid-1970s a series of ecologic studies conducted by the US
National Cancer Institute implicated industrial factors in the
development of various malignant diseases [24].

There are differences in childhood blood lead testing
frequency that may influence this study as well. Differences
exist between states—even counties within the same state—
regarding blood lead testing policies. Typically, there are tar-
geted and mandatory testing policies. We applied “targeted”
or “mandatory” to each county within a state based upon
the state’s policies as stated in 2010. However, these policies
may change annually, as public health funding dictates.
In addition, some counties may have targeted towns or
neighborhoods with known housing or lead industry issues,
elevating the likelihood of a child having a high level, thereby
increasing the proportion of children with BLL ≥ 10 𝜇g/dL.
A sensitivity analysis of proportion tested in a sample of
targeted andmandatory counties showed that the proportion
tested in mandatory counties was double that tested in
targeted counties.However, a full complement of datawas not
available due to privacy concerns. Targeted testing typically
focuses on high-risk children, often identified as those on
Medicaid or through additional screening questions. Manda-
tory testing policies indicate that all children should be tested
before age three. However, the consistency of the findings
among the univariate and multivariate negative binomial
as well as the linear spatial regression model results which
predict percent BLL ≥ 10 𝜇g/dL (Tables 3–5) strengthens the
conclusion that there is a relationship between ambient air
lead levels and percent BLL ≥ 10 𝜇g/dL in younger children.

In addition, many of the modest effects we observed
were deemed statistically significant due to large sample size.
Our exposure estimates are static points in time (NATA
2005 and census 2000). For the pollutant of interest for
this investigation (lead), NATA average concentrations for
2002 and 2005 were similar [25]. The degree of concordance
between NATA and CAPs improved from 2002 to 2005.
The average difference between county-level NATA 2002 and
NATA 2005 estimates of air lead is 0.0002, indicating that
the overall difference is estimates of concentration of air lead
that is small. The NATA county-level correlation coefficient
for the 2002 and 2005 assessment years was 0.91 (𝑃 <
.0001). However, NATA lead estimates are known to be an
underestimation of air lead levels.

The results of our evaluation of the relationship of air lead
and BLLs at the county level for the US indicate that there
may remain a significant relationship between ambient air
lead and childhood BLL.The proportion with BLL ≥ 10 𝜇g/dL
was 1.24% in the highest air lead counties, and the proportion
with BLL≥ 10 𝜇g/dLwas 0.36% in the lowest air lead counties,
resulting in a crude prevalence ratio of 3.4. This combined
with the fact that the percent change in the relative risk of total
number of BLL≥ 10 𝜇g/dL increases 36% for every 0.01𝜇g/m3
increase in NATA air lead value, after controlling for older
housing, and rural indicates that there is a significant associa-
tion between modeled air lead concentration and proportion

of children with BLL ≥ 10 𝜇g/dL among those screened in US
counties. Furtherwork should be carried out at amore refined
geographic level with individual level data to the extent pos-
sible to more fully understand the potential contribution of
ambient air lead and its concomitant risk fromdust inhalation
of lead in small children. Proximity to sources of lead emis-
sions should be evaluated as a possible factor to include when
identifying children for targeted testing and when evaluating
the home environment of a child with BLL ≥ 10𝜇g/dL.

Abbreviations

BLL: Blood lead level
CDC: Centers for Disease Control
CLPP: Childhood lead prevention program
EPA: Environmental Protection Agency
EPHTN: Environmental Public Health Tracking Network
FIPS: Federal information processing standard
HHLPPB: Healthy Homes and Lead Poisoning Prevention

Branch
NATA: National Scale Air Toxics Assessment
NEI: National Emissions Inventory
TRI: Toxic Release Inventory
US: United States.

Disclaimer

The findings and conclusions in this report are those of the
author(s) and do not necessarily represent the views of the
Centers for Disease Control and Prevention.

Funding

This work was funded by the Centers for Disease Control
Contract 200-2010-37444.

Conflict of Interests

The authors disclose no competing financial interests.

References

[1] R. L. Jones, D. M. Homa, P. A. Meyer et al., “Trends in blood
lead levels and blood lead testing among US children aged 1 to
5 years, 1988–2004,” Pediatrics, vol. 123, no. 3, pp. e376–e385,
2009.

[2] http://www.fda.gov/RegulatoryInformation/Legislation/ucm
148755.htm, May 2013.

[3] http://www.epa.gov/tri/, April 2013.
[4] http://www.epa.gov/air/criteria.html, April 2013.
[5] H.-Y. Chuang, J. Schwartz, T. Gonzales-Cossio et al., “Interre-

lations of lead levels in bone, venous blood, and umbilical cord
blood with exogenous lead exposure through maternal plasma
lead in peripartum women,” Environmental Health Perspectives,
vol. 109, no. 5, pp. 527–532, 2001.

[6] E. B. Hayes, M. D. McElvaine, H. G. Orbach, A. M. Fernandez,
S. Lyne, and T. D. Matte, “Long-term trends in blood lead
levels among children inChicago: relationship to air lead levels,”
Pediatrics, vol. 93, no. 2, pp. 195–200, 1994.



8 Journal of Environmental and Public Health

[7] S. R. Hilts, “Effect of smelter emission reductions on children’s
blood lead levels,” Science of the Total Environment, vol. 303, no.
1-2, pp. 51–58, 2003.
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from the smelter in Torreón, México,” Environmental Research,
vol. 111, no. 4, pp. 590–596, 2011.

[9] A. A. Malekirad, S. Oryan, A. Fani et al., “Study on clinical and
biochemical toxicity biomarkers in a zinc-lead mine workers,”
Toxicology and Industrial Health, vol. 26, no. 6, pp. 331–337, 2010.

[10] R. Lilis, J. Eisinger, W. Blumberg, A. Fischbein, and I. J. Selikoff,
“Hemoglobin, serum iron, and zinc protoporphyrin in lead-
exposed workers,” Environmental Health Perspectives, vol. 25,
pp. 97–102, 1978.

[11] J. K. Mehdi, F. J. M. Al-Imarah, and A. A. Al-Suhail, “Levels of
some trace metals and related enzymes in workers at storage-
battery factories in Iraq,” EasternMediterraneanHealth Journal,
vol. 6, no. 1, pp. 76–82, 2000.

[12] H.-S. Kim, S.-S. Lee, Y. Hwangbo, K.-D. Ahn, and B.-K. Lee,
“Cross-sectional study of blood lead effects on iron status in
Korean lead workers,” Nutrition, vol. 19, no. 7-8, pp. 571–576,
2003.

[13] E. B. Hayes, M. D. McElvaine, H. G. Orbach, A. M. Fernandez,
S. Lyne, and T. D. Matte, “Long-term trends in blood lead
levels among children inChicago: relationship to air lead levels,”
Pediatrics, vol. 93, no. 2, pp. 195–200, 1994.

[14] H.-Y. Chuang, J. Schwartz, T. Gonzales-Cossio et al., “Interre-
lations of lead levels in bone, venous blood, and umbilical cord
blood with exogenous lead exposure through maternal plasma
lead in peripartum women,” Environmental Health Perspectives,
vol. 109, no. 5, pp. 527–532, 2001.

[15] L.-M. Yiin, G. G. Rhoads, and P. J. Lioy, “Seasonal influences on
childhood lead exposure,” Environmental Health Perspectives,
vol. 108, no. 2, pp. 177–182, 2000.

[16] S. R. Hilts, “Effect of smelter emission reductions on children’s
blood lead levels,” Science of the Total Environment, vol. 303, no.
1-2, pp. 51–58, 2003.
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