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The presence of sets of incomplete measurements is a significant issue in the real-world application of multivariate statistical
processmonitoringmodels for industrial process fault detection. Since themissing data in the incompletemeasurements are usually
correlated with some of the available variables, these measurements can be used if an efficient algorithm is presented. To resolve
the problem, a novel method combiningMarkov chainmodel and generalized projection nonnegative matrix factorization (MCM-
GPNMF) is proposed to detect and diagnose the faults in industrial process.The basic idea of the approach is to useMCM-GPNMF
to extract the dominant variables from incomplete process data and to combine themwith statistical processmonitoring techniques.𝑇2𝐺 and SPE𝐺 statistics are defined as online monitoring quantities for fault detection and corresponding contribution plots are also
considered for fault isolation. The proposed method is applied to a 1000MW unit boiler process. The simulation results clearly
illustrate the feasibility of the proposed method.

1. Introduction

As industrial process becomes more and more complex,
process monitoring and diagnosis techniques are gaining
importance for plant safety, maintenance cost, and profit
margins. Multivariate statistical process monitoring (MSPM)
techniques have been widely used to build statistical models
for some unmeasured variables and for establishing online
monitoring schemes for industrial process [1, 2]. These
models extract a small number of latent variables, which
in a manner better summarize the properties contained in
the original variables. Monitoring and diagnosis using these
latent variables are both simpler and more powerful than
using the original variables [3].

It is well known that the traditional MSPM models
usually require that the process data on all variables must
be complete. In practice, however, one of the challenges in
applying thesemodels is to deal with the process data sets that
contain some missing observations. Sometimes, more than
50%of industrial process data would contain themissing data
[4]. Since the missing data in the incomplete measurements

is usually correlated with some of the available variables, the
conventional MSPMmethods generally eliminate the sample
data in the data matrix that contain them, but doing so will
leave the corresponding nature of process unknown.

It is of great importance to determine how to use the
incomplete process data sets to build the normal operating
model. The well-known Markov chain model (MCM), a
typical stochastic process model, is one of commonly used
prediction approaches. The most basic feature of MCM is
“Markov property,” also known as “no aftereffect.” The next
process variable state is predicted by the transition probability
matrix obtained using MCM to predict the mobility of mea-
surements if the original time series satisfies the conditions of
theMarkov chain (MC) [5, 6].TheMCpredictionmethodhas
been widely used in various fields. In Jeon and Lee’s research,
MC-based prediction routingmethods are proposed to select
the optimal behavior nodes [7]. In order to keep balance of
electric power system, Yoder et al. use the MCM to predict
short-term wind power [8].

Nonnegative matrix factorization (NMF) is a novel mul-
tivariate data analysis and dimension reduction technique

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 7067025, 7 pages
https://doi.org/10.1155/2017/7067025

https://doi.org/10.1155/2017/7067025


2 Mathematical Problems in Engineering

that has many applications in spectroscopy, data mining,
and pattern recognition [9]. NMF and its variant methods
are typically applied to high-dimensional data where each
element has a non-negative value, and they find a low rank
approximation from the historical process data sets. Unlike
the traditional MSPM methods, the NMF-based algorithms
do not have any assumption about the nature of the process
variables except for nonnegativity. The nonnegativity restric-
tion lets only additions in the factorization process. This
property makes NMF obtain sparse and part-based subspace
representations of the original data sets [10, 11]. Therefore,
NMF-based methods have potential superiority to solve the
monitoring and diagnosis problem of complex industrial
process.

Normally, the NMF-based algorithms require that the
measurement data be nonnegative. In practice, however,
the process data of industrial process may be not fulfilling
this constraint. Due to the difference in unit selection, the
collected data is likely to contain negative numbers. Although
it is possible by adjusting the unit to make negative data
satisfy the nonnegative constraints, in order to make NMF
method have a wider range of applications, we want to relax
the nonnegative constraints on the original data sets. In this
research, we will propose a new variant of NMF to solve
the above problem. It can be called generalized projection
nonnegativematrix factorization (GPNMF).Then,MCMand
GPNMF are combined to extract useful information from
incomplete process data and to combine them with statistical
process monitoring techniques.

The rest of the article is organized as follows: Section 2
introduces MCM-based prediction method. Section 3 pro-
poses the GPNMFmethod. In Section 4, theMCM-GPNMF-
based processmonitoringmethod is introduced. In Section 5,
a case study in a 1000MW unit boiler process is shown and
discussed. Section 6 contains the conclusions.

2. MCM-Based Prediction Method

2.1.Markov ChainModel. Markov chainmodel is a stochastic
process which can be used to estimate the transition prob-
ability between the discrete states of the system, and it can
be expressed by some parameters. In the first-order Markov
chain model, the state at a certain moment only depends on
the state of its previous moment [12]. In the further research,
the second-order or even higher-order Markov chain process
was proposed [12, 13]. In these second-order or higher-order
Markov chain processes, the state of a moment depends on
two or more states before it. In this paper, we will use the
second-order Markov chain model to estimate the missing
values in the data set.

For a second-order Markov chain model, let 𝑋𝑡 be
a stochastic process. The set of all possible states in the
stochastic process is called state space. The state space is
defined as 𝑆 = {1, 2, . . . ,𝑀}.

For a given time series 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑛−1 < 𝑡𝑛, its
conditional probability distribution can be expressed as𝑃 {𝑋𝑡𝑛+1 = 𝑖𝑛+1 | 𝑋𝑡1 = 𝑖1, . . . , 𝑋𝑡𝑛−1 = 𝑖𝑛−1, 𝑋𝑡𝑛 = 𝑖𝑛}

= 𝑃 {𝑋𝑡𝑛+1 = 𝑖𝑛+1 | 𝑋𝑡𝑛−1 = 𝑖𝑛−1, 𝑋𝑡𝑛 = 𝑖𝑛} . (1)

Markov transition probability 𝑝𝑖,𝑗,𝑘 is defined as follows:

𝑝𝑖,𝑗,𝑘 = 𝑃 {𝑋𝑡+1 = 𝑘 | 𝑋𝑡−1 = 𝑖, 𝑋𝑡 = 𝑗} , (2)

where 𝑗 represents the current state of the moment and 𝑖 and𝑘 represent the previous and next states of 𝑖, respectively.
If a stochastic process contains 𝑀 states, the matrix 𝑃 ∈𝑅𝑀×𝑀×𝑀 consisting of all transition probabilities is called the

state transitionmatrix of the second-orderMarkov chain.The
state transition matrix 𝑃 can be expressed as follows:

𝑃 =

[[[[[[[[[[[[[[[[[[[[[[[[

𝑝1,1,1 𝑝1,1,2 ⋅ ⋅ ⋅ 𝑝1,1,𝑚𝑝1,2,1 𝑝1,2,2 ⋅ ⋅ ⋅ 𝑝1,2,𝑚... ... ... ...𝑝1,𝑚,1 𝑝1,𝑚,2 . . . 𝑝1,𝑚,𝑚𝑝2,1,1 𝑝2,1,2 . . . 𝑝2,1,𝑚... ... ... ...𝑝2,𝑚,1 𝑝2,𝑚,2 . . . 𝑝2,𝑚,𝑚... ... ... ...𝑝𝑚,𝑚,1 𝑝𝑚,𝑚,2 ⋅ ⋅ ⋅ 𝑝𝑚,𝑚,𝑚

]]]]]]]]]]]]]]]]]]]]]]]]

. (3)

The second-order Markovian transfer matrix has the
following property. For any state 𝑖, the sum of the probability
of its transition to all states is 1. Consider

𝑚∑
𝑘=1

𝑝𝑖,𝑗,𝑘 = 1 ∀𝑖, 𝑗. (4)

Themaximum likelihood estimation of transfer probabil-
ity 𝑝𝑖,𝑗,𝑘 for second-orderMarkov chains is defined as follows:

𝑝𝑖,𝑗,𝑘 = 𝑛𝑖,𝑗,𝑘∑𝑚𝑘=1 𝑛𝑖,𝑗,𝑘 , (5)

where 𝑛𝑖,𝑗,𝑘 is the transition frequency that the state is
transferred from the previous moment state 𝑖 and the current
time state 𝑗 to the next moment state 𝑘.

The cumulative distribution function (CDF) 𝑃CDF is also
used in the process of generating the time series. The CDF
of the second-order Markov chain model is calculated as
follows:

𝑃CDF𝑖,𝑗,𝑘 𝑘∑
𝑙=1

𝑝𝑖,𝑗,𝑙. (6)

The second-orderMarkov chainmodel is used to generate
the process variable time series, where the initial state is
completely random. Generate a random number 𝜀 between 0
and 1 by the random number generator. For the second-order
Markov chainmodel, the current time state 𝑗 and the previous
time state 𝑖 are known. If 𝜀 satisfies 𝑃CDF𝑖,𝑗,𝑘−1 < 𝜀 < 𝑃CDF𝑖,𝑗,𝑘,
then the next time state is 𝑘.

Only a time series of state is obtained by the above steps.
Next, it is necessary to transform the resulting time series into
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the time series of actual process variable. In addition to the
fact that the first and last states do not need to be transformed,
all other states need to use formula (7) to transform.

𝑃 = 𝑃𝑙 + 𝑌𝑖 × (𝑃𝑢 − 𝑃𝑙) , (7)

where 𝑃𝑢 and 𝑃𝑙 represent the upper and lower limits of a
state, respectively. 𝑌𝑖 represents a random number evenly
distributed between 0 and 1. 𝑃 represents the actual value of
the process variable.

2.2. Markov Property Test. When using the Markov chain to
predict the value of a variable, it is not necessary to consider
the change of the variable in the past. If the current state of
the variable is known, the state of the next moment can be
predicted.TheMarkov property test of the original time series
should be carried out before the establishment of the Markov
chain model. The specific method of Markov property test
is given as follows: we assume that all states of the original
time series are 𝑚. The marginal probability 𝑝⋅,𝑗 is defined as
follows:

𝑝⋅,𝑗 = ∑𝑚𝑖=1 𝑛𝑖,𝑗∑𝑚𝑖=1∑𝑚𝑗=1 𝑛𝑖,𝑗 , (8)

where 𝑛𝑖,𝑗 stands for the frequency that the variable transi-
tions from state 𝑖 to state 𝑗.

When the amount of data is large enough, the statistic 𝜉
obeys the 𝜒2 distribution and the degree of freedom of 𝜒2
distribution is (𝑚 − 1)2. The statistic 𝜉 can be calculated as
follows:

𝜉 = 2 𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑛𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨log 𝑝𝑖,𝑗𝑝𝑔,𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (9)

where 𝑝𝑖,𝑗 stands for the probability that the variable transi-
tions from state 𝑖 to state 𝑗.

When the significance level𝛼 is given, the value of𝜒2𝛼((𝑚−1)2) can be obtained by looking up the table. The Markov
chainmodel can be used to process the variable if 𝜉 > 𝜒2𝛼((𝑚−1)2) is satisfied.
2.3. Numerical Example. In this section, the active power of
a 1000MW unit is chosen for numerical experiment. Under
the influence of random noise, the power measurement is
randomly fluctuating near the set point. Therefore, the active
power can be regarded as a stochastic process. The normal
operation data of the active power is used as experiment
data vector with 500 samples. The maximum and minimum
values of power in all samples are 743.86MWand 749.94MW,
respectively. Therefore, the stochastic process is divided into
16 states. In these states, the power values 743MW and
750MW are defined as state 1 and state 16, respectively. The
other states are evenly distributed between state 1 and state
16, and the power interval between each two states is 500 kW.
The significance level is given by 0.05 in the present work.The
conclusion can be easily obtained through the calculation;
that is, 𝜉 ≫ 𝜒20.05(225). Therefore, The Markov chain model
can be used to process this time series.
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Figure 1: Comparison of predicted and real values.

Next, we will select 50 samples from the experimental
data randomly and their values will be set to zero. These
50 samples represent the missing data in experiment data
vector. Then, the second-order Markov chain model is used
to deal with the missing data in experiment data vector. The
incomplete data can be replaced by the predicted value, which
is shown in Figure 1.

As seen in Figure 1, the predicted data are very close to the
corresponding original data. In other words, the prediction
value by second-order MCM is very effective. Therefore,
this example can illustrate the feasibility of the second-order
MCM algorithm.

3. Generalized Projection Nonnegative
Matrix Factorization

3.1. NMF Algorithm. Themathematical formulation of NMF
is expressed as follows. Given a process data matrix 𝑋 =[𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈ 𝑅𝑚×𝑛 (each column of𝑋 is a sample vector),
where all elements are nonnegative and a natural number𝑘 < {𝑚, 𝑛}, NMF aims to find two low rank nonnegative
matrices 𝑊 ∈ 𝑅𝑚×𝑘 and 𝐻 ∈ 𝑅𝑘×𝑛 such that 𝑋 ≈ 𝑊𝐻. Here,
each column of𝑊 is called basis vector. Each column of𝐻 is
called an encoding and is in one-to-one correspondence with
a sample vector in𝑋 [10]. In other words, each sample vector𝑥𝑖 is approximated by a linear combination of the columns of𝑊, weighted by the components of ℎ𝑖 [11].

The approximate factorization 𝑋 ≈ 𝑊𝐻 problem can
be formulated as an optimization problem that uses a cost
function tomeasure the quality of the approximation. Lee and
Seung constructed a simple objective function which utilizes
the square of the Euclidean to measure the distance between𝑋 and 𝑊𝐻 [11]. The objective function of the optimization
problem can be expressed as follows:

min
𝑊,𝐻

𝐹 = 𝐸 (𝑋 ‖ 𝑊𝐻) = 12 ‖𝑋 − 𝑊𝐻‖2
s.t. 𝑊 ≥ 0, 𝐻 ≥ 0. (10)
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It is well known that the function ‖𝑋−𝑊𝐻‖2 is convex in𝑊 only or 𝐻 only but is not convex in both variables mean-
while.Therefore, it is realistic to find local minima by solving
the above optimization problem. Lee and Seung presented an
iterative algorithm to obtain the local minima. The objective
function ‖𝑋 − 𝑊𝐻‖2 is monotonically nonincreasing under
the following rules [11]:

𝐻𝑘𝑗 ←󳨀 𝐻𝑘𝑗 (𝑊𝑇𝑋)
𝑘𝑗(𝑊𝑇𝑊𝐻)𝑘𝑗

𝑊𝑖𝑘 ←󳨀 𝑊𝑖𝑘 (𝑋𝐻𝑇)
𝑖𝑘(𝑊𝐻𝐻𝑇)𝑖𝑘 .

(11)

Heretofore, the multiplicative iterative algorithm is the
most classic and widely used monotone algorithm. The
contradiction of the optimization algorithm between conver-
gence speed and easy use can be better coordinated by using
above iterative rules.

3.2. GPNMF Algorithm. Many improvements of NMF have
been presented based on the objective function of the basic
NMF algorithm by adding different regularization terms
so as to increase the constraint conditions to NMF from
different perspectives [14, 15]. On the contrary, Yuan and
Oja proposed an improved NMF algorithm based on linear
projection [16]. It can be called projective nonnegativematrix
factorization (PNMF). However, the PNMF algorithm does
not guarantee that the objective function is monotonically
decreasing during the iteration, and theremay be oscillations.
In order to solve this problem and make the NMF algorithm
better adapt to the actual industrial process, we propose a
new variation of NMFmethod named generalized projection
nonnegative matrix factorization (GPNMF). This method
will not only guarantee the objective function monotone
nonincreasing under the new iterative rule but also make the
process data not necessarily constrained to be nonnegative.
In this approach, the approximate factorization𝑋 ≈ 𝑊𝐻will
be rewritten as 𝑋 ≈ 𝑋𝐻𝑇𝐻 and the optimization problem
can be expressed as follows:

min
𝐻

𝐹 = 𝐸 (𝑋 ‖ 𝑊𝐻) = 12 󵄩󵄩󵄩󵄩󵄩𝑋 − 𝑋𝐻𝑇𝐻󵄩󵄩󵄩󵄩󵄩2
s.t. 𝐻 ≥ 0. (12)

The above constrained optimization problem can be
regarded as a typical application of regularized least squares
problem proposed by Tikhonov in 1963 [17]. The objective
function of (12) can be expanded to a function about the
variable𝐻which ignores the constant term𝑋𝑇𝑋. Hence, (12)
can be rewritten as follows:

𝐹 (𝐻) = 12𝑇𝑟 (−2𝐻𝑇𝐻𝑋𝑇𝑋 + 𝐻𝑇𝐻𝑋𝑇𝑋𝐻𝑇𝐻) . (13)

The gradient matrix of (13) can be obtained by using
matrix differential:𝜕𝐹 (𝐻)𝜕𝐻 = (−2𝐻𝑋𝑇𝑋 + 2𝐻𝑋𝑇𝑋𝐻𝑇𝐻) . (14)

When the value of (14) is equal to 0, the solution of the
least squares problem in (12) is given by

𝐻𝑋𝑇𝑋 = 𝐻𝑋𝑇𝑋𝐻𝑇𝐻. (15)

Since the nonnegative constraint for the original data
matrix 𝑋 is relaxed in the GPNMF algorithm, now consider
the casewhere𝑋 contains positive and negative elements.The
factors 𝑋+ and 𝑋− are defined as the absolute values of all
positive elements and negative elements in 𝑋, respectively.𝑋+ and 𝑋− are calculated separately as follows:

𝑋+ = 12 (|𝑋| + 𝑋)
𝑋− = 12 (|𝑋| − 𝑋) , (16)

where |𝑋| represents the absolute value for all the elements
of the matrix 𝑋. Then the original data matrix 𝑋 can be
expressed as𝑋± = 𝑋+−𝑋− and (15) can be adapted as follows:(𝐻 [𝑋𝑇𝑋]

+
+ 𝐻[𝑋𝑇𝑋]

−
𝐻𝑇𝐻)

𝑖𝑗(𝐻 [𝑋𝑇𝑋]− + 𝐻 [𝑋𝑇𝑋]+𝐻𝑇𝐻)
𝑖𝑗

= 1. (17)

It can be seen from (13) that the objective function 𝐹 is
a quartic function with respect to the coefficient matrix 𝐻.
Here, a new iterative rule for the optimization problem in (12)
is presented as follows:

𝐻𝑖𝑗 = 𝐻𝑖𝑗 4√ (𝐻[𝑋𝑇𝑋]
+
+ 𝐻[𝑋𝑇𝑋]

−
𝐻𝑇𝐻)

𝑖𝑗(𝐻 [𝑋𝑇𝑋]− + 𝐻 [𝑋𝑇𝑋]+𝐻𝑇𝐻)
𝑖𝑗

. (18)

The objective function in (12) is invariant under this
update if and only if 𝐻 is at local minima of the constrained
optimization problem.

4. Fault Diagnosis Algorithm Based on
MCM-GPNMF

4.1. Initialization of GPNMF Algorithm. For the moment,
NMF and its improved algorithms are solved by iteration.
It is well known that a good iteration initial value can
improve the convergence speed and accuracy of the NMF-
based algorithm. Although many researchers have pointed
out the importance of a good initial value for the NMF
algorithm in their article, most people still use the random
method to initialize the NMF algorithm in the practical
application. Since the NMF can only converge to the local
optimal solution, the different initial values will result in
different results. Langville et al. compared several commonly
used initialization methods [18]. For the presented GPNMF
algorithm, there is only one unknown factor, that is, coeffi-
cient matrix 𝐻. Besides, the approximate factorization 𝑋 ≈𝑋𝐻𝑇𝐻 can clearly indicate that the coefficient matrix 𝐻 is
calculated to satisfy 𝐻𝑇𝐻 ≈ 𝐼, where 𝐼 is identity matrix of
size 𝑘. In this research, therefore, the coefficient matrix 𝐻 is
initializedwith a 𝑘-by-𝑛-dimensionalmatrix with ones on the
diagonal and zeros elsewhere.
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4.2. Statistical Monitoring Model Based on GPNMF. The
GPNMF-based statistical process monitoring model can be
described as

𝑋 = 𝑊𝐻̂ + 𝐸, (19)

where the matrix 𝑊𝐻̂ and 𝐸 represent the eigensubspace
and the residual subspace, respectively. The matrix 𝐻̂ =(𝑊𝑇𝑊)−1𝑊𝑇𝑋 is the reconstructed value of the coefficient
matrix 𝐻. It reflects the changes in process variables. Due
to the fact that the eigensubspace and the residual subspace
of GPNMF algorithm are similar to the principal compo-
nent subspace and residual subspace of PCA-based method,
according to the definition of monitoring statistic𝑇2 and SPE
in PCA method, we construct two new monitoring statistics
based on GPNMF statistical monitoring model to monitor
the change of eigensubspace and residual subspace. They are
calculated as follows:

𝑇2𝐺 = 𝐻̂ (𝑖)𝑇 𝐻̂ (𝑖)
SPE𝐺 = (𝑥 (𝑖) − 𝑥 (𝑖))𝑇 (𝑥 (𝑖) − 𝑥 (𝑖)) , (20)

where the vector 𝐻̂(𝑖) and 𝑥(𝑖) represent the 𝑖th column of
matrices 𝐻̂ and𝑋, respectively.The column vector 𝑥(𝑖) is the
reconstructed value of 𝑥(𝑖). It can be calculated as follows:

𝑥 (𝑖) = 𝑊𝐻̂ (𝑖) = 𝑊𝑊𝑇𝑥 (𝑖) . (21)

For the two new monitoring statistics proposed in this
section, it is obviously unreasonable to assume that these two
metrics are subject to a particular distribution and calculate
their upper control limits like traditional monitoring algo-
rithm. Therefore, we use kernel density estimation (KDE)
which is a more general method to calculate the actual
distribution information of themonitoring statistics and then
determine their upper control limits.The confidence interval𝜃 is given by 99% during the calculation process.

4.3. Contribution Plot Method. It is well known that contri-
bution plot method has been widely used in fault isolation
research field. Once a fault is detected by the fault detection
method, this method will be used to isolate the variables
that are most likely to cause the failure. Contribution plot
method is a commonly used fault separationmethod in PCA-
based fault diagnosis algorithm. The monitoring statistics 𝑇2
and SPE are often used in the contribution plot method.
The corresponding contributions to the 𝑇2 statistic and SPE
statistic can be expressed using the following equations,
respectively:

Cont𝑇
2

𝑖 = (𝜉𝑇𝑖 𝐷1/2𝑥)2 = 𝑥𝑇𝐷1/2𝜉𝑖𝜉𝑇𝑖 𝐷1/2𝑥
ContSPE𝑖 = (𝜉𝑇𝑖 𝐶𝑥)2 , (22)

where 𝐷 = 𝑃Λ−1𝑃𝑇 and 𝐶 = 𝐼 − 𝑃𝑃𝑇. The vector 𝜉𝑖
represents the 𝑖th column of unit matrix 𝐼𝑚. The integer

𝑚 represents the number of process variables in PCA. The
parameters Cont𝑇

2

𝑖 and ContSPE𝑖 represent the contribution of
each process variable to the monitoring statistics 𝑇2 and SPE,
respectively.

Alcala and Qin made a detailed analysis and summary of
the contribution plotmethod [19]. Besides, a basic framework
to construct contribution graph method was given in their
research. Based on this framework, the corresponding contri-
butions to the 𝑇2𝐺 statistic and SPE𝐺 statistic can be designed
as follows:

Cont𝑇
2

𝐺

𝑗 = (𝛿𝑇𝑗 (𝑊𝑊𝑇)1/2 𝑥)2
ContSPE𝐺𝑗 = (𝛿𝑇𝑗 (𝐼 − 𝑊𝑊𝑇) 𝑥)2 , (23)

where the parameters Cont𝑇
2

𝐺

𝑖 and ContSPE𝐺𝑖 represent the
contribution of each process variable to the monitoring
statistics 𝑇2𝐺 and SPE𝐺, respectively. The vector 𝛿𝑖 represents
the 𝑖th column of unit matrix 𝐼𝑚. The natural number𝑚 represents the number of process variables in GPNMF
method.

5. Monitoring Performance

5.1. Fault Detection. In this section, the proposed method is
applied to a 1000MW unit boiler process. The boiler process
for monitoring experiment contains three control systems:
main steam temperature control system,main steam pressure
control system, and feedwater control system. This process
mainly consists of 33 consecutive process measurements
variables, including 14 temperature signals, 9 pressure signals,
9 flow signals, and 1 power signal. All the 33 process variables
are used for fault detection in this experiment. The normal
operation history data of the boiler process is used as training
data set which has 500 samples. For the fault data, the
corresponding testing data set consists of 500 observations.
Remarkably, the testing data set beginswith normal operation
data and the abnormal data is introduced from sample 51. All
these process data are sampled every 3 sec.

In order to display themonitoring performance ofMCM-
GPNMF-based method, a bias fault in the main steam
temperature 𝐴 is taken into account. The magnitude of the
fault is 1% of the actual measured value. Next, we consider
the condition that 10% of the measurement values in testing
matrix are missing randomly. The testing matrix contains 33
variables and each variable has 500 samples. In other words,
1650 values of testing matrix are missing. The monitoring
result of bias fault when 10% of testing data are missing is
shown in Figure 2.

Figures 2(a) and 2(d) show themonitoring result based on
the GPNMF algorithm when the testing data set is complete.
Figures 2(b) and 2(e) represent the detection result when
the same method is used and 10% of the measurement
values in testing matrix are missing. Figures 2(c) and 2(f)
represent the monitoring result of MCM-GPNMF-based
algorithm when 10% of the measurement values in testing
matrix are missing. As shown in Figure 2, the GPNMF-
based monitoring algorithm has an excellent monitoring
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Figure 2: The monitoring result of bias fault.

performance, if all the process data is complete. However, the
monitoring performance of the method has a serious decline
when the testing data set contains missing data. When the
fault occurs, the localized features of missing values will have
a little change. So it is a huge challenge for 𝑇2𝐺 statistic of
GPNMF, which is shown in Figure 2. Many fault samples
are error-detected by 𝑇2𝐺 statistic. For the SPE𝐺 statistic,
although it can detect almost all of the faulty samples, many
normal samples are error-detected. On the contrary, the 𝑇2𝐺
statistic and SPE𝐺 statistic of MCM-GPNMF-based method
can detect almost all the faulty samples (over 98% actually).
Meanwhile, the MCM-GPNMF-based method has the lower
false alarm rate of SPE𝐺 statistic than GPNMF, when the
testing matrix is incomplete. However, in all three cases, it
should be mentioned that several normal samples are error-
detected, but the monitoring result of normal samples is
still acceptable. In summary, the presented MCM-GPNMF-
based monitoring method can deal with the fault detection
problem, which contains incomplete data.

5.2. Fault Isolation. Based on the monitoring result of the
previous section, in this part, we will use the contribution
plot based on 𝑇2𝐺 statistic and SPE𝐺 statistic to identify the
variable that most likely leads to the fault. Due to the fact that
the accuracy of fault variable identification is closely related
to the accuracy of fault detection, it is meaningful to calculate
the contribution value of each variable after the system fault

is detected accurately. The most obvious change when bias
fault occurs is that the value of main steam temperature 𝐴
suddenly changes by the reason of a step temperature change
at itself. The main steam temperature 𝐴 is the 13th variable
of the chosen boiler process. Both of the contribution plots
corresponding to 𝑇2𝐺 statistic and SPE𝐺 statistic, shown in
Figure 3, identify this variable accurately. It could illustrate
the effectiveness of the presented algorithm.

6. Conclusions

In recent years, the NMF-based algorithm, which is still
under development, has shown great potential in the field
of industrial process fault detection. However, there are still
some weaknesses for these methods in dealing with the
problem of missing data. This paper proposed a new variant
of NMF named generalized projection nonnegative matrix
factorization which combines with the second-order Markov
chain model for the situation that the process data contain
missing data, which significantly improves the detection rate
of industrial process. Meanwhile, two types of monitoring
indices,𝑇2𝐺 statistic and SPE𝐺 statistic, and the corresponding
contribution plots were designed, respectively. As a result,
the simulation in a 1000MW unit boiler process showed that
the proposedmethod yielded better results for fault detection
and fault isolation. In other words, the monitoring method
based on MCM-GPNMF proposed in this work is valuable
for research and application.
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Figure 3: The contribution plots when bias fault occurs.
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