
In Proceedings of the Fourteenth International Conference on Software Engineering and Knowledge Engineering,
 Ischia, Italy, July 15-19 2002.

Exploiting Architectural Design Knowledge
to Support Self-repairing Systems

Bradley Schmerl and David Garlan

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh PA 15213 USA
+1 412 268 5057

{schmerl,garlan}@cs.cmu.edu

ABSTRACT
In an increasing number of domains software is now required to
be self-adapting and self-healing. While in the past such abilities
were incorporated into software on a per system basis, prolifera-
tion of such systems calls for more generalized mechanisms to
manage dynamic adaptation. General mechanisms have the ad-
vantage that they can be reused in numerous systems, analyzed
separately from the system being adapted, and easily changed to
incorporate new adaptations. Moreover, they provide a natural
home for encoding the expertise of system designers and imple-
menters about adaptation strategies and policies. In this paper, we
show how current software architecture tools can be extended to
provide such generalized dynamic adaptation mechanisms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer Aided Software Engineering (CASE). D.2.11 [Software
Engineering]: Software Architectures – Languages

General Terms
Design, Measurement.

Keywords
Software architecture, software architecture tools, dynamic adap-
tation, reflective systems.

1. INTRODUCTION
The increasing complexity of software means that there is more
reliance on tools to capture knowledge and expertise about vari-
ous aspects of the system, without requiring the tool user to un-
derstand the specific algorithms or formal methods underpinning
this knowledge. For example, code-related tools may detect mem-
ory leaks or concurrency problems, requirements-tracing tools

relate code to the requirements they fulfill, and software architec-
ture tools capture design expertise about systems.

One of the key aspects of such tools is separating concerns in
software to make change more manageable. For example, soft-
ware architecture tools separate out the concern of the runtime
topology and properties of the system. The expertise captured in
the software architecture may specify topological or performance
constraints on the system.

An increasingly important aspect of software is providing
mechanisms for runtime adaptation. In the past, the requirement
for dynamically changing the system was restricted to certain
categories of applications, where human oversight was impossible
or difficult (such as satellite software), or where the cost of stop-
ping the system to perform maintenance was prohibitive (such as
in telecommunication systems). However, this requirement is
becoming increasingly important in general distributed systems,
defense software, and pervasive computing. Even desktop appli-
cations and operating systems are beginning to allow upgrades
without shutting systems down.

Even though the requirement for self-adaptation is becoming
more widespread, the mechanisms to implement this requirement
are still mostly provided in a per-system, ad hoc manner, with the
adaptation typically embedded in the application code. Conse-
quently, knowledge about self-adaptation is difficult to separate
from application code, making adaptation knowledge difficult to
(a) transfer or reuse in other applications, (b) reason about or ana-
lyze to ascertain whether the adaptations will result in proper-
running systems, and (c) change. Furthermore, because adaptation
is distributed among the various components or modules in the
code, the adaptation performed tends to be localized to those
components. It does not work well for global adaptation (e.g.,
requiring changes in the structure of the application) or in cases
where multiple adaptation operations have to be coordinated. As
such, tools to support and implement reusable, analyzable, and
global self-adaptation mechanisms are scarce and are limited to
specific domains.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SEKE '02, July 15-19, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700 ...$5.00

Recently a number of researchers have proposed an alterna-
tive approach in which system models – and in particular, archi-
tectural models – are maintained at run time and used as a basis
for system reconfiguration and repair [15]. Architecture-based
adaptation has a number of nice properties: (1) as an abstract
model, an architectural model can provide a global perspective on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192713886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the system; (2) architectural models can make “integrity” con-
straints explicit, helping to ensure the validity of any change; (3)
suitably-designed architectures permit flexible evolution of sys-
tems by providing loose coupling between components; and (4)
architectures encapsulate the design knowledge, and thereby pro-
vide a basis for principled adaptation.

Although attractive in principle, there are a number of road-
blocks to making software architecture useful as the basis for run-
time adaptation. Most importantly, today’s tools and representa-
tions are intended as development-time aids. Consequently, the
expertise captured in the architecture cannot be easily exploited to
help manage run-time change.

In other work [4,5] we describe how the Acme architecture
description language (ADL) can be extended to support runtime
adaptation. In this paper, we consider how one can reuse existing
design-time tools to help with to support runtime architectural
adaptation, and what additional infrastructure and components are
needed to fill out the picture. We then detail our experience in
adapting the Acme toolsuite in this way.

2. RELATED WORK
Research in software architecture has matured in the last decade
to the point that there is a plethora of tool support for various
aspects of architectural design. This research has mainly focused
on design-time support for constructing and analyzing architec-
tures, with formal knowledge embodied in concomitant tool sup-
port. There are almost as many architecture definition tools as
there are ADLs, and a wide variety of analyses can be performed
on architectures. A summary of some of this research is presented
in [13]. In this section we focus on the different tools for relating
architectures to code.

Within particular domains, there are a number of tools that
provide some support for generating code, or code stubs, from
architectures. For example, C2 [18], Unicon [16], and Weaves
[10] provide implementations and libraries for specific architec-
tural domains.

The Rapide toolset [12] allows the creation of an executable
simulation of an architecture, and provides various analysis tools
to replay the events according to the architecture and check the
conformance of the simulation to formal constraints in the archi-
tecture. However, this analysis and tools are based on simulations
and are not run concurrently with the executing program to either
monitor or change the running system.

The crucial missing piece in the above work is providing
generalized architectural adaptation that does not assume a par-
ticular style and runs concurrently with the executing system. In
other work, we have shown how to generalize architecture-based
adaptation by making the choice of architectural style an explicit
design parameter in the adaptation framework [4], and have re-
ported results of some experiments that we have conducted within
this framework for a particular kind of architecture [5]. In this
paper, we focus on the use of software architectural tools to aid in
constructing run-time adaptation mechanisms. In particular, we
detail our experience with tools that support the Acme architec-
tural description language.

3. SOFTWARE ARCHITECTURE
The centerpiece of our approach is the use of architectural models
[1,7]. We use a simple scheme in which an architectural model is
represented as a graph of interacting components. This is the core
architectural representation scheme adopted by a number of archi-
tecture description languages, including Acme [8], xADL [6],
and SADL [14]. Nodes in the graph are termed components. They
represent the principal computational elements and data stores of
the system: clients, servers, databases, user interfaces, etc. Arcs
are termed connectors, and represent the pathways of interaction
between the components. A given connector may in general be
realized in a running system by a complex base of middleware
and distributed systems support.

To account for various behavioral properties of a system,
elements in the graph can be annotated with property lists. For
example, properties associated with a connector might define its
protocol of interaction, or performance attributes (e.g., delay,
bandwidth). The software architecture can also specify a set of
constraints that must be maintained. Constraints can, for example,
specify that some property value must always be within a certain
range. One of the advantages of architectural descriptions is that
they provide opportunities for automatic verification of such con-
straints.

Representing an architecture as an arbitrary graph of generic
components and connectors has the advantage of being extremely
general and open ended. However, in practice there are a number
of benefits to constraining the design space for architectures by
associating a style with the architecture. An architectural style
typically defines a set of types for components, connectors, inter-
faces, and properties together with a set of rules that govern how
elements of those types may be composed. Requiring a system to
conform to a style has many benefits, including support for analy-
sis, reuse, code generation, and system evolution [7,18,19].

4. OVERVIEW OF OUR APPROACH
In order to exploit architectural design knowledge for runtime
adaptation, we must support three activities that occur in a con-
trol-loop fashion. The three activities are:

Monitoring: The first element of determining whether the
system needs to be adapted is to observe its runtime behavior.
These observations can be made by various technologies that can
determine information about the system. Examples of such tech-
nologies are code instrumentation to report the occurrence of
specific method calls [2], and operating system and network
monitoring systems to measure performance [11]. The key idea
here is that at this level, monitoring of the application is in terms
that are relevant to the implementation – they are likely to be
localized, system-specific observations and mechanisms.

Interpretation: The information observed about the running
system in its raw form is not likely to be suitable for analysis at
the architectural level – there needs to be some interpretation of
the data that reflects these observations in the context of a higher-
level architectural model. For example, if connector protocols are
specified at the architectural level, then method calls in the im-
plementation will need to be interpreted and reported as events in
the protocol. Similarly, low-level system performance observa-
tions may need to be interpreted as aggregate throughputs or la-
tencies at the architectural level. This interpretation is crucial so
that the observed properties can be used in architectural analysis

Architecture Manager

Runtime Manager

Analyzer

Arch.
Model

G
en

er
ic

AP

I

Repair

 Handler

Style API

Interpreter

Translator RT API

Interpreter
Executing
System

P
P

P

G

G

Observation Tool

Observation Tool

Figure 1. Adaptation Framework.

to ascertain whether there is something wrong with the system.
Our contention is that a high-level architectural model can be
more easily reasoned about than the runtime-state of the system
and its implementation code. The methods used for this interpreta-
tion are discussed in more detail in [9].

Reconfiguration: Once the runtime analysis of the architec-
tural model has been conducted, using information reported by
the interpretation activity, it is possible to determine whether the
architectural model is correct according to its style, and also with
respect to analyses facilitated by that style. If the architectural
model is not consistent with its design assumptions, then there is a
need to reconfigure the system. Such reconfigurations are in-
tended to adapt the architecture so that it returns to a consistent
state, and also to make the concomitant changes in the implemen-
tation. For our system, reconfiguration at the architectural level is
done via repair strategies, as discussed in [4]. Reflecting those
changes to the implementation in a general way is the subject of
ongoing research.

4.1 Adaptation Framework
To determine the role of tool support for these activities, we have
developed a framework that is similar to [15] (as illustrated in
Figure 4): An executing system is monitored to observe its run
time behavior via a set of probes (indicated by P’s in the figure).
Monitored values are abstracted and related to architectural prop-
erties of an architectural model (G’s in the figure). When a prop-
erty in the architectural model changes, constraints are reevalu-
ated to determine whether the system is operating within an enve-
lope of acceptable ranges (Analyzer). Violations of constraints are
handled by a repair mechanism (Repair Handler), which adapts
the architecture. Architectural changes are propagated to the run-
ning system via the Translator and the RTI API Interpreter.

As we detail later, the key new feature in this framework is
the use of style as a first class entity that determines the actual
behavior of each of the parts. Specifically, style is used to deter-
mine (a) what properties of the executing system can monitored,

(b) what analysis needs to be conducted, (c) what to do when an
error is detected, and (d) how to carry out repair in terms of style-
based architectural operators. In addition we need to introduce a
style-specific translation component to manage the transactional
nature of repair and map high-level architecture operations into
lower-level system operations.

5. ACME ARCHITECTURE DESIGN
TOOLS

The framework described above makes the use of architec-
tures and architectural styles explicit, and is suitable for use with
an ADL and its associated tools. The Acme ADL was originally
conceived as an interchange language between numerous, style-
specific ADLs. Extended with types, constraints, and families, it
has evolved into a powerful ADL in its own right. Several tools
that use Acme as their native ADL have been developed, with our
research focusing on the support for style-related architectural
analysis.

Tool support for Acme has coalesced on two fronts: the defi-
nition of an architectural model, and the analysis of the model
once it has been defined. AcmeStudio, developed at Carnegie
Mellon University, and the Acme PowerPoint Editor, developed
at ISI, are two such tools that provide a graphical design envi-
ronment based on Acme for defining architectures. Armani, per-
formance analysis, and various style-specific analysis tools have
been developed that calculate properties of an architectural model
and evaluate satisfaction of constraints.

5.1 The AcmeStudio Design Environment
AcmeStudio is a graphical design tool written in Visual C++™
for Windows™ platforms. It uses Acme as its core language and
takes advantage of Acme styles (called families) to allow the defi-
nition of custom visualizations, rudimentary property-based
analysis for visualization variants, and the types of analysis that
can be performed. Figure 2 illustrates a session with AcmeStudio
that contains two architectural models (window panes for editing

and additional information have been hidden for space reasons).
On the left of the figure is an architectural model of a three-tiered
web client-server system, and on the right is a model of a pipe and
filter architecture.

AcmeStudio uses Acme families to provide both the types
that can be used in the architectural model and the way those
types should be depicted. For example, in the figure, components
of type FilterT are depicted as arrowed boxes and connectors of
type PipeT as gray circles. The ports and roles in the architecture
are depicted as small triangles. In the left hand architecture, com-
ponents of type RepositoryT are shown as repository icons. The
key idea here is to use Acme families not only to define the vo-
cabulary of the architecture, but also to use it as the basis for visu-
alization. In this way, architects can use the style of diagram they
desire or are accustomed to.

In addition to depictions based on element type, AcmeStudio
incorporates the concept of visual variants. A visual variant is a
variation on the depiction of a type based on values of an in-
stance’s properties. Architects can use this feature to, for exam-
ple, flag errors in the architecture. The middle level components
in the architecture on the left side of Figure 2 illustrate this con-
cept. A variant specifies that if a server is overloaded, it should be
depicted with a different fill color (light gray in the figure1). In
Figure 2, we have conducted a performance analysis based on
queuing theory from AcmeStudio [17]. This has set various prop-
erties of the components and connectors in the architecture. One
of these properties is the Boolean property sOverloaded. The
left-most server in the figure is overloaded, and so the visualiza-
tion has changed.

In addition to the core functionality of graphical design,
AcmeStudio can be extended with additional functionality via

1 In actual fact, the color is changed to red.

COM based tools. Such tools can be used to provide domain-
specific analyses of the architecture, and report the results of the
analysis back to AcmeStudio.

Figure 2. AcmeStudio.

5.2 Armani Constraint Analysis
One such COM tool is the Armani constraint analysis tool. Ar-
mani is a first-order predicate language extension to Acme that
can be used to analyze structural and other properties of the archi-
tecture. For example, one of the constraints on a filter in the Pipe
and Filter family is:

invariant forall p : port in self.ports |
 declaresType (p, WritePortT) or declaresType (p, ReadPortT)

This constraint states that each port in a filter must either be a
write port or a read port. In such a fashion, architects can prevent
designers from adding incorrect ports to components. Other con-
straints might specify that the pipe and filter system cannot have
any cycles. The WebThreeTier family might specify that each
client must be connected to a server.
When this tool is invoked from AcmeStudio, the constraints in the
architectural model are evaluated by the Armani tool. Errors are
reported back to AcmeStudio. Error reports include the constraint
that failed and the architectural element(s) over which it failed.
This information is used by AcmeStudio to allow easy identifica-
tion and navigation to erroneous parts of the architectural model.

5.3 Architectural Tools for Dynamic Change
So far, we have discussed the tools that have been used for archi-
tectural design, and given details of some design-time Acme tools
that are used to construct and analyze architectures. If we are
using software architectural models and analyses to guide dy-
namic adaptation, then it is useful to use these tools at runtime.

This approach preserves continuity between design time and run-
time views of the system, and maintains uniformity of the types of
analyses that are performed at runtime and their meaning with
respect to the design-time architectural artifacts.

Given that we want to use existing architectural tools at run-
time, the question arises as to what role they should play in run-
time adaptation, how they should be adapted to be used in the
dynamic context, and what additional tools are required. The
guiding principle in providing tool support under this framework
is that the separation of concerns that exist in the framework out-
lined earlier should be maintained. This separation of concerns is:

• the use of different architectural views and analyses, that
may reside in several design-time tools;

• the ability to monitor different attributes of the architecture
at different times in execution;

• the desire to employ different types of repair strategies in the
framework; and

• the fact that there may be many mappings from a particular
architectural model, expressed in a particular architectural
style, to an implementation of that system.

Separating these concerns allows the different kinds of ex-
pertise required for dynamic adaptation into different appropriate
tools, rather than attempting to develop a monolithic tool to per-
form all aspects of adaptation. Thus, in the design of our toolset
we have modified our existing design-time tools to observe and
analyze the architecture, and developed new tools to capture the
knowledge particular to each concern. While we discuss this with
respect to some Acme-based architecture tools, we believe that
analogous modifications will need to be made to any architecture
tool to fit into the general adaptation framework of Figure 1.

5.3.1 Changes to Existing Tools
The changes to the existing toolset fall broadly into the following
categories:

• Interfaces that allow the architectural model to be changed
dynamically.

• Integration points between architectural analysis tools and
facilities to effect a repair, should analysis determine some-
thing is wrong.

• Facilities to allow a designer to indicate points in the archi-
tecture that should be monitored, and the types of monitoring
that should be conducted.

• Handling associated scalability issues of runtime analysis, in
reaction to observations of the executing system.

We show how we addressed these categories in the case of
AcmeStudio and Armani.

AcmeStudio: The role of AcmeStudio in the dynamic adap-
tation framework is twofold. First, it is still used at design time to
define the architecture. For this stage, AcmeStudio has been ex-
tended to allow gauges to be attached to points in the architecture.
Once again, this is based on families – families define which
gauge types are available to a system. If a family defines such

gauge types, instances can be dropped onto the design and at-
tached to properties in the architecture. For example, to request
monitoring of the latency of a particular connector in the architec-
tural model, a designer would (1) ensure there is an appropriate
property of the connector (for example, latency); (2) add a gauge
to monitor connector latency to the architectural model; and (3)
bind the value reported by that gauge to the property in the con-
nector.

The second role of AcmeStudio is as an observation tool in
the adaptation framework. Once the system is started, AcmeStu-
dio is no longer used to edit the architecture – it merely observes
the changes made to the architecture by other tools. A new tool
extracts gauge information from the architectural model and cre-
ates the requested gauges. AcmeStudio has been extended with a
COM interface through which gauges can report changing prop-
erty values.

The AcmeStudio COM interface also contains routines to
change the architectural model – create, delete, or modify compo-
nents, connectors, etc. In this way, tools that do the actual analy-
sis and modification can inform AcmeStudio, so that the changed
architecture can be viewed. For example, if a gauge detects an
overloaded server, it can report this fact as the sOverloaded
property of the corresponding architectural component. AcmeStu-
dio, using existing visual variants, can change the component
color to light gray.

Armani Constraint Analysis: Armani has been extended
with an imperative language that can be used to define repair
strategies to programmatically change the architecture. A repair
strategy can optionally be associated with an Armani constraint.
If the constraint fails during runtime analysis, then the repair strat-
egy is invoke. A repair strategy is composed of a number of sub-
sidiary constraints and repair tactics. This allows a repair strategy
to conduct more than one change, based on further investigation
of the problem. For example, if an Armani constraint specifying
that latency must be below a certain threshold is violated, the
repair strategy will likely contain tactics to address the case if the
bandwidth has fallen or the load on servers has risen. Further-
more, repair strategies contain decision logic for choosing which
of the tactics to apply.

An example repair strategy is presented in Figure 3. The
Armani constraint and repair strategy to invoke are shown in lines
1-3 of the figure. In line 2, “! ” is a new operator that specifies
that the repair strategy following is to be executed only if the
constraint is violated. The top-level repair strategy in lines 5-17,
fixLatency, consists of two tactics, only one of which is chosen to
be executed by this repair strategy. The first tactic in lines 19-31
handles the situation in which a server group is overloaded, iden-
tified by the precondition in lines 24-26. Its main action in lines
27-29 is to create a new server in any of the overloaded server
groups. The second tactic in lines 33-48 handles the situation in
which high latency is due to communication delay, identified by
the precondition in lines 34-36. It queries the architecture to find a
server group that will yield a higher bandwidth connection in
lines 40-41. In lines 42-44, if such a group exists it moves the
client-server connector to use the new group.

In addition to extending the Armani language, we are inves-
tigating ways to optimize the performance of the constraint analy-
sis at runtime with incremental approaches.

5.3.2 New Architecture Tools
The existing tools address the concerns of observation and analy-
sis in our framework. However, they do not address how to im-
plement monitoring, how to execute the repair, or how to map
between an architectural model and its implementation. These
new tools are now discussed.

Gauge Infrastructure: As illustrated in Figure 1, gauges are
used to do abstraction and propagate information about the run-
time system to the architectural model. We have developed a
gauge infrastructure, implemented as a Java class library that

provides implementation stubs for gauges, and routines to com-
municate between gauges and tools that consume gauge outputs
[9]. Because of the requirement for working in distributed sys-
tems, we have implemented the transport layer of the gauge infra-
structure using the Siena wide area event notification system [3].

01 invariant r.Avg_Latency <= maxLatency
02 !
03 fixLatency(r);
04
05 strategy fixLatency (badRole: ClientRoleT) = {
06 n repair-transaction; begi

Tailor Repair: In concert with the repair extension to Ar-
mani, we are developing tools that provide runtime execution of
these repairs. The goal of Tailor is to execute repairs that return
an erroneous architecture to one that conforms to its style and
constraints. Tailor listens to gauges for values associated with the
model it is trying to maintain. It then invokes Armani to check if
any constraints are violated. If they are, it executes the appropri-
ate repair tactics. Tailor is decoupled from the executing system,
and can run on a machine independent of the running system. In
this way, we anticipate that monitoring and repair at the architec-
tural level will not unduly impede the running system.

07 let badClient: ClienT =
08 select one cli: ClientT in self.Components |
09 exists p: RequestT in cli.Ports | attached(badRole, p);
10 if (fixServerLoad(badClient)) {
11 commit repair-transaction;
12 else if (fixBandwidth(badClient, badRole) {
13 commit repair-transaction;
14 } else {
15 abort(ModelError);
16 }
17 }
18
19 tactic fixServerLoad (client: ClientT) : boolean = {

Mapping Between Architecture and Implementation:
Currently in our toolset we assume that gauges provide a mapping
between runtime observations and architectural observations. In
fact, this is just one example of mapping that is required through-
out the framework. For our approach to be effective, we require a
two-way mapping between information in the runtime system and
information in the architecture. Both directions are required by
Tailor. A mapping from the implementation to the architecture is
required when Tailor investigates the state of the running system
to determine the best tactic. (For example, in Figure 3 Tailor
needs to determine to which server group to move a client.) The
mapping from the architecture to the runtime system is required
when Tailor issues architectural changes that need to be reflected
in the implementation. For example, in Figure 3, Tailor issues the
architectural repair addServer (line 28), which needs to be trans-
lated to starting a server process on a particular host and joining a
particular server group.

20 let overloadedServerGroups: Set{ServerGroupT} =
21 { select sgrp: ServerGroupT in self.Components |
22 connected(sgrp, client) and
23 sgrp.Server_Load > maxServerLoad };
24 if (size(overloadedServerGroups) == 0) {
25 return false;
26 }
27 foreach sGrp in overloadedServerGroups {
28 sGrp.addServer();
29 }
30 return (size(overloadedServerGroups) > 0);
31 }
32
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = {
34 if (role.Bandwidth >= minBandwidth) {
35 return false;
36 }
37 let oldSGrp: ServerGroupT =
38 select one sGrp: ServerGroupT in self.Components |
39 connected(client, sGrp); We do not assume that the mapping between architecture and

implementation is one-to-one. Indeed, a particular architectural
style, for example a client server architecture, could be associated
with many “implementation styles.” Currently, this information is
captured in the Translator component of our framework and we
are investigating methods of generalizing this component so that
we can specify the transformations for multiple styles. Once this
component is in place, it could also be used by gauges to associate
runtime observations with architectural properties, in contrast to
our current implementation, which embeds this information in the
gauges themselves.

40 let goodSGrp: ServerGroupT =
41 findGoodSGrp(client, minBandwidth);
42 if (goodSGrp != nil) {
43 .moveClient(oldSGrp, goodSGrp); client
44 return true;
45 } else {
46 abort(NoServerGroupFound);
47 }
48 }

Figure 3. An Example Repair Strategy.

6. Integrating the Architectural Tools
The development of different tools to capture specific knowledge
about different aspects of dynamic adaptation means that these
tools need to be integrated in some fashion. The framework in
Figure 1 gives a broad outline of how to do this.

Figure 4 provides an illustrative example of how we have in-
tegrated our tools, in the particular case of adapting a client-server
system. The running distributed client-server system is on the left
of the figure, and consists of three clients, three servers, and a
request queue component. Clients make requests to the request
queue and servers serve requests that they pull from the request
queue. To instrument this system, each component is run inside
an AIDE shell [2], which allows us to probe the method calls
inside the component. This implementation corresponds to the

Figure 4. Runtime Adaptation Example

Client1 Client2 Client3

Request Queue

Server1 Server3Server2

AIDE Shell AIDE Shell AIDE Shell

AIDE Shell

AIDE Shell

AIDE Shell

AIDE Shell

Gauge
Manager Gauge Extractor

Tailor
Runtime Manager

G
au

ge
 A

ge
nt

COM

Probe bus

G
au

ge
 b

us

example reported in [4], which calls for adaptation if the latency
rises above 2 seconds. Using our tools to effect the adaptation
requires several steps. (We assume that the system is running, and
that the architecture for this system is already defined.)

The first step is to use AcmeStudio to attach gauges to vari-
ous properties in the architecture. In the client-server example, we
attach gauges to the server load property of the request queue
component of the architecture, and two gauges to each of the cli-
ent roles in the architecture – one to report the bandwidth and one
to report the average latency experienced by clients attached to
the role.

The next step involves starting system monitoring by starting
gauges. AcmeStudio invokes the Gauge Extractor tool, which
communicates via RMI with a Gauge Agent. The Gauge Agent is
the mediator between gauges and AcmeStudio.

1. The Gauge Agent locates Gauge Managers to start par-
ticular gauges and then creates the required gauges (in
the middle of the figure).

2. These gauges create the necessary implementation
probes. The probes in this example report whenever the
newRequest method is called in a client. Probes report
the size of the data contained in response corresponding
to the request. A probe in the Request Queue reports the
size of the queue.

3. The gauges interpret this low-level, method-call infor-
mation into high level latency and bandwidth values
and report these values to the gauge bus.

4. The Gauge Agent reports gauge values to AcmeStudio,
which can display the results.

5. Concurrently, Tailor listens to the gauge bus and evalu-
ates Armani constraints to determine if the system is
still performing acceptably. If not, it makes changes to
its internal model of the architecture and reports these
changes to AcmeStudio, via the COM interface, and the
Runtime Manager, via RMI.

6. The Runtime Manager in this example contains a simple
table-based mapping between architectural changes and
runtime changes, and performs the necessary changes to
the running system based on the repair tactic chosen by
Tailor.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how to adapt existing design-time
architecture tools so that the knowledge encapsulated within them
is made available to adapt executing systems dynamically, and
have shown how we have adapted our Acme tool suite for this
task. Furthermore, we identified and outlined the implementation
and integration of additional tools for architecture-based monitor-
ing and repair of an executing system. The use of architectural
tools for runtime adaptation is desirable because it (a) allows the
use of design time architectural expertise to guide adaptation, (b)
provides a continuity of viewpoint from the design of the system
to its dynamic behavior, and (c) allows us to use analysis, previ-
ously available only at design time, to effect changes based on the
dynamic behavior of the system.

The framework and tools described in this paper provide a
clean separation of concerns into distinct aspects of monitoring,
analysis, repair, and translation between architecture and imple-
mentation. Thus, it provides a platform for experimenting with
various approaches to each of these aspects.

While we have focused on how we adapted Acme tools to fit
into this framework, there are some general lessons about how to
integrate design-time architectural tools into a dynamic adaptation
framework:

1. The tool needs to have a runtime interface that allows
models to be changed on the fly.

2. Monitors need to be written to observe the running
system and relate these observations to the architec-
tural model described in the tool.

3. The architectural model needs to be dynamically re-
evaluated, taking into consideration these observa-
tions.

4. The results of reevaluation need to be related to re-
pairs that can be made to the architectural model and
the running system, and these repairs need to be exe-
cuted dynamically.

Future work involves further elaboration and development of
our Acme toolsuite to this framework, and the development of
tools for each of the concerns outlined above. In particular, we are
investigating tools for easing the development of gauges, and
tools for facilitating the capture of knowledge about the associa-
tion between an architectural model and an implementation.

ACKNOWLEDGEMENTS
This work is supported in part by DARPA under Grants N66001-
99-2-8918 and F30602-00-2-0616. Views and conclusions con-
tained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed
or implied, of DARPA.

REFERENCES
[1] Allen, R.J. A Formal Approach to Software Architecture.

PhD Thesis, published as Carnegie Mellon University School
of Computer Science Technical Report CMU-CS-97-144,
May 1997.

[2] Calnan, P. Semantic-based Code Transformation. MS
Thesis Proposal, Department of Computer Science,
Worchester Polytechnic Institute, Massachusetts,
March 2002.

[3] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L. Achieving
Expressiveness and Scalability in an Internet-Scale Event
Notification Service. Proc. 19th ACM Symposium on Prin-
ciples of Distributed Computing (PODC2000), Portland OR,
July, 2000.

[4] Cheng, S.-W., Garlan, D., Schmerl., B., Sousa, J., Spitzna-
gel, B., Steenkiste, P. Using Architectural Style as the Basis
for Self-repair. The Working IEEE/IFIP Conference on
Software Architecture 2002, Montreal, August 25-31, 2002.

[5] Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J., Spitznagel,
B., Steenkiste, P. Software Architecture-based Adaptation
for Grid Computing. Proc. the 11th IEEE International Sym-
posium on High Performance Distributed Computing, Edin-
burgh, Scotland, July 2002.

[6] Dashofy, E., van der Hoek, A., Taylor, R.N. A Highly-
Extensible, XML-Based Architecture Description Language.

Proc. 2nd Working IEEE/IFIP Conference on Software Ar-
chitecture, Amsterdam, The Netherlands, August 2001.

[7] Garlan, D., Allen, R.J., and Ockerbloom, J. Exploiting Style
in Architectural Design. Proc. SIGSOFT '94 Symposium on
the Foundations of Software Engineerng, , New Orleans, LA,
December 1994.

[8] Garlan, D., Monroe, R.T., and Wile, D. Acme: Architectural
Description of Component-Based Systems. Foundations of
Component-Based Systems. Leavens, G.T., and Sitaraman,
M. (eds). Cambridge University Press, 2000 pp. 47-68.

[9] Garlan, D., Schmerl, B., and Chang, J. Using Gauges for
Architecture-Based Monitoring and Adaptation. Proc. Work-
ing Conference on Complex and Dynamic Systems Architec-
ture, Brisbane, Australia, 12-14 December, 2001.

[10] Gorlick, M.M., and Razouk, R.R. Using Weaves for Soft-
ware Construction and Analysis. Proc. 13th International
Conference on Software Engineering, IEEE Computer Soci-
ety Press, May 1991.

[11] Lowekamp, B., Miller, N., Sutherland, D., Gross, T., Steen-
kiste, P., and Subhlok, J. A Resource Query Interface for
Networ-aware Applications. Cluster Computing, 2:139-151,
Baltzer, 1999.

[12] Luckham, D.C. Rapide: A Language and Toolset for Simula-
tion of Distributed Systems by Partial Orderings of Events.
DIMACS Partial Order Methods Workshop IV, Princeton
University, July 1996.

[13] Medvidovic, N., and Taylor, R.N. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
January 2000.

[14] Moriconi, M. and Reimenschneider, R.A. Introduction to
SADL 1.0: A Language for Specifying Software Architec-
ture Hierarchies. Technical Report SRI-CSL-97-01, SRI In-
ternational, March 1997.

[15] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G., Med-
vidovic, N., Quilici, A., Rosenblum, D., and Wolf, A. An
Architecture-Based Approach to Self-Adaptive Software.
IEEE Intelligent Systems 14(3):54-62, May/June 1999.

[16] Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., and Zelesnik, G. Abstractions for Software Architec-
ture and Tools to Support them. IEEE Transactions on Sof-
ware Engineering, Special Issue on Software Architecture,
21(4):314-335, April, 1995.

[17] Spitznagel, B. and Garlan, D. Architecture-Based Perform-
ance Analysis. Proc. the 1998 Conference on Software Engi-
neering and Knowledge Engineering, June, 1998.

[18] Taylor, R.N., Medvidovic, N., Anderson, K.M., Whitehead,
E.J., Robbins, J.E., Nies, K.A., Oreizy, P., and Dubrow, D.L.
A Component- and Message-Based Architectural Style for
GUI Software. IEEE Transactions on Software Engineering
22(6):390-406, 1996.

[19] Vestel, S. MetaH Programmer’s Manual, Version 1.09.
Technical Report, Honeywell Technology Center, April
1996.

	1. INTRODUCTION
	2. RELATED WORK
	3. SOFTWARE ARCHITECTURE
	4. OVERVIEW OF OUR APPROACH
	4.1 Adaptation Framework
	5. ACME ARCHITECTURE DESIGN TOOLS
	5.1 The AcmeStudio Design Environment
	5.2 Armani Constraint Analysis
	5.3 Architectural Tools for Dynamic Change
	5.3.1 Changes to Existing Tools
	5.3.2 New Architecture Tools

	6. Integrating the Architectural Tools
	7. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

