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ABSTRACT 
In an increasing number of domains software is now required to 
be self-adapting and self-healing. While in the past such abilities 
were incorporated into software on a per system basis, prolifera-
tion of such systems calls for more generalized mechanisms to 
manage dynamic adaptation. General mechanisms have the ad-
vantage that they can be reused in numerous systems, analyzed 
separately from the system being adapted, and easily changed to 
incorporate new adaptations. Moreover, they provide a natural 
home for encoding the expertise of system designers and imple-
menters about adaptation strategies and policies. In this paper, we 
show how current software architecture tools can be extended to 
provide such generalized dynamic adaptation mechanisms.  

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques – 
Computer Aided Software Engineering (CASE). D.2.11 [Software 
Engineering]: Software Architectures – Languages 

General Terms 
Design, Measurement. 

Keywords 
Software architecture, software architecture tools, dynamic adap-
tation, reflective systems. 

1. INTRODUCTION 
The increasing complexity of software means that there is more 
reliance on tools to capture knowledge and expertise about vari-
ous aspects of the system, without requiring the tool user to un-
derstand the specific algorithms or formal methods underpinning 
this knowledge. For example, code-related tools may detect mem-
ory leaks or concurrency problems, requirements-tracing tools 

relate code to the requirements they fulfill, and software architec-
ture tools capture design expertise about systems.  

One of the key aspects of such tools is separating concerns in 
software to make change more manageable. For example, soft-
ware architecture tools separate out the concern of the runtime 
topology and properties of the system. The expertise captured in 
the software architecture may specify topological or performance 
constraints on the system. 

An increasingly important aspect of software is providing 
mechanisms for runtime adaptation. In the past, the requirement 
for dynamically changing the system was restricted to certain 
categories of applications, where human oversight was impossible 
or difficult (such as satellite software), or where the cost of stop-
ping the system to perform maintenance was prohibitive (such as 
in telecommunication systems). However, this requirement is 
becoming increasingly important in general distributed systems, 
defense software, and pervasive computing. Even desktop appli-
cations and operating systems are beginning to allow upgrades 
without shutting systems down.  

Even though the requirement for self-adaptation is becoming 
more widespread, the mechanisms to implement this requirement 
are still mostly provided in a per-system, ad hoc manner, with the 
adaptation typically embedded in the application code. Conse-
quently, knowledge about self-adaptation is difficult to separate 
from application code, making adaptation knowledge difficult to 
(a) transfer or reuse in other applications, (b) reason about or ana-
lyze to ascertain whether the adaptations will result in proper-
running systems, and (c) change. Furthermore, because adaptation 
is distributed among the various components or modules in the 
code, the adaptation performed tends to be localized to those 
components. It does not work well for global adaptation (e.g., 
requiring changes in the structure of the application) or in cases 
where multiple adaptation operations have to be coordinated. As 
such, tools to support and implement reusable, analyzable, and 
global self-adaptation mechanisms are scarce and are limited to 
specific domains. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee. 
SEKE '02, July 15-19, Ischia, Italy. 
Copyright 2002 ACM 1-58113-556-4/02/0700 ...$5.00 

Recently a number of researchers have proposed an alterna-
tive approach in which system models – and in particular, archi-
tectural models – are maintained at run time and used as a basis 
for system reconfiguration and repair [15]. Architecture-based 
adaptation has a number of nice properties: (1) as an abstract 
model, an architectural model can provide a global perspective on 
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the system; (2) architectural models can make “integrity” con-
straints explicit, helping to ensure the validity of any change; (3) 
suitably-designed architectures permit flexible evolution of sys-
tems by providing loose coupling between components; and (4) 
architectures encapsulate the design knowledge, and thereby pro-
vide a basis for principled adaptation. 

Although attractive in principle, there are a number of road-
blocks to making software architecture useful as the basis for run-
time adaptation. Most importantly, today’s tools and representa-
tions are intended as development-time aids. Consequently, the 
expertise captured in the architecture cannot be easily exploited to 
help manage run-time change. 

In other work [4,5] we describe how the Acme architecture 
description language (ADL) can be extended to support runtime 
adaptation. In this paper, we consider how one can reuse existing 
design-time tools to help with to support runtime architectural 
adaptation, and what additional infrastructure and components are 
needed to fill out the picture. We then detail our experience in 
adapting the Acme toolsuite in this way. 

2. RELATED WORK 
Research in software architecture has matured in the last decade 
to the point that there is a plethora of tool support for various 
aspects of architectural design. This research has mainly focused 
on design-time support for constructing and analyzing architec-
tures, with formal knowledge embodied in concomitant tool sup-
port. There are almost as many architecture definition tools as 
there are ADLs, and a wide variety of analyses can be performed 
on architectures. A summary of some of this research is presented 
in [13]. In this section we focus on the different tools for relating 
architectures to code. 

Within particular domains, there are a number of tools that 
provide some support for generating code, or code stubs, from 
architectures. For example, C2 [18], Unicon [16], and Weaves 
[10] provide implementations and libraries for specific architec-
tural domains.  

The Rapide toolset [12] allows the creation of an executable 
simulation of an architecture, and provides various analysis tools 
to replay the events according to the architecture and check the 
conformance of the simulation to formal constraints in the archi-
tecture. However, this analysis and tools are based on simulations 
and are not run concurrently with the executing program to either 
monitor or change the running system.  

The crucial missing piece in the above work is providing 
generalized architectural adaptation that does not assume a par-
ticular style and runs concurrently with the executing system. In 
other work, we have shown how to generalize architecture-based 
adaptation by making the choice of architectural style an explicit 
design parameter in the adaptation framework [4], and have re-
ported results of some experiments that we have conducted within 
this framework for a particular kind of architecture [5]. In this 
paper, we focus on the use of software architectural tools to aid in 
constructing run-time adaptation mechanisms. In particular, we 
detail our experience with tools that support the Acme architec-
tural description language. 

3. SOFTWARE ARCHITECTURE 
The centerpiece of our approach is the use of architectural models 
[1,7]. We use a simple scheme in which an architectural model is 
represented as a graph of interacting components. This is the core 
architectural representation scheme adopted by a number of archi-
tecture description languages, including Acme [8], xADL [6], 
and SADL [14]. Nodes in the graph are termed components. They 
represent the principal computational elements and data stores of 
the system: clients, servers, databases, user interfaces, etc. Arcs 
are termed connectors, and represent the pathways of interaction 
between the components. A given connector may in general be 
realized in a running system by a complex base of middleware 
and distributed systems support.  

To account for various behavioral properties of a system, 
elements in the graph can be annotated with property lists. For 
example, properties associated with a connector might define its 
protocol of interaction, or performance attributes (e.g., delay, 
bandwidth). The software architecture can also specify a set of 
constraints that must be maintained. Constraints can, for example, 
specify that some property value must always be within a certain 
range. One of the advantages of architectural descriptions is that 
they provide opportunities for automatic verification of such con-
straints.  

Representing an architecture as an arbitrary graph of generic 
components and connectors has the advantage of being extremely 
general and open ended. However, in practice there are a number 
of benefits to constraining the design space for architectures by 
associating a style with the architecture. An architectural style 
typically defines a set of types for components, connectors, inter-
faces, and properties together with a set of rules that govern how 
elements of those types may be composed. Requiring a system to 
conform to a style has many benefits, including support for analy-
sis, reuse, code generation, and system evolution [7,18,19]. 

4. OVERVIEW OF OUR APPROACH 
In order to exploit architectural design knowledge for runtime 
adaptation, we must support three activities that occur in a con-
trol-loop fashion. The three activities are: 

Monitoring: The first element of determining whether the 
system needs to be adapted is to observe its runtime behavior. 
These observations can be made by various technologies that can 
determine information about the system. Examples of such tech-
nologies are code instrumentation to report the occurrence of 
specific method calls [2], and operating system and network 
monitoring systems to measure performance [11]. The key idea 
here is that at this level, monitoring of the application is in terms 
that are relevant to the implementation – they are likely to be 
localized, system-specific observations and mechanisms. 

Interpretation: The information observed about the running 
system in its raw form is not likely to be suitable for analysis at 
the architectural level – there needs to be some interpretation of 
the data that reflects these observations in the context of a higher-
level architectural model. For example, if connector protocols are 
specified at the architectural level, then method calls in the im-
plementation will need to be interpreted and reported as events in 
the protocol. Similarly, low-level system performance observa-
tions may need to be interpreted as aggregate throughputs or la-
tencies at the architectural level. This interpretation is crucial so 
that the observed properties can be used in architectural analysis 
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Figure 1. Adaptation Framework. 

to ascertain whether there is something wrong with the system. 
Our contention is that a high-level architectural model can be 
more easily reasoned about than the runtime-state of the system 
and its implementation code. The methods used for this interpreta-
tion are discussed in more detail in [9]. 

Reconfiguration: Once the runtime analysis of the architec-
tural model has been conducted, using information reported by 
the interpretation activity, it is possible to determine whether the 
architectural model is correct according to its style, and also with 
respect to analyses facilitated by that style. If the architectural 
model is not consistent with its design assumptions, then there is a 
need to reconfigure the system. Such reconfigurations are in-
tended to adapt the architecture so that it returns to a consistent 
state, and also to make the concomitant changes in the implemen-
tation. For our system, reconfiguration at the architectural level is 
done via repair strategies, as discussed in [4]. Reflecting those 
changes to the implementation in a general way is the subject of 
ongoing research. 

4.1 Adaptation Framework 
To determine the role of tool support for these activities, we have 
developed a framework that is similar to [15] (as illustrated in 
Figure 4): An executing system is monitored to observe its run 
time behavior via a set of probes (indicated by P’s in the figure). 
Monitored values are abstracted and related to architectural prop-
erties of an architectural model (G’s in the figure). When a prop-
erty in the architectural model changes, constraints are reevalu-
ated to determine whether the system is operating within an enve-
lope of acceptable ranges (Analyzer). Violations of constraints are 
handled by a repair mechanism (Repair Handler), which adapts 
the architecture. Architectural changes are propagated to the run-
ning system via the Translator and the RTI API Interpreter. 

As we detail later, the key new feature in this framework is 
the use of style as a first class entity that determines the actual 
behavior of each of the parts. Specifically, style is used to deter-
mine (a) what properties of the executing system can monitored, 

(b) what analysis needs to be conducted, (c) what to do when an 
error is detected, and (d) how to carry out repair in terms of style-
based architectural operators. In addition we need to introduce a 
style-specific translation component to manage the transactional 
nature of repair and map high-level architecture operations into 
lower-level system operations. 

5. ACME ARCHITECTURE DESIGN 
TOOLS 

The framework described above makes the use of architec-
tures and architectural styles explicit, and is suitable for use with 
an ADL and its associated tools. The Acme ADL was originally 
conceived as an interchange language between numerous, style-
specific ADLs. Extended with types, constraints, and families, it 
has evolved into a powerful ADL in its own right. Several tools 
that use Acme as their native ADL have been developed, with our 
research focusing on the support for style-related architectural 
analysis. 

Tool support for Acme has coalesced on two fronts: the defi-
nition of an architectural model, and the analysis of the model 
once it has been defined. AcmeStudio, developed at Carnegie 
Mellon University, and the Acme PowerPoint Editor, developed 
at ISI, are two such tools that provide a graphical design envi-
ronment based on Acme for defining architectures. Armani, per-
formance analysis, and various style-specific analysis tools have 
been developed that calculate properties of an architectural model  
and evaluate satisfaction of constraints. 

5.1 The AcmeStudio Design Environment 
AcmeStudio is a graphical design tool written in Visual C++™ 
for Windows™ platforms. It uses Acme as its core language and 
takes advantage of Acme styles (called families) to allow the defi-
nition of custom visualizations, rudimentary property-based 
analysis for visualization variants, and the types of analysis that 
can be performed. Figure 2 illustrates a session with AcmeStudio 
that contains two architectural models (window panes for editing 

 



 

and additional information have been hidden for space reasons). 
On the left of the figure is an architectural model of a three-tiered 
web client-server system, and on the right is a model of a pipe and 
filter architecture.  

AcmeStudio uses Acme families to provide both the types 
that can be used in the architectural model and the way those 
types should be depicted. For example, in the figure, components 
of type FilterT are depicted as arrowed boxes and connectors of 
type PipeT as gray circles. The ports and roles in the architecture 
are depicted as small triangles. In the left hand architecture, com-
ponents of type RepositoryT are shown as repository icons. The 
key idea here is to use Acme families not only to define the vo-
cabulary of the architecture, but also to use it as the basis for visu-
alization. In this way, architects can use the style of diagram they 
desire or are accustomed to.  

In addition to depictions based on element type, AcmeStudio 
incorporates the concept of visual variants. A visual variant is a 
variation on the depiction of a type based on values of an in-
stance’s properties. Architects can use this feature to, for exam-
ple, flag errors in the architecture. The middle level components 
in the architecture on the left side of Figure 2 illustrate this con-
cept. A variant specifies that if a server is overloaded, it should be 
depicted with a different fill color (light gray in the figure1). In 
Figure 2, we have conducted a performance analysis based on 
queuing theory from AcmeStudio [17]. This has set various prop-
erties of the components and connectors in the architecture. One 
of these properties is the Boolean property sOverloaded. The 
left-most server in the figure is overloaded, and so the visualiza-
tion has changed. 

In addition to the core functionality of graphical design, 
AcmeStudio can be extended with additional functionality via 

                                                                 
1 In actual fact, the color is changed to red. 

COM based tools. Such tools can be used to provide domain-
specific analyses of the architecture, and report the results of the 
analysis back to AcmeStudio. 

Figure 2. AcmeStudio. 

5.2 Armani Constraint Analysis 
One such COM tool is the Armani constraint analysis tool. Ar-
mani is a first-order predicate language extension to Acme that 
can be used to analyze structural and other properties of the archi-
tecture. For example, one of the constraints on a filter in the Pipe 
and Filter family is: 
 

invariant forall p : port in self.ports | 
 declaresType (p, WritePortT) or declaresType (p, ReadPortT) 
 

This constraint states that each port in a filter must either be a 
write port or a read port. In such a fashion, architects can prevent 
designers from adding incorrect ports to components. Other con-
straints might specify that the pipe and filter system cannot have 
any cycles. The WebThreeTier family might specify that each 
client must be connected to a server. 
When this tool is invoked from AcmeStudio, the constraints in the 
architectural model are evaluated by the Armani tool. Errors are 
reported back to AcmeStudio. Error reports include the constraint 
that failed and the architectural element(s) over which it failed. 
This information is used by AcmeStudio to allow easy identifica-
tion and navigation to erroneous parts of the architectural model. 

5.3 Architectural Tools for Dynamic Change 
So far, we have discussed the tools that have been used for archi-
tectural design, and given details of some design-time Acme tools 
that are used to construct and analyze architectures. If we are 
using software architectural models and analyses to guide dy-
namic adaptation, then it is useful to use these tools at runtime. 

 



 

This approach preserves continuity between design time and run-
time views of the system, and maintains uniformity of the types of 
analyses that are performed at runtime and their meaning with 
respect to the design-time architectural artifacts. 

Given that we want to use existing architectural tools at run-
time, the question arises as to what role they should play in run-
time adaptation, how they should be adapted to be used in the 
dynamic context, and what additional tools are required. The 
guiding principle in providing tool support under this framework 
is that the separation of concerns that exist in the framework out-
lined earlier should be maintained. This separation of concerns is: 

• the use of different architectural views and analyses, that 
may reside  in several design-time tools; 

• the ability to monitor different attributes of the architecture 
at different times in execution; 

• the desire to employ different types of repair strategies in the 
framework; and 

• the fact that there may be many mappings from a particular 
architectural model, expressed in a particular architectural 
style, to an implementation of that system. 

Separating these concerns allows the different kinds of ex-
pertise required for dynamic adaptation into different appropriate 
tools, rather than attempting to develop a monolithic tool to per-
form all aspects of adaptation. Thus, in the design of our toolset 
we have modified our existing design-time tools to observe and 
analyze the architecture, and developed new tools to capture the 
knowledge particular to each concern. While we discuss this with 
respect to some Acme-based architecture tools, we believe that 
analogous modifications will need to be made to any architecture 
tool to fit into the general adaptation framework of Figure 1.  

5.3.1 Changes to Existing Tools 
The changes to the existing toolset fall broadly into the following 
categories: 

• Interfaces that allow the architectural model to be changed 
dynamically. 

• Integration points between architectural analysis tools and 
facilities to effect a repair, should analysis determine some-
thing is wrong. 

• Facilities to allow a designer to indicate points in the archi-
tecture that should be monitored, and the types of monitoring 
that should be conducted. 

• Handling associated scalability issues of runtime analysis, in 
reaction to observations of the executing system. 

We show how we addressed these categories in the case of 
AcmeStudio and Armani. 

AcmeStudio: The role of AcmeStudio in the dynamic adap-
tation framework is twofold. First, it is still used at design time to 
define the architecture. For this stage, AcmeStudio has been ex-
tended to allow gauges to be attached to points in the architecture. 
Once again, this is based on families – families define which 
gauge types are available to a system. If a family defines such 

gauge types, instances can be dropped onto the design and at-
tached to properties in the architecture. For example, to request 
monitoring of the latency of a particular connector in the architec-
tural model, a designer would (1) ensure there is an appropriate 
property of the connector (for example, latency); (2) add a gauge 
to monitor connector latency to the architectural model; and (3) 
bind the value reported by that gauge to the property in the con-
nector.  

The second role of AcmeStudio is as an observation tool in 
the adaptation framework. Once the system is started, AcmeStu-
dio is no longer used to edit the architecture – it merely observes 
the changes made to the architecture by other tools. A new tool 
extracts gauge information from the architectural model and cre-
ates the requested gauges. AcmeStudio has been extended with a 
COM interface through which gauges can report changing prop-
erty values.  

The AcmeStudio COM interface also contains routines to 
change the architectural model – create, delete, or modify compo-
nents, connectors, etc. In this way, tools that do the actual analy-
sis and modification can inform AcmeStudio, so that the changed 
architecture can be viewed. For example, if a gauge detects an 
overloaded server, it can report this fact as the sOverloaded 
property of the corresponding architectural component. AcmeStu-
dio, using existing visual variants, can change the component 
color to light gray. 

Armani Constraint Analysis: Armani has been extended 
with an imperative language that can be used to define repair 
strategies to programmatically change the architecture. A repair 
strategy can optionally be associated with an Armani constraint. 
If the constraint fails during runtime analysis, then the repair strat-
egy is invoke. A repair strategy is composed of a number of sub-
sidiary constraints and repair tactics. This allows a repair strategy 
to conduct more than one change, based on further investigation 
of the problem. For example, if an Armani constraint specifying 
that latency must be below a certain threshold is violated, the 
repair strategy will likely contain tactics to address the case if the 
bandwidth has fallen or the load on servers has risen. Further-
more, repair strategies contain decision logic for choosing which 
of the tactics to apply. 

An example repair strategy is presented in Figure 3. The 
Armani constraint and repair strategy to invoke are shown in lines 
1-3 of the figure. In line 2, “! ” is a new operator that specifies 
that the repair strategy following is to be executed only if the 
constraint is violated. The top-level repair strategy in lines 5-17, 
fixLatency, consists of two tactics, only one of which is chosen to 
be executed by this repair strategy. The first tactic in lines 19-31 
handles the situation in which a server group is overloaded, iden-
tified by the precondition in lines 24-26. Its main action in lines 
27-29 is to create a new server in any of the overloaded server 
groups. The second tactic in lines 33-48 handles the situation in 
which high latency is due to communication delay, identified by 
the precondition in lines 34-36. It queries the architecture to find a 
server group that will yield a higher bandwidth connection in 
lines 40-41. In lines 42-44, if such a group exists it moves the 
client-server connector to use the new group. 

 



 

In addition to extending the Armani language, we are inves-
tigating ways to optimize the performance of the constraint analy-
sis at runtime with incremental approaches.  

5.3.2 New Architecture Tools 
The existing tools address the concerns of observation and analy-
sis in our framework. However, they do not address how to im-
plement monitoring, how to execute the repair, or how to map 
between an architectural model and its implementation. These 
new tools are now discussed. 

Gauge Infrastructure: As illustrated in Figure 1, gauges are 
used to do abstraction and propagate information about the run-
time system to the architectural model. We have developed a 
gauge infrastructure, implemented as a Java class library that 

provides implementation stubs for gauges, and routines to com-
municate between gauges and tools that consume gauge outputs 
[9]. Because of the requirement for working in distributed sys-
tems, we have implemented the transport layer of the gauge infra-
structure using the Siena wide area event notification system [3].  

01 invariant r.Avg_Latency <= maxLatency 
02 !  
03  fixLatency(r); 
04 
05 strategy fixLatency (badRole: ClientRoleT) = { 
06 n repair-transaction;   begi

Tailor Repair: In concert with the repair extension to Ar-
mani, we are developing tools that provide runtime execution of 
these repairs. The goal of Tailor is to execute repairs that return 
an erroneous architecture to one that conforms to its style and 
constraints. Tailor listens to gauges for values associated with the 
model it is trying to maintain. It then invokes Armani to check if 
any constraints are violated. If they are, it executes the appropri-
ate repair tactics. Tailor is decoupled from the executing system, 
and can run on a machine independent of the running system. In 
this way, we anticipate that monitoring and repair at the architec-
tural level will not unduly impede the running system. 

07  let badClient: ClienT = 
08   select one cli: ClientT in self.Components | 
09    exists p: RequestT in cli.Ports | attached(badRole, p); 
10  if (fixServerLoad(badClient)) { 
11   commit repair-transaction; 
12  else if (fixBandwidth(badClient, badRole) { 
13   commit repair-transaction; 
14  } else { 
15   abort(ModelError); 
16  } 
17 } 
18 
19 tactic fixServerLoad (client: ClientT) : boolean = { 

Mapping Between Architecture and Implementation: 
Currently in our toolset we assume that gauges provide a mapping 
between runtime observations and architectural observations. In 
fact, this is just one example of mapping that is required through-
out the framework. For our approach to be effective, we require a 
two-way mapping between information in the runtime system and 
information in the architecture. Both directions are required by 
Tailor. A mapping from the implementation to the architecture is 
required when Tailor investigates the state of the running system 
to determine the best tactic. (For example, in Figure 3 Tailor 
needs to determine to which server group to move a client.) The 
mapping from the architecture to the runtime system is required 
when Tailor issues architectural changes that need to be reflected 
in the implementation. For example, in Figure 3, Tailor issues the 
architectural repair addServer (line 28), which needs to be trans-
lated to starting a server process on a particular host and joining a 
particular server group.  

20  let overloadedServerGroups: Set{ServerGroupT} = 
21   { select sgrp: ServerGroupT in self.Components | 
22    connected(sgrp, client) and 
23    sgrp.Server_Load > maxServerLoad }; 
24  if (size(overloadedServerGroups) == 0) { 
25   return false; 
26  } 
27  foreach sGrp in overloadedServerGroups { 
28   sGrp.addServer(); 
29  } 
30  return (size(overloadedServerGroups) > 0); 
31 } 
32 
33 tactic fixBandwidth (client: ClientT, role: ClientRoleT) : boolean = { 
34  if (role.Bandwidth >= minBandwidth) { 
35   return false; 
36  } 
37 let oldSGrp: ServerGroupT =   
38   select one sGrp: ServerGroupT in self.Components | 
39    connected(client, sGrp); We do not assume that the mapping between architecture and 

implementation is one-to-one. Indeed, a particular architectural 
style, for example a client server architecture, could be associated 
with many “implementation styles.” Currently, this information is 
captured in the Translator component of our framework and we 
are investigating methods of generalizing this component so that 
we can specify the transformations for multiple styles. Once this 
component is in place, it could also be used by gauges to associate 
runtime observations with architectural properties, in contrast to 
our current implementation, which embeds this information in the 
gauges themselves. 

40  let goodSGrp: ServerGroupT = 
41   findGoodSGrp(client, minBandwidth); 
42  if (goodSGrp != nil) { 
43 .moveClient(oldSGrp, goodSGrp);    client
44   return true; 
45  } else { 
46   abort(NoServerGroupFound); 
47  } 
48 } 

Figure 3. An Example Repair Strategy. 

6. Integrating the Architectural Tools 
The development of different tools to capture specific knowledge 
about different aspects of dynamic adaptation means that these 
tools need to be integrated in some fashion. The framework in 
Figure 1 gives a broad outline of how to do this. 

Figure 4 provides an illustrative example of how we have in-
tegrated our tools, in the particular case of adapting a client-server 
system. The running distributed client-server system is on the left 
of the figure, and consists of three clients, three servers, and a 
request queue component. Clients make requests to the request 
queue and servers serve requests that they pull from the request 
queue. To instrument this system, each component is run inside 
an AIDE shell [2], which allows us to probe the method calls 
inside the component. This implementation corresponds to the 

 



 

Figure 4. Runtime Adaptation Example 
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example reported in [4], which calls for adaptation if the latency 
rises above 2 seconds. Using our tools to effect the adaptation 
requires several steps. (We assume that the system is running, and 
that the architecture for this system is already defined.) 

The first step is to use AcmeStudio to attach gauges to vari-
ous properties in the architecture. In the client-server example, we 
attach gauges to the server load property of the request queue 
component of the architecture, and two gauges to each of the cli-
ent roles in the architecture – one to report the bandwidth and one 
to report the average latency experienced by clients attached to 
the role. 

The next step involves starting system monitoring by starting 
gauges. AcmeStudio invokes the Gauge Extractor tool, which 
communicates via RMI with a Gauge Agent. The Gauge Agent is 
the mediator between gauges and AcmeStudio. 

1. The Gauge Agent locates Gauge Managers to start par-
ticular gauges and then creates the required gauges (in 
the middle of the figure).  

2. These gauges create the necessary implementation 
probes. The probes in this example report whenever the 
newRequest method is called in a client. Probes report 
the size of the data contained in response corresponding 
to the request. A probe in the Request Queue reports the 
size of the queue. 

3. The gauges interpret this low-level, method-call infor-
mation into high level latency and bandwidth values 
and report these values to the gauge bus. 

4. The Gauge Agent reports gauge values to AcmeStudio, 
which can display the results. 

5. Concurrently, Tailor listens to the gauge bus and evalu-
ates Armani constraints to determine if the system is 
still performing acceptably. If not, it makes changes to 
its internal model of the architecture and reports these 
changes to AcmeStudio, via the COM interface, and the 
Runtime Manager, via RMI.  

6. The Runtime Manager in this example contains a simple 
table-based mapping between architectural changes and 
runtime changes, and performs the necessary changes to 
the running system based on the repair tactic chosen by 
Tailor.  

7. CONCLUSIONS AND FUTURE WORK 
In this paper we have shown how to adapt existing design-time 
architecture tools so that the knowledge encapsulated within them 
is made available to adapt executing systems dynamically, and 
have shown how we have adapted our Acme tool suite for this 
task. Furthermore, we identified and outlined the implementation 
and integration of additional tools for architecture-based monitor-
ing and repair of an executing system. The use of architectural 
tools for runtime adaptation is desirable because it (a) allows the 
use of design time architectural expertise to guide adaptation, (b) 
provides a continuity of viewpoint from the design of the system 
to its dynamic behavior, and (c) allows us to use analysis, previ-
ously available only at design time, to effect changes based on the 
dynamic behavior of the system. 

The framework and tools described in this paper provide a 
clean separation of concerns into distinct aspects of monitoring, 
analysis, repair, and translation between architecture and imple-
mentation. Thus, it provides a platform for experimenting with 
various approaches to each of these aspects. 

 



 

While we have focused on how we adapted Acme tools to fit 
into this framework, there are some general lessons about how to 
integrate design-time architectural tools into a dynamic adaptation 
framework: 

1. The tool needs to have a runtime interface that allows 
models to be changed on the fly. 

2. Monitors need to be written to observe the running 
system and relate these observations to the architec-
tural model described in the tool. 

3. The architectural model needs to be dynamically re-
evaluated, taking into consideration these observa-
tions. 

4. The results of reevaluation need to be related to re-
pairs that can be made to the architectural model and 
the running system, and these repairs need to be exe-
cuted dynamically. 

Future work involves further elaboration and development of 
our Acme toolsuite to this framework, and the development of 
tools for each of the concerns outlined above. In particular, we are 
investigating tools for easing the development of gauges, and 
tools for facilitating the capture of knowledge about the associa-
tion between an architectural model and an implementation.  
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