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We propose a novel super-resolution multisource images fusion scheme via compressive sensing and dictionary learning theory.
Under the sparsity prior of images patches and the framework of the compressive sensing theory, the multisource images fusion is
reduced to a signal recovery problem from the compressive measurements. Then, a set of multiscale dictionaries are learned from
several groups of high-resolution sample image’s patches via a nonlinear optimization algorithm. Moreover, a new linear weights
fusion rule is proposed to obtain the high-resolution image. Some experiments are taken to investigate the performance of our
proposed method, and the results prove its superiority to its counterparts.

1. Introduction

Fusion of multisource images that came from different
modalities is very useful for obtaining a better understanding
of the environmental conditions, for example, the fusion
of multifocus images, the infrared (IR) images and visible
images, the medical CT images and MRI images, and the
multispectrum images and panchromatic images. Nowadays
multiresolution based fusion approaches have been one of the
popular techniques that is investigated by many researches
and proves to present state-of-the-art result [1–4], including
pyramid-based methods and discrete wavelet transform-
(DWT-) based methods. In recent years, a new developed
compressive sensing (CS) [5–8] theory is introduced into
image fusion. It is well known that the compressive sensing
theory provides a possible way of recovering sparse signals
from their projection onto a small number of randomvectors,
so compressive sensing indicated a possible way of recovering
high-resolution signals from their low-resolution version.

Assume that a signal x ∈ R𝑁 is compressible under a
dictionary Ψ ∈ R𝑁×𝑁 : x = Ψ𝜃, where ‖𝜃‖

0
= 𝐾 is

the number of nonzero components of 𝜃. The main idea of
CS is to recover the original signal x from its compressive
measurements y = Φx ∈ R𝑀, where N ≫ M. Under the
condition that thematrixΦΨ satisfies the restricted isometry

property (RIP), the signal x can be accurately recovered
from only 𝑀 ≥ 𝐾 measurements [5], by solving such an
optimization problem,

min
𝜃

‖𝜃‖0

s.t. y = Φx = ΦΨ𝜃.
(1)

Therefore, there are many advantages of combining the CS
technique and image fusion application [9–14].

Nowadays the applications of compressive sensing tech-
nology into image processing can be classified into three
categories: compressive sensing based imaging [15–21], com-
pressive sensing based image processing [22–26], and “com-
pressive sensing” form applications [27–29]. Imaging is one
of the most successful applications of compressive sensing
theory, where a few sensors or low-resolution sensors are
employed to achieve high-resolution imaging, such as optical
imaging [16, 17], medical imaging [18, 19], and hyperspec-
tral imaging [20, 21]. Compressive sensing is also used to
transform images to other spaces to obtain more efficient
analysis, such as the texture classification [22] and super-
resolution image construction [23]. Numerous works are of
the “compressive sensing” form applications; that is, if the
task can be reduced to the optimization problem shown in
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(1), these works are also called compressive sensing based
applications.

In image fusion,most of the available compressive sensing
based fusion schemes are of “compressive sensing” form [9–
14, 27, 28]; that is, they did not consider the simultaneous
fusion and super-resolution of multisource images. In this
paper, we indicate another solution for simultaneous fusion
and super-resolution of multisource images via the recent
developed compressive sampling theory. Under the sparsity
prior of images patches and the framework of the compressive
sensing theory, the multisource images fusion is reduced
to a signal recovery problem from the compressive mea-
surements. A set of multiscale dictionaries are learned from
some groups of high-resolution sample image’s patches via
a nonlinear optimization algorithm. Moreover, a new linear
weights fusion rule is proposed. Some experiments are taken
to investigate the performance of our proposed method, and
the results prove its superiority to its counterparts.

The rest of this paper is organized as follows. Our pro-
posed simultaneous fusion and super-resolution scheme of
multisource images is expounded in Section 2. In Section 3,
some experiments aremade to compare the proposedmethod
with other related segmentation approaches.The conclusions
are finally summarized in Section 4.

2. Simultaneous Fusion and Super-Resolution
Scheme of Multisource Images

In this section, the foundations of our proposed method
are illustrated, including the super-resolution multisource
images fusion, the super-resolution multisource images
fusion via compressive sensing, and the dictionary learning
algorithm used in our approach.

2.1. Super-Resolution Multisource Images Fusion. Assume
that the multisource images {Ylow

𝑖
, 𝑖 = 1, 2, . . . 𝑆} to be fused

are low-resolution images; that is, the 𝑖th source images Ylow
𝑖

are a low-resolution version of Xhigh
𝑖

:

Ylow
𝑖
= MXhigh

𝑖
+ k
𝑖 (𝑖 = 1, . . . , 𝑆) , (2)

where 𝑆 is the number of source images, M is the down-
resolution operator, and k

𝑖
is the measurement noise of the

𝑖th source image. We aim to recover a high-resolution image
Xhigh from the multisource low-resolution images {Ylow

𝑖
, 𝑖 =

1, 2, . . . 𝑆}.
The patches based fusion is adopted in our method;

that is, Xhigh is processed in raster-scan order, from left to
right and top to bottom, and then sequentially recovered.
Let xhigh
𝑗

∈ R𝑛 denote the 𝑗th √𝑛 × √𝑛 local patch vector
extracted from a high-resolution fusion image Xhigh at the
spatial location 𝑗 : xhigh

𝑗
= R
𝑗
Xhigh, where R

𝑗
denotes

a rectangular windowing operator and the overlapping is
allowed. Given a set of 𝑝×𝑝 (𝑝 ∈ 𝑍+) LR patches taken from

Ylow
i : {ylow

𝑖,1
, ylow
𝑖,2
, . . . , ylow

𝑖,𝑄
} ∈ R𝑚 (𝑚 = 𝑝2), (𝑖 = 1, . . . , 𝑆; 𝑗 =

1, . . . , 𝑄), we have

ylow
𝑖,1
= Hxhigh
𝑖,1
+ n
𝑖,1

ylow
𝑖,2
= Hxhigh
𝑖,2
+ n
𝑖,2

...

ylow
𝑖,𝑄
= Hxhigh
𝑖,𝑄
+ n
𝑖,𝑄
.

(3)

A simple example of the matrixH ∈ R4×16 is as follows:

H =
[
[
[

[

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

]
]
]

]

. (4)

Our aim is to reconstruct the fusion image Xhigh from the
high-resolution patches xhigh

𝑖
(𝑖 = 1, . . . , 𝑆) from a set of

the corresponding 𝑞 × 𝑞 (𝑞 ∈ 𝑍+) HR patches xhigh
𝑖,𝑗

(𝑖 =

1, . . . , 𝑆; 𝑗 = 1, . . . , 𝑄) ∈ R𝑛 (𝑛 = 𝑞2). This is a simultaneous
fusion and super-resolution problem of multisource images.

2.2. Super-ResolutionMultisource Images Fusion via Compres-
sive Sensing. According to the recent developed compressive
sampling theory [5, 6], it is capable of recovering xhigh

𝑖,𝑗
(𝑖 =

1, . . . , 𝑆; 𝑗 = 1, . . . , 𝑄) from ylow
𝑖,𝑗

under the sparsity prior
of xhigh
𝑖,𝑗

; that is, xhigh
𝑖,𝑗

can be represented as a sparse linear
combination by an overcomplete dictionary Dhigh

𝑖
∈ R𝑛×𝐾

that is not coherent with the measurement (or sampling)
matrixH; that is,

xhigh
𝑖,𝑗

= Dhigh
𝑖
𝛼
𝑖,𝑗
. (5)

Here the “sparsity” of the decomposition coefficient 𝛼
𝑖,𝑗
∈

R𝐾 means ‖𝛼
𝑖,𝑗
‖
0
= 𝑆 ≪ 𝑛 < 𝐾, and 𝐾 is the number

of elements (or atoms) in the dictionary Dhigh
𝑖

. Under this
sparsity assumption, xhigh

𝑖,𝑗
can thus be reconstructed by taking

only 𝑚 ≥ 𝑂(𝑆 log 𝑛) measurements. As soon as the sparse
coefficient 𝛼

𝑖,𝑗
is determined by

min
𝛼𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
𝛼
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩0

s.t. ylow
𝑖,𝑗
= Hxhigh
𝑖,𝑗

= HDhigh
𝑖
𝛼
𝑖,𝑗
,

(6)

estimation of xhigh
𝑖,𝑗

can be obtained using (5).
In our method, a linear fusion rule is performed on the

{Ylow
𝑖
,Ylow
2
, . . . ,Ylow

𝑆
} with each Ylow

i = {ylow
𝑖,1
, ylow
𝑖,2
, . . . , ylow

𝑖,𝑄
}.

Considering the patch by patch processing pattern, we write
the low-resolution fusion patch as

ylow
𝑗
=

𝑆

∑

𝑖=1

𝑤
𝑖,𝑗
ylow
𝑖,𝑗
. (7)
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Figure 1: Multisource images.

Figure 2: Fusion results of Figures 1(a) and 1(b).

Therefore, its high-resolution version can be written as

xhigh
𝑗

=

𝑆

∑

𝑖=1

𝑤
𝑖,𝑗
xhigh
𝑖,𝑗
. (8)

In our proposedmethod, we determine theweights according
to the following formula:

𝑤
𝑖,𝑗
=

1

𝑆 − 1

×(

∑
𝑆

𝑘=1,𝑘 ̸= 𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
ylow
𝑖,𝑗
−HDhigh

𝑖
𝛼
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

∑
𝑆

𝑘=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
ylow
𝑘,𝑗
−HDhigh

𝑘,𝑗
𝛼
𝑘,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

)

=

1

𝑆 − 1

×(1 −

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
ylow
𝑖,𝑗
−HDhigh

𝑖
𝛼
𝑖,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

∑
𝑆

𝑘=1

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
ylow
𝑘,𝑗
−HDhigh

𝑘,𝑗
𝛼
𝑘,𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

2

).

(9)

Because patches {xhigh
𝑗
} are highly redundant and the recovery

of X from {xhigh
𝑗
} becomes an overdetermined system, it is

straightforward to obtain the following least-square solution
in the patch aggregation:

X = (∑
𝑗

R𝑇
𝑗
R
𝑗
)

−1

(∑

𝑗

R𝑇
𝑗
xhigh
𝑗
) . (10)

2.3. Dictionary Learning Algorithm. The compressibility of
patches shown in (5) is the sparsity prior used in our method.
In order to generate several overcomplete dictionaries Dhigh

𝑖

(𝑖 = 1, 2, . . . , 𝑆) that can represent well the underlying HR
patches, we propose an algorithm to adaptively tune the
dictionary from a set of High-Resolution multisource sample
image’s patches. In this section, we will reduce the learning of
dictionary Dhigh

𝑖
(𝑖 = 1, 2, . . . , 𝑆) as another sparsity-oriented

optimization problem. Recent research on image statistics
suggests that image patches can be well represented as a
sparse linear combination of elements from an appropriately
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Figure 3: Fusion results of Figures 1(c) and 1(d).

Figure 4: Fusion results of Figures 1(e) and 1(f).

Figure 5: Fusion results of Figures 1(g) and 1(h).

chosen overcomplete dictionary. Under this assumption, the
HR image patches set Qhigh

𝑖
= {q1
𝑖
, q2
𝑖
, . . . q𝑄
𝑖
| q𝑗
𝑖
∈ R𝑛, 𝑗 =

1, . . . , 𝑄} (𝑖 = 1, . . . , 𝑆) sampled from some training HR
images can be represented as a sparse linear combination in
a dictionary Dhigh

𝑖
= [d1
𝑖
, . . . , d𝐾

𝑖
] ∈ R𝑛×𝐾 (𝑖 = 1, 2, . . . , 𝑆)

(‖d𝑗
𝑖
‖
2
= 1, 𝑗 = 1, . . . , 𝐾); that is,

q𝑗
𝑖
= Dhigh
𝑖
𝛽
𝑗

𝑖
, (11)

with the sparse coefficient vectors 𝛽𝑗
𝑖
∈ R𝐾 and ‖𝛽𝑗

𝑖
‖
0
≪ 𝐾.

The objective of designingDhigh
𝑖

is tomake the reconstruction

error over Qhigh
𝑖

(𝑖 = 1, . . . , 𝑆) be minimal under the sparsity
assumption; that is,

min
𝛽
𝑗

𝑖
,Dhigh
𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
𝛽
𝑗

𝑖

󵄩
󵄩
󵄩
󵄩
󵄩0

s.t. q𝑗
𝑖
= Dhigh
𝑖
𝛽
𝑗

𝑖
.

(12)

We reformulate (12) as follows:
min
Β𝑖 ,D

high
𝑖

󵄩
󵄩
󵄩
󵄩
Β
𝑖

󵄩
󵄩
󵄩
󵄩0,1

s.t. Qhigh
𝑖

= Dhigh
𝑖
Β
𝑖
,

(13)

whereΒ
𝑖
= [𝛽
1

𝑖
,𝛽
2

𝑖
, . . . ,𝛽

𝑄

𝑖
] is the coefficientsmatrix. In order

to solve it, the KSVD dictionary learning algorithm is used
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Table 1: The fusion result of different methods.

Images Measures Our method Method 1 [17] Method 2 [18]

Figures 1(a) and 1(b)

𝐸 7.3026 7.2996 7.3012
MI 6.7899 6.7741 6.7560
AG 2.9150 2.8183 2.8250
SD 10.6438 10.6607 10.6643
𝐽 0.3438 0.3428 0.3432

UIQI 0.9832 0.9901 0.9943
CC 0.9881 0.9884 0.9882

Figures 1(c) and 1(d)

𝐸 6.1440 6.4647 6.5612
MI 5.0346 3.6546 3.9025
AG 7.3064 6.1164 7.1345
SD 8.7785 8.7267 8.9131
𝐽 6.0068 0.5881 6.9546

UIQI 0.5446 0.5328 0.5421
CC 0.6547 0.6459 0.6425

Figures 1(e) and 1(f)

𝐸 7.6970 7.5243 7.6133
MI 7.3204 5.7659 4.3234
AG 10.1423 7.4218 9.3781
SD 11.3244 10.6344 11.2825
𝐽 0.6622 0.6729 0.7545

UIQI 0.7144 0.7204 0.7131
CC 0.8395 0.8782 0.8179

Figures 1(g) and 1(h)

𝐸 6.6827 6.2301 7.0025
MI 2.1098 1.4961 1.5836
AG 5.3866 3.5715 6.6887
SD 8.5479 7.8916 8.7738
𝐽 0.5097 0.8127 0.2107

UIQI 0.9116 0.9244 0.9079
CC 0.5242 0.6333 0.4697

to train the dictionaries Dhigh
𝑖

(𝑖 = 1, . . . , 𝑆) from Qhigh
𝑖

(𝑖 =
1, . . . , 𝑆) [30, 31].

3. Experiment Results

For evaluating the performance of the proposed fusion
algorithm, in this section we have implemented them on
some multisource images, including the multifocus images,
infrared (IR) images, and visual images, as shown in Figure 1.
The size of all images used in the test is 256 lines × 256
columns and we aim to recover the 512 lines × 512 columns
images. We compare our method with the following two
related methods.

Method (1).Consider the multimodal image fusion with joint
sparsity model [32].

Method (2). Consider the image features extraction and
fusion based on joint sparse representation [33].

For evaluating the performance of the proposed algo-
rithm, the computed results are compared by visual quality
subjectively and by some guidelines in fusion. The simula-
tions are conducted in MATLAB R2009 on PC with Intel
Core 2/1.8 G/1 G.

The fusion results of three methods are shown in Figures
2, 3, 4, and 5, and from left to right areMethod 1, our method,
and Method 2. From them we can see that the fusion images
of our method can get higher-resolution images at the same
time of fusing the multisource images. Compared with the
rules in [32, 33], our proposedmethod has better preservation
of directional information. The numerical guidelines are
shown inTable 1, where somemeasures including the entropy
(𝐸), mutual information (MI), average gradient (AG), stan-
dard deviation (SD), cross entropy (𝐽), universal image
quality index (UIQI) [34], and correlation coefficient (CC)
are calculated from the fusion images derived by different
methods.

Here UIQI is used to estimate the subjective vision
effect, which combined the spatial correlation, wrap of mean,
and variance together, and it can embody the comparability
between the fused image and original images. It is defined as

𝑄 =

𝜎
𝐴𝐵

𝜎
𝐴
𝜎
𝐵

∙

2𝜇
𝐴
𝜇
𝐵

𝜇
2

𝐴
+ 𝜇
2

𝐵

∙

2𝜎
𝐴
𝜎
𝐵

𝜎
2

𝐴
+ 𝜎
2

𝐵

, (14)

where 𝜎
𝐴𝐵

is the covariance of the fused source images𝐴 and
𝐵 and𝜎

𝑥
and𝜇
𝑥
are the standard variance and themean of the
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image 𝑥, respectively. From it we can see that the numerical
result accords with the subjective result.

4. Conclusions

In this paper we propose a novel super-resolution multi-
source images fusion scheme based on compressive sensing
and dictionary learning. Under the sparsity prior of images
patches and the framework of the compressive sensing theory,
the multisource images fusion is reduced to a signal recovery
problem from the compressive measurements. A new linear
weights fusion rule is proposed. A set of multiscale dictio-
naries are learned from several groups of high-resolution
(HR) sample image’s patches, and a higher resolution fusion
image can be obtained from multisource images. Some
experiments are taken and the results prove its superiority to
its counterparts.
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