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It is well known that there is a hysteresis phenomenon in the amplitude variation in the iced conductor galloping with the wind
velocity, which will have more obvious disadvantages to the overhead transmission lines. But hysteresis characteristics in the
conductor galloping have not received much attention. In this paper, a continuum model of the conductor galloping with D-
shape ice is derived by using Hamilton principle, where the initial deformation, the geometric nonlinearity caused by the large
deformation, and the aerodynamic nonlinearity are considered. The aerodynamic forces are described by using the quasi steady
hypothesis, where the aerodynamic coefficients are expanded by the polynomial curves with a third order and a ninth order,
respectively.Thehysteresis phenomenon is analyzed by using the approximate solutions of theGalerkin discretized equation derived
from the continuum model by means of the harmonic balance method. The influence of the different factors, dynamic angle of
attack, span length, initial tension, and conductor mass, is obtained in different galloping instability intervals. And two important
aspects about the point of the hysteresis phenomenon onset and the size of the hysteresis region over thewind velocities are analyzed
under different conditions.

1. Introduction

It is well known that iced conductor galloping is a typical low-
frequency self-excited vibration phenomenon [1]. Conductor
galloping represents a classical motion instability mechanism
in the steady flow over a noncircular cross-section caused by
ice accretion on the conductor. This conductor motion is
characterized by large amplitude (possibly > 10) and low
frequency (approximately 0.1–3Hz) [2]. Although conductor
galloping trace has usually an elliptical orbit on field obser-
vations, the predominant motion in galloping is vertical.
Galloping can cause various kinds of structural and electrical
damages in overhead lines, which can have devastating eco-
nomic and social consequences [3, 4].

Conductor galloping has been studied extensively over a
half century since DenHartog [5] firstly established the verti-
cal gallopingmechanism using the quasi steady hypothesis to
describe the linearized aerodynamic forces based on a simple
single degree-of-freedom (DOF) model. Whereafter Nigol
and Buchan [6, 7] proposed a torsional galloping mechanism
based on a two-DOFs model coupled with vertical and
torsional oscillations. And Yu et al. [8, 9] obtained a torsional

feedback mechanism using a three-DOFs model coupled
with vertical, horizontal, and torsional oscillations. And
later, with the development of linear and nonlinear motion
instability theories, galloping phenomenon has been studied
widely by using nonlinear vibration methods [10–14].

At present, the Den Hartog theory and the torsional
theory are still the two important and dominant mechanisms
to explain the phenomenon of conductor galloping. The
torsional theory shows that the torsionalmotion has a consid-
erable effect on the instability and that its coupling with the
vertical motion is responsible for most cases of the conductor
galloping phenomenon [15], which is the main difference
with the Den Hartog theory. So it can be excited based on
Den Hartog mechanism when the torsional motion does
not occur in the process of conductor galloping. And if the
torsional motion is observed, the conductor galloping may
be initiated by torsional theory. Especially for the bundled
conductor, vertical-torsional coupling is usually the most
significant to lead to galloping because of the close proximity
of the natural frequencies between vertical and torsional
motion. This has been verified experimentally by a number
of investigators [16]. In this study, only the vertical vibration
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is considered in order to discuss the hysteresis phenomenon
more conveniently for the more complex nonlinear dynamic
problem after the conductor galloping has appeared. And the
initial conditions of conductor galloping are obtained by Den
Hartog mechanism.

There are numerous examples of fundamental solutions
to the conductor galloping problem as a nonlinear motion
instability process [10–14]. The main objectives are usually
the prediction of the stability of such aeroelastic systems at
a range of flow conditions, the amplitudes, and frequencies of
the Limit Cycle Oscillation (LCO) that may be encountered.
And most of the efforts in galloping vibration researches
have been focused on blunt bodies with regular square [17],
rectangular [18, 19], or triangular cross-sections [20, 21]. But
the iced-coated conductor on the transmission linesmay have
asymmetric complicated shapes that can usually be simplified
as D-shape, U-shape, or other complex shapes, in which D-
shape iced conductor is well known to induce high galloping
amplitudes [4, 22].

In fact, it may still present more complex nonlinear
dynamic characteristics such as bifurcation, hysteresis, and
chaos, after the conductor galloping phenomenon starts off,
which is significant equally to understand the galloping
mechanisms [13, 17, 23–27]. Qin et al. [14] analyzed the bifur-
cation phenomenon for D-shape iced conductor galloping
with a two-DOFs model by singularity theory. And they
concluded that hysteresis phenomenon is probably obtained
after LCO appeared based on appropriate parameters. Luo
et al. [17] studied the square cylinder galloping phenomenon
with different Reynolds number. And the results showed that
the existence of intermittent shear layer reattachment leads
to the existence of a hysteresis region. Barrero-Gil et al.
[27] revealed the existing link between the hysteresis phe-
nomenon and the number of inflection points at the aero-
dynamic force coefficient curve by means of the method of
Krylov-Bogoliubov. And the bluff body was modeled by a
linear oscillator of one DOF. Alonso et al. [28] demonstrated
that hysteresis takes place at the angles of attack where there
are inflection points in the lift coefficient curve based on the
isosceles triangular cross-section bodies.

The hysteresis effect is observed in some field observa-
tions after the onset of conductor galloping. In a specific range
of wind velocity, the galloping amplitude and mode present
severe variation. For instance, the galloping amplitude that
suddenly increases a few timeswill causemore serious impact
to the transmission lines. It is apparent that the hysteresis phe-
nomenon presented in the galloping response will be a more
severe disadvantage to the overhead transmission lines than
the only LCO onset. So understanding of the hysteresis phe-
nomenon in the conductor galloping is important andmean-
ingful not only in theory, but also in the development of the
antigalloping methods for the transmission lines. Although
many researchers have been focused on these galloping fea-
tures, the hysteresis phenomenon in the conductor galloping
has not been given enough attention to date. In this paper,
in order to analyze the hysteresis phenomenon in conductor
galloping, a continuum model that describes approximately
the conductor galloping phenomenon is constructed by using
Hamilton principle and considering the initial location and

the geometric nonlinearity caused by the large deformation
and the aerodynamic nonlinearity caused by the flow. The
aerodynamic forces of D-shape iced conductor are described
by using the quasi-steady hypothesis. And as a contrast, the
aerodynamic coefficients are expanded by the polynomial
curves with a third order and a ninth order, respectively. The
hysteresis phenomenon is analyzed by using the approximate
solution by means of the harmonic balance method. Then
the influence of the different factors, dynamic angle of attack,
span length, initial tension, and conductor mass, is proposed
in different galloping instability intervals. And two important
aspects about the point of the hysteresis phenomenon onset
and the size of the hysteresis region over the wind velocities
are analyzed under different conditions.

2. Construction of the Model

2.1. Continuum Model. The schematic diagram of the trans-
mission line under initial tension 𝑇

0
is shown in Figure 1(a).

The initial configuration 𝑦
0
(𝑥) can be expressed simply using

parabolic shape function as

𝑦
0 (𝑥) = −

4𝑏𝑥 (𝑙 − 𝑥)

𝑙
2

, (1)

where 𝑏 is the sag at the lowest point of the line and 𝑙 is the
span length. The line is modeled as a flexible centerline with
rigid cross-sections shown in Figure 1(c) which is orthogonal
to the axis. This configuration is planar that belongs to the
vertical plane (𝑥- 𝑦). And 𝛼 is the modification of the angle
of attack introduced by the vertical velocity ̇𝑦.

The displacement of an arbitrary line element 𝑑𝑥 is
described schematically in Figure 1(b). 𝑃𝑃

1
is the initial

position with the line vector 𝑑 ⃗𝑟
0
and 𝑃𝑃

1
is the movement

position with the changed vector 𝑑 ⃗𝑟 taken from the line at
the time Δ𝑡. And suppose that the displacements of the start
and the end in 𝑥 and 𝑦 directions are 𝑢(𝑥, 𝑡), V(𝑥, 𝑡), and
𝑢+𝑢
𝑥
𝑑𝑥, V+V

𝑥
𝑑𝑥, respectively. Using arc length formula and

neglecting the higher-order terms of the axial deformation,
the expression of the line element strain, 𝜀

𝑠
, can be derived as

𝜀
𝑠
= 𝑢
𝑥
+

𝑑𝑦
0

𝑑𝑥

V
𝑥
+

1

2

V2
𝑥
, (2)

where the right subscript “𝑥” indicates differentiation with
respect to coordinate 𝑥.

Then the equations of the line motion are obtained by
employing Hamilton principle [29], for example,

∫

𝑡
2

𝑡
1

(𝛿𝑇 − 𝛿𝑉 + 𝛿𝑊) 𝑑𝑡 = 0, (3)

where 𝛿 is the first-order variational operator, 𝑇 and 𝑉 are
the total kinetic and strain energies, respectively, and 𝑊 is
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Figure 1: Model of the transmission line.

the work done by the nonconservative forces. And the 𝑇, 𝑉,
and𝑊 are given by

𝑉 = ∫

𝑙

0

(𝑇
0
𝜀
𝑠
+

1

2

𝐸𝐴𝜀
2

𝑠
)𝑑𝑥,

𝑇 =

1

2

∫

𝑙

0

𝑚(�̇�
2
+ V̇2) 𝑑𝑥,

𝑊 = ∫

𝑙

0

(𝐹
𝑦
V − 𝑐
0
V̇V) 𝑑𝑥,

(4)

where𝑚 is the mass per unit length, 𝐸 is the elastic modulus,
𝐴 is the cross-section area, 𝐹

𝑦
is the external load done by the

aerodynamic force, 𝑐
0
is the damping coefficient, and a dot

superscript indicates differentiation with respect to time 𝑡.
Substituting (2.1), (2), and (1) into (3) and omitting axial

inertial force, the line motion equation can be obtained [14,
30] as

𝑚V̈ − 𝑇
0
V −

𝐸𝐴

𝑙

(

−8𝑏

𝑙
2
+ V
𝑥𝑥
)

× ∫

𝑙

0

(

4𝑏𝑙 − 8𝑏𝑥

𝑙
2

V
𝑥
+

1

2

V2
𝑥
)𝑑𝑥 + 𝑐

01
V̇ − 𝐹
𝑦
= 0.

(5)

From (5), it is evident that the line galloping equation intro-
duces the initial stress, the geometric nonlinearity caused

by the large deformation, and the aerodynamic nonlinearity
caused by the flow. So it is difficult to solve the continuum
model directly.

2.2. Aerodynamic Force Model. Figure 1(c) shows a typical
shape of a typical ice accretion on the conductor surface,
which is observed frequently in the case of freezing rain. In
Figure 1(c), 𝐹

𝐷
and 𝐹

𝐿
are the aerodynamic lift and drag due

to wind actions. These forces depend on the dimensionless
drag coefficient 𝐶

𝐷
and lift coefficient 𝐶

𝐿
, respectively, and

have the expressions:

𝐹
𝐷
=

1

2

𝜌𝑈
2
𝐷𝐶
𝐷
, 𝐹

𝐿
=

1

2

𝜌𝑈
2
𝐷𝐶
𝐿
, (6)

where 𝜌 is the density of the flow, 𝑈 is the absolute wind
velocity perpendicular to the conductor axis in the horizontal
direction, and 𝐷 is the reference length of the iced cross-
section that is usually substituted by the conductor diameter.
Then from Figure 1(c), considering the angle of attack as a
relatively small amount, the aerodynamic force in 𝑦 direction
can be calculated as

𝐹
𝑦
= 𝐹
𝐿
cos (−𝛼) − 𝐹

𝐷
sin (−𝛼) ≈ 𝐹

𝐿
− 𝐹
𝐷

V̇

𝑈

. (7)

The wind forces acting on the iced conductor can be
measured in wind tunnels on stationary models by resorting



4 Mathematical Problems in Engineering

to the quasi-steady theory. This theory assumes that the
aerodynamic forces acting on the iced conductor at any
instant in motion are identical to that on the stationary
conductor under the same flow condition. And the use of
the quasi-steady theory is justified because the frequencies of
conductor galloping aremuch lower than the vortex shedding
frequencies.

So the curves of the aerodynamic coefficients are obtained
by the wind tunnel tests based on the stationary iced con-
ductors at different angles of incidences. In order to establish
the aerodynamic model conveniently, the polynomial curve
is applied to fit onto the force coefficients versus the angle of
attack by using the experimental data. Then drag coefficient
𝐶
𝐷
and lift coefficient 𝐶

𝐿
can be expressed as

𝐶
𝐿
=

𝑘

∑

𝑖=0

𝑐
1𝑖
𝜃
𝑖
, 𝐶

𝐷
=

𝑘

∑

𝑖=0

𝑐
2𝑖
𝜃
𝑖
, (8)

where 𝑐
1𝑖
and 𝑐
2𝑖
are the fitting coefficients of the lift and

drag coefficient curves, respectively, and 𝑘 is the order of
the polynomial. From Figure 1(c), 𝜃 is the dynamic angle of
attack based on the quasi-steady theory, which is relative to
the initial static offset angle 𝜃

0
of the iced conductor (initial

ice position on the conductor) and the instantaneous angle of
𝛼, and it can be expressed as

𝜃 = 𝜃
0
− (−𝛼) = 𝜃

0
− arctg V̇

𝑈

≈ 𝜃
0
−

V̇

𝑈

. (9)

In the major applications of the existing literatures, the
third-order polynomial fitting formula is most widely used.
But Parkinson et al. [23, 24] studied to fit by the different
order polynomials. And they found that the seventh-order
polynomial has superiority over the fifth order, because the
former can capture the inflection point of the aerodynamic
coefficient curve which is probably the pivotal factor to excite
hysteresis phenomenon.Thework ofNg et al. [25] has already
demonstrated that a seventh-order polynomial curve used in
the quasi-steady theory was sufficient in revealing the square-
cylinder galloping characteristics including the hysteresis
phenomenon.

In this study, assume that the eccentric ice distributed
along the line is uniform and neglect the aerodynamic cou-
ples. And the third-order and the ninth-order polynomials
are all selected to fit on the aerodynamic coefficient curves of
D-shape eccentric iced conductor.Then the contrast by using
different-order polynomials can be obtained.

Substituting (6)–(9) into (5), the motion equation can be
transformed:

𝑚V̈ − 𝑇
0
V
𝑥𝑥
−

𝐸𝐴

𝑙

(

−8𝑏

𝑙
2
+ V
𝑥𝑥
)

× ∫

𝑙

0

(

4𝑏𝑙 − 8𝑏𝑥

𝑙
2

V
𝑥
+

1

2

V2
𝑥
)𝑑𝑥 + 𝑐

01
V̇

−

1

2

𝜌𝑈
2
𝐷[

𝑘

∑

𝑖=0

𝑐
1𝑖
𝜃
𝑘
−

𝑘

∑

𝑖=0

𝑐
2𝑖
𝜃
𝑘
(

V̇

𝑈

)] = 0.

(10)

Neglecting the terms higher than third order, (10) is expanded
into

𝑚V̈ − 𝑇
0
V
𝑥𝑥
−

𝐸𝐴

𝑙

(

−8𝑏

𝑙
2
+ V
𝑥𝑥
)

× ∫

𝑙

0

(

4𝑏𝑙 − 8𝑏𝑥

𝑙
2

V
𝑥
+

1

2

V2
𝑥
)𝑑𝑥

+ 𝑐
1
V̇ + 𝑑
1
V̇2 + 𝑑

2
V̇3 = 0.

(11)

When 𝑘 = 3, there are

𝑐
1
= 𝑐
01
+

1

2

𝜌𝑈𝐷[𝑐
11
+ 𝑐
20
+ (2𝑐
12
+ 𝑐
21
) 𝛼
0

+ (3𝑐
13
+ 𝑐
22
) 𝛼
2

0
+ 𝑐
23
𝛼
3

0
] ,

𝑑
1
=

1

2

𝜌𝐷 [ − 𝑐
21
− 𝑐
12
− (3𝑐
13
+ 2𝑐
22
) 𝛼
0

−3𝑐
23
𝛼
2

0
] ,

𝑑
2
=

1

2𝑈

𝜌𝐷 (𝑐
13
+ 𝑐
22
+ 3𝑐
23
𝛼
0
) .

(12)

When 𝑘 = 9, there are

𝑐
1
= 𝑐
01
+

1

2

𝜌𝑈𝐷

× [𝑐
11
+ 𝑐
20
+ (2𝑐
12
+ 𝑐
21
) 𝛼
0
+ (3𝑐
13
+ 𝑐
22
) 𝛼
2

0

+ (4𝑐
14
+ 𝑐
23
) 𝛼
3

0
+ (5𝑐
15
+ 𝑐
24
) 𝛼
4

0

+ (6𝑐
16
+ 𝑐
25
) 𝛼
5

0
+ (7𝑐
17
+ 𝑐
26
) 𝛼
6

0

+ (8𝑐
18
+ 𝑐
27
) 𝛼
7

0
+ (9𝑐
19
+ 𝑐
28
) 𝛼
8

0
+ 𝑐
29
𝛼
9

0
] ,

𝑑
1
=

1

2

𝜌𝐷

× [−𝑐
12
− 𝑐
21
− (3𝑐
13
+ 2𝑐
22
) 𝛼
0
− (6𝑐
14
+ 3𝑐
23
) 𝛼
2

0

− (10𝑐
15
+ 4𝑐
24
) 𝛼
3

0
− (15𝑐

16
+ 5𝑐
25
) 𝛼
4

0

− (21𝑐
17
+ 6𝑐
26
) 𝛼
5

0
− (28𝑐

18
+ 7𝑐
27
) 𝛼
6

0

− (36𝑐
19
+ 8𝑐
28
) 𝛼
7

0
− 9𝑐
29
𝛼
8

0
] ,

𝑑
2
=

1

2𝑈

𝜌𝐷

× [𝑐
13
+ 𝑐
22
+ (4𝑐
14
+ 3𝑐
23
) 𝛼
0
+ (10𝑐

15
+ 6𝑐
24
) 𝛼
2

0

+ (20𝑐
16
+ 10𝑐
25
) 𝛼
3

0
+ (35𝑐

17
+ 15𝑐
26
) 𝛼
4

0

+ (56𝑐
18
+ 21𝑐
27
) 𝛼
5

0
+ (84𝑐

19
+ 28𝑐
28
) 𝛼
6

0

+36𝑐
29
𝛼
7

0
] .

(13)

2.3. Discrete Model. Due to solving (11), it will be approx-
imated by using the Galerkin procedure and expanding
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the displacement field in a series of suitable functions. So
according to the Galerkin method, the displacement V(𝑥, 𝑡)
can be expressed with the expansion:

V (𝑥, 𝑡) =
𝑛

∑

𝑖=1

𝑞
𝑖 (𝑡) 𝜙𝑖 (𝑥) , (14)

where 𝑞
𝑖
(𝑡) is the generalized amplitude time law, 𝜙

𝑖
(𝑥) is a

set of shape functions that satisfy the geometric boundary
conditions (𝜙

𝑖
(0) = 𝜙

𝑗
(𝑙) = 0), and 𝑛 is the number of shape

functions.
In the displacement expansion, the use of the eigenfunc-

tions is often the best choice in the aspects of convergence
and accuracy [12, 31, 32]. But in order to concentrate the
study of the hysteresis phenomenon of the vertical conductor
galloping, a simplified Galerkin procedure is presented by
using a sine series of the antisymmetric in-plane modes as
assumed shape functions [33]; that is, 𝜙

𝑖
(𝑥) = sin(2𝑖𝜋𝑥/𝑙).

And for the sake of decreasing the number of motion
equations and achieving an analytical expression to discuss
the nonlinear behavior of the hysteresis phenomenon, the
first-order discretization is selected. Then the discretized
equation from (11) can be derived as

̈𝑞
1
+ 𝐾𝑞
1
+ 𝐶 ̇𝑞
1
+ 𝑁
1
𝑞
2

1
+ 𝑁
2
𝑞
3

1
+ 𝑁
3
̇𝑞
2

1
+ 𝑁
4
̇𝑞
3

1
= 0, (15)

where

𝐾 =

𝑇
0
𝜋
2

𝑙
2
𝑚

+

512𝑏
2
𝐸𝐴

𝜋
2
𝑙
4
𝑚

,

𝐶 =

𝑐
1

𝑚

, 𝑁
1
=

24𝑏𝜋𝐸𝐴

𝑙
4
𝑚

, 𝑁
2
=

𝜋
4
𝐸𝐴

4𝑙
4
𝑚

,

𝑁
3
=

8𝑑
1

3𝜋𝑚

, 𝑁
4
=

3𝑑
2

4𝑚

.

(16)

From (15), both quadratic and cubic nonlinearities appear in
the displacement and velocity terms.

3. Analytical Solution of
the Galloping Equation

In the work of Vio et al. [13], six common methods were
compared with each other to predict bifurcation and LCO
amplitudes of the transverse galloping for a square section
beam.They found that two methods, higher-order harmonic
balance and numerical continuation, can fully and accurately
characterize the problem. So in this study, the harmonic
balance method is employed to solve (15).

Assume the response solution of (15) is

𝑞
1
(𝑡) =

𝐽

∑

𝑗=1

𝐴
𝑗
+ 𝐵
𝑗
sin 𝑗𝜔𝑡, (17)

where 𝐴
𝑗
and 𝐵

𝑗
are unknown coefficients which are correl-

ative with the static offset and the dynamic amplitude.
Conductor galloping is a low-frequency, high-amplitude

wind induced vibration with a single or a few loops of
standing waves per span. So assuming the galloping performs

a harmonic oscillation, as the initiative approximation the
first term of (17) was used in this study. Substituting (17) into
(15) and omitting the higher harmonic terms, the following
expressions can be derived by making the constant term, the
coefficients of sin𝜔𝑡 and cos𝜔𝑡, respectively, to zero:

𝐵
1
(4𝐶 + 3𝑁

4
𝐵
2

1
𝜔
2
) = 0, (18a)

2𝑁
2
𝐴
3

1
+ 2𝑁
1
𝐴
2

1
+ 2𝐾𝐴

1
+ 3𝑁
2
𝐴
1
𝐵
2

1

+ (𝑁
1
+ 𝑁
3
𝜔
2
) 𝐵
2

1
= 0,

(18b)

𝐵
1
(12𝑁
2
𝐴
2

1
+ 8𝑁
1
𝐴
1
+ 3𝑁
2
𝐵
2

1
+ 4𝐾 − 4𝜔

2
)

= 0.

(18c)

From (18a), the expression of the coefficient 𝐵
1
can be

obtained as

𝐵
1
= 0, or 𝐵

1
=

1

𝜔

√−

4𝐶

3𝑁
4

, (

4𝐶

3𝑁
4

< 0) . (19)

When 𝐵
1
= 0, from (18b), the coefficient 𝐴

1
can be

obtained as

𝐴
1
= 0, or 𝐴

1
=

−𝑁
1
± √𝑁

2

1
− 4𝐾𝑁

2

2𝑁
2

,

(𝑁
2

1
− 4𝐾𝑁

2
≥ 0) .

(20)

When 𝐵
1
= (1/𝜔)√−4𝐶/3𝑁

4
, from (18c), the coefficient

𝐴
1
can be obtained as

𝐴
1
=

𝑁
1
𝑁
4
𝜔
4
− (𝑁
1
𝑁
4
𝐾 + 6𝑁

2
𝑁
3
𝐶)𝜔
2
− 5𝑁
1
𝑁
2
𝐶

−3𝑁
2
𝑁
4
𝜔
4
+ (2𝑁

2

1
𝑁
4
− 6𝑁
2
𝑁
4
𝐾)𝜔
2
+ 15𝑁

2

2
𝐶

.

(21)

Then substituting (19) and (21) into (18b), a higher-order
linear equation about the unknown parameter 𝜔 can be
derived as

𝑓 (𝜔) = 𝑍
1
𝜔
12
+ 𝑍
2
𝜔
10
+ 𝑍
3
𝜔
8
+ 𝑍
4
𝜔
6

+ 𝑍
5
𝜔
4
+ 𝑍
6
𝜔
2
+ 𝑍
7
= 0,

(22)

where 𝑓(𝜔) is a 12th order polynomial expression (only
including even order terms) with respect to 𝜔, 𝑍

1
− 𝑍
7
are

the coefficients, and there are

𝑍
1
= 9𝑁
2

2
𝑁
3

4
,

𝑍
2
= 3𝑁
2
(9𝐾𝑁

2
𝑁
3

4
− 3𝑁
2

1
𝑁
3

4
) ,

𝑍
3
= −81𝐶𝑁

3

2
𝑁
2

4
,



6 Mathematical Problems in Engineering

𝑍
4
= 3𝑁
2

× (−36𝐶𝐾𝑁
1
𝑁
2
𝑁
3
𝑁
2

4
+ 3𝐾
2
𝑁
2

1
𝑁
3

4

+ 6𝐶𝑁
2

1
𝑁
2
𝑁
2

4
− 12𝐾

3
𝑁
2
𝑁
3

4
+ 8𝐶𝑁

3

1
𝑁
3
𝑁
2

4

−18𝐶𝐾𝑁
2

2
𝑁
2

4
− 36𝐶

2
𝑁
2

2
𝑁
2

3
𝑁
4
) ,

𝑍
5
= 3𝑁
2
(45𝐶
2
𝑁
3

2
𝑁
4
+ 72𝐶𝐾

2
𝑁
2

2
𝑁
2

4

−48𝐶𝐾𝑁
2

1
𝑁
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𝑁
2
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1
𝑁
2

4
) ,

𝑍
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2
(−135𝐾𝐶
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𝑁
3
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𝑁
4
+ 45𝐶
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𝑁
2

1
𝑁
2

2
𝑁
4
) ,

𝑍
7
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𝑁
5

2
.

(23)

Solving (22) and considering the engineering practice, the
effective values of 𝜔 are obtained. Returning 𝜔 into (19) and
(21), the values of 𝐴

1
and 𝐵

1
can be also obtained.

4. Analysis for Hysteresis Phenomenon

In this section, without loss of generality, a typical conductor
type ACSR LGJ-400/35 is selected to analyze the hystere-
sis phenomenon in the conductor galloping. And physical
parameters of the line are tabulated in Table 1. The typical
D-shape eccentric ice accretion covered on the conductor is
selected in this study. Figure 2 shows the schematic diagrams
of the iced conductor cross-section. The ice thickness is
chosen to be equal to 15mm shown in Figure 2.

4.1. Instability Regions for Conductor Galloping. Figures 3
and 4 give the quasi-steady, aerodynamic force coefficients
measured in a wind tunnel for the D-shape iced conductor
at the different angle of attack 𝜃. A third-order polynomial
is used to fit the experimental data in the range of −85∘ ≤
𝜃 ≤ 85

∘ and a ninth-order polynomial is also used to fit
in the range of −175∘ ≤ 𝜃 ≤ 175

∘. The fitting interval
by third-order polynomial is less than that by ninth-order
obviously. From the figures, there is a certain discrepancy
between experimental data and the third-order fitting results,
but no significant difference with the ninth-order fit. And the
third-order polynomial cannot capture the data versus whole
angles of attacks.

The instability regions relatively to the angle of attack that
can excite conductor galloping need to be obtained before the
hysteresis phenomenon is studied. According to Lyapunov
stability theory, the occurrence of the unsteady solutions
of (15) should satisfy the condition, 𝐶 < 0, presented in
the literature [1]. Figure 5 presents the different instability
regions of the angle 𝜃 based on third-order and ninth-order
fitting curves shown in Figures 3 and 4. For the D-shape
iced conductor, the angle interval of galloping occurrence
obtained by using third-order fitting curve is only a part of
the results by using ninth-order fitting. The three instability
regions derived from the ninth-order fitting curve are I =

[−130
∘
, −119

∘
], II = [−18

∘
, 18
∘
], and III = [119

∘
, 130
∘
],

in which region I is symmetrical distribution with 0∘. And

Table 1: Physical parameter of the conductor type LGJ-400/35
employed in this analysis.

Parameters Notation Units Data
Elastic modulus 𝐸 GPa 76.5
Diameter of conductor 𝐷 mm 26.82
Horizontal initial tension 𝑇

0
kN 25.92

Span length 𝑙 m 500
Cross-section area 𝐴 mm2 425
Mass of unit length 𝑚 kg/m 1.349
Damping ratio 𝜉 0.004

U
0∘

D

𝜃

15 mm

Figure 2: Schematic diagrams of the D-shape iced conductor.

the only one region obtained by third-order fitting curve is
I = [−18∘, 18∘].

4.2. Influence of the Different Factors on the Hysteresis Phe-
nomenon. It is very known that the hysteresis phenomenon
is characterized by the existence of a solution that can
alternately reach different cycles limits in theory. In this
study, the hysteresis region in the conductor galloping is
analyzed by the solutions of the dynamic amplitude 𝐵

1
versus

the horizontal wind velocity 𝑈 obtained by (18a), (18b),
and (18c). The hysteresis characteristics are also investigated
with respect to different factors such as dynamic angle of
attack, span length, initial tension, and conductor mass. And
two interesting aspects about the point of the hysteresis
phenomenon onset and the size of the hysteresis region are
proposed under the different conditions.

(1) Influence of the Dynamic Angle of Attack. Luo et al. [17]
and Alonso et al. [28] studied the cause of the hysteresis
phenomenon in transverse galloping of the square and
the triangular cross-section bodies, respectively.Their studies
revealed that the cause of the hysteresis phenomenon is
related to the point of inflection that exists in the aero-
dynamic force coefficient curve versus the angle of attack.
And Barrero-Gil et al. [27] later proved that the hysteresis
phenomenon is related to the number of inflection points.

From Figure 4, three inflection points can be observed
using the ninth-order fitting curve, which are evenly dis-
tributed in the three instability ranges. And one inflection
point is found from the third-order fitting curve in its
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Figure 4: Lift coefficients of the D-shape iced conductor.

only one instability range. Then hysteresis characteristics
in the conductor galloping are obtained in each instability
range based on the physical parameters presented in Table 1.
Figure 6 shows the amplitude 𝐵

1
versus the horizontal wind

velocity 𝑈 with several typical angles of attack in the insta-
bility interval I. From Figure 6, we can see that the hysteresis
characteristic presents a symmetric distribution based on the
middle of the instability range. At the two ends of the angle
interval, 𝜃 = −130

∘ and 𝜃 = 119
∘, the velocities of the

hysteresis phenomenon occurrence are much higher than
in the middle of the interval and the sizes of the hysteresis
regions are also broader than in the middle. In addition, the
critical velocity to excite hysteresis phenomenon is very high
in comparison with the point of galloping instability. From
the results of this example, the critical wind velocities to excite
hysteresis phenomenon are all greater than 40m/s. So under
the actual engineering conditions, it is difficult to achieve for
the hysteresis phenomenon.

I II III

3rd order fitting/D-shape
9th order fitting/D-shape

I

−100−150 −50 0 50 100 150
Angle of attack , 𝜃 (deg)

Figure 5: Instability regions for the D-shape iced conductor based
on the third-order and ninth-order fitting curves of the aerodynamic
force coefficients.
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Figure 6: Amplitude 𝐵
1
versus horizontal wind velocity 𝑈 in the

instability range I using the ninth-order polynomial.

Figure 7 shows the amplitude 𝐵
1
versus the horizontal

wind velocity 𝑈 with several typical angles of attack in
the instability interval II. From Figure 7, at the two ends of
the angle interval, 𝜃 = −18∘ and 𝜃 = 18∘, the velocities of the
hysteresis phenomenon occurrence are much higher than in
the middle of the interval. The velocities to excite hysteresis
phenomenon are lower than in the angle interval I except the
ends of the interval.Therefore it is easy to excite the hysteresis
phenomenon in this angle interval.

Figure 8 shows the amplitude 𝐵
1
versus the horizontal

wind velocity 𝑈 with several typical angles of attack in the
instability interval III. Table 2 gives the size of the hysteresis
regionwith respect to different angles of attack. FromTable 2,
the hysteresis phenomenon obtained in this interval is similar
to the characteristics in the interval I presented in Figure 5.
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Table 2: The size of the hysteresis region with different angles of attack.

Ninth-order fitting curve Third-order fitting curve
Angle interval I Angle interval II Angle interval III Angle interval I

Angle (∘) Hysteresis range
(U, m/s2) Angle (∘) Hysteresis range

(U, m/s2) Angle (∘) Hysteresis range
(U, m/s2) Angle (∘) Hysteresis range

(U, m/s2)
−130 (87.1, 97.9) −18 (43.5, 47.9) 119 (73.9, 86.7) −18 (39.5, 45.5)

−127 (54.3, 63.9) −12 (21.1, 23.9) 123 (45.9, 55.9) −12 (21.5, 25.1)

−124 (46.7, 56.7) 0 (15.1, 17.9) 125 (43.1, 53.5) 0 (15.9, 19.1)

−119 (65.1, 81.5) 12 (15.9, 19.5) 130 (59.5, 75.9) 12 (18.7, 22.7)

18 (31.1, 39.5) 18 (33.1, 40.7)
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Figure 7: Amplitude 𝐵
1
versus horizontal wind velocity in the

instability range II using the ninth-order polynomial.

Figure 9 shows the hysteresis phenomenon by using
third-order aerodynamic force fitting curve with several
typical angles of attack in the interval I presented in Figure 5.
This angle interval I is the same of the angle interval II
obtained by ninth-order fitting curve shown in Figure 5.
From Table 2, the hysteresis region obtained by using the
third-order fitting curve is consistent with the result in the
same angle of attack from the ninth-order fitting curve.

(2) Influence of the Span Length. In actual engineering
structures of overhead transmission lines, the span length
has a wide selection range from 100m to 1200m, and the
common range is from 300m to 700m. Select the physical
parameters presented in Table 1. Without loss of generality,
select ninth-order fitting curve and 𝜃 = 0

∘ presented in
Figures 3 and 4 as a typical example.

The effects of span lengths to the hysteresis phenomenon
in the conductor galloping are shown in Figure 10. From
Figure 10 we can see that when 𝐿 < 440m, there is no
hysteresis phenomenon occurrence on the process of the
conductor galloping. And after the hysteresis phenomenon
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𝜃 = 119∘

𝜃 = 123∘
𝜃 = 125∘

𝜃 = 130∘

Figure 8: Amplitude 𝐵
1
versus horizontal wind velocity in the

instability range III using the ninth-order polynomial.

appears when 𝐿 = 440m, the horizontal wind velocity of
the hysteresis onset point increases with the much larger
span length, and the hysteresis range makes much wider
with the increase of the span length. And in the same wind
velocity, before the occurrence of hysteresis phenomenon,
the conductor galloping amplitude decreases as the span
length increases and the difference is not obvious. But the
amplitude jumps abruptly over the hysteresis range and
increases obviously as the span length increases.

In addition, when the span length reaches 590m, a
more complex nonlinear vibration phenomenon is excited
in the conductor galloping. In the low wind velocity, a sec-
ondary bifurcation is presented with an arch-shaped curve.
It is likely to be a trend to the chaos. And with the increase of
span length this phenomenon is more obvious.

(3) Influence of the Initial Tension. Figure 11 shows the ampli-
tude 𝐵

1
versus the horizontal wind velocity 𝑈 with different

initial tensions. The span length is 500m and the angle of
attack is 0∘. Other parameters are shown in Table 1. From
Figure 11 we can see that the hysteresis phenomenon will
be excited with the decrease of the initial tension. And
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instability range I using the third-order polynomial.

when 𝑇
0
= 28 kN, the hysteresis phenomenon starts to

occur in the conductor galloping.The hysteresis range which
is characterized by the horizontal wind velocity increases
obviously as the initial tension decreases. And in the same
wind velocity, before the hysteresis phenomenon occurrence,
the conductor galloping amplitude increases as the initial
tension increases. But the amplitude jumps abruptly over
the hysteresis range and increases obviously as the initial
tension decreases. Therefore, it is an approach to control the
conductor galloping by selecting a proper initial tension of
the transmission line.

In this example, as the initial tension reaches 23 kN, a
more complex vibration bifurcation phenomenon is excited
in the conductor galloping from Figure 11. It also presents a
secondary bifurcation phenomenon. And with the decrease
of initial tension, this phenomenon is more obvious.

(4) Influence of the Conductor Mass. Figure 12 shows the
amplitude 𝐵

1
versus the horizontal wind velocity 𝑈 with

different conductor masses. The span length is 500m. The
angle of attack is 0∘ and the initial tension is 25.9 kN. Other
parameters are shown in Table 1. It should be pointed out that
the different masses represent the different conductor types.

From Figure 12 we can see that the hysteresis phe-
nomenon will be excited with the increase of the conductor
mass. And when 𝑚 = 1.2 kg/m, the hysteresis phenomenon
starts to occur in the conductor galloping. The hysteresis
range which is characterized by the horizontal wind velocity
increases obviously as the conductor mass increases. And in
the same wind velocity, before the occurrence of hysteresis
phenomenon, the conductor galloping amplitude decreases
as the conductor mass increases. The amplitude jumps
abruptly over the hysteresis range and increases obviously as
the conductor mass increases. As the conductor mass equals
1.6 kg/m, a more complex vibration bifurcation phenomenon
is excited in the conductor galloping from Figure 12. It also
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Figure 10: Amplitude 𝐵
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Figure 11: Amplitude 𝐵
1
versus horizontal wind velocity with

different initial tensions.

presents a secondary bifurcation phenomenon. And with the
increase of mass, this phenomenon is more obvious.

5. Conclusions

In this paper, the hysteresis phenomenon in the iced conduc-
tor galloping is studied.The analysis is based on a continuum
model of the D-shape iced conductor derived by Hamilton
principle, in which the initial deformation, the geometric
nonlinearity caused by the large deformation, and the aerody-
namic nonlinearity are considered. The aerodynamic forces
are described by using the quasi-steady hypothesis, where
the aerodynamic coefficients are expanded by the polynomial
curves with a third order and a ninth order, respectively.
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The hysteresis characteristics are obtained by solving the
approximate solutions of the Galerkin discretized equation
derived from the continuummodel bymeans of the harmonic
balance method. And the influences of the different factors
are proposed in different galloping instability intervals.

For the aerodynamic force coefficient curves of the D-
shape iced conductor, the fitting interval by the third-order
polynomial is less than by the ninth order obviously. The
angle interval of galloping occurrence obtained by the third-
order fitting curve is only a part of the results by the ninth-
order fitting. There are three galloping instability regions
derived from the ninth-order fitting curve and there is only
one instability region from the third-order fitting curve.
Three inflection points are obtained from the ninth-order
fitting curve, which are evenly distributed in the three
instability ranges. And one inflection point is found from the
third-order fitting curve in its only one instability range.

Hysteresis characteristics in the conductor galloping are
obtained in each instability range. For the three instability
intervals from the ninth-order fitting curve, the velocities
of the hysteresis phenomenon occurrence at the two ends
of the instability angle interval are much higher than in the
middle. Velocities to excite hysteresis phenomenon in the
angle interval II are much lower than in the angle intervals
I and III expect the ends of the intervals. So under the
actual engineering conditions, it is difficult to achieve for
the hysteresis phenomenon in the intervals I and III, but easy
in the interval II.

The horizontal wind velocity of the hysteresis onset
point increases with the much larger span length, and the
hysteresis range makes much wider with the increase of
the span length. The hysteresis phenomenon will be excited
with the decrease of the initial tension, and the hysteresis
range which is characterized by the horizontal wind velocity
increases obviously as the initial tension decreases. And
the hysteresis phenomenon will be excited with the increase

of the conductor mass and the hysteresis range increases
obviously as the conductor mass increases.

Finally it should be pointed out that only the vertical
vibration is considered in order to discuss the hysteresis
phenomenon in this study. The torsional motion and the
horizontal motion can also have important effects in relation
to aerodynamicmechanisms that causes galloping, whichwill
be presented and discussed in our subsequent studies.
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