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Abstract In the present paper Q-ball solutions in the Wick–
Cutkosky model are examined in detail. A remarkable feature
of the Wick–Cutkosky model is that it admits analytical treat-
ment for the most part of the analysis of Q-balls, which allows
one to use this simple model to demonstrate some peculiar
properties of Q-balls. In particular, a method for estimating
the binding energy of a Q-ball is proposed. This method is
tested on the Wick–Cutkosky model taking into account the
well-known results obtained for this model earlier.

1 Introduction

Non-topological solitons in the scalar field theory, which
were initially proposed in [1] and now are known as Q-balls
[2], are widely discussed in the literature. However, among
the variety of models providing Q-ball-type solutions, only a
few of them admit of analytical treatment in four-dimensional
space-time, at least for examining their main properties such
as the energy–charge dependencies. The existence of analyt-
ical solutions simplifies the analysis considerably and allows
one to perform a deeper study of the Q-ball properties. For
such exceptions, one can recall the model with a very sim-
ple polynomial potential proposed in [3], where the energy–
charge dependence can be obtained analytically, as well as
the models of [4–7] providing exact analytical solutions for
Q-balls (the logarithmic scalar field potential of [4] makes it
possible to examine analytically even the linear perturbations
above the Q-ball solution; see [8]).

All the models mentioned above deal with a single com-
plex scalar field. Meanwhile, there is another class of models,
namely, with two different scalar fields (the complex one and
the real one), which also admit the existence of Q-ball-like
solutions. The best-known example of this type was proposed

a e-mail: emin@ms2.inr.ac.ru
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in [9], in which only an approximate analytical Q-ball solu-
tion1 can be obtained (using the trial functions), thus being
demanding for numerical calculations. A simplification of
this model by neglecting the potential of the real scalar field
was performed in [10]. Q-ball solutions in such a theory have
a rather interesting property – they possess a (non-conserved)
“scalar charge”, which characterizes the long-range attrac-
tion between such Q-balls. However, exact analytical formu-
las for the energy–charge dependence cannot be obtained in
this case too.

In the present paper we consider an even more simpli-
fied two-field model. Instead of the quartic interaction of the
scalar fields in [10], we consider the triple Yukawa interaction
between the scalar fields, resulting in the well-known Wick–
Cutkosky model [11,12]. Surprisingly, most of the analysis
in this model can be performed analytically. In particular,
the exact form of the corresponding energy–charge depen-
dence can be obtained analytically (which simplifies the use
of the well-known stability criteria), whereas the numerical
solution is necessary only for obtaining the value of some
universal dimensionless parameter (from this point of view
the model is similar to the one-field model of [3]).

Q-balls are classical objects, but it is clear that they can be
considered as bound states of scalar particles of the theory.
However, it is not clear how to perform a consistent analysis
for the case in which such a bound state consists of a large
number of particles, which is exactly the case of a Q-ball.
Indeed, even the problem of two bound scalar particles in the
Wick–Cutkosky model is not trivial, though it can be solved
analytically (see, for example, review [13]). In the present
paper we will propose a simple method that will allow one at
least to roughly estimate the binding energy of a Q-ball. This
method can be applied to Q-balls in different models, but we
will test it on Q-balls of the Wick–Cutkosky model. For such

1 Although solutions in two-field models like the one of [9] are not
Q-balls in the sense of Coleman’s definition of Q-balls [2], they are of
the same kind, so from now on we call such soliton solutions “Q-balls”.
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an analysis the Wick–Cutkosky model is unique – on the one
hand, there exist Q-ball solutions in this model; on the other
hand, the Bethe–Salpeter equation describing the bound state
of two massive scalar particles can be solved analytically
in the Wick–Cutkosky model. The latter will allow one to
compare the results obtained with the help of the methods of
classical and quantum field theories.

2 Setup and equations of motion

Let us start with the action of the Wick–Cutkosky model,
describing the complex scalar field χ interacting with the
real massless scalar field φ in the flat four-dimensional space-
time with the coordinates xμ = {t, x}, μ = 0, 1, 2, 3; in the
form

S =
∫ (

∂μχ∗∂μχ + 1

2
∂μφ∂μφ − hφχ∗χ

)
d4x, (1)

where h �= 0 is the coupling constant of the scalar Yukawa
interaction.

Classical vacua of the theory correspond to the stationary
points of the potential

V (φ, χ) = hφχ∗χ. (2)

The corresponding vacuum solutions are just χ ≡ 0 and
φ = φ0 ≡ const, i.e., there is a flat direction along the real
field. Now let us consider the quadratic part of action (1) for
the fluctuations χ(t, x), φ(t, x) = φ0 + ρ(t, x) above the
vacuum solution. We get

S(2) =
∫ (

∂μχ∗∂μχ + 1

2
∂μρ∂μρ − hφ0χ

∗χ
)

d4x, (3)

We see that for hφ0 < 0 the effective mass m = √
hφ0 of

the field χ is imaginary, leading to tachyonic instability. For
hφ0 > 0 the corresponding mass term has the proper sign
and one expects that such vacua are stable. As for the case
φ0 = 0, it is possible to show analytically that there are no Q-
ball-type solutions for hφ0 ≤ 0 (this topic will be discussed
below). For these reasons, below we will consider only the
case hφ0 > 0.

The fact that globally the scalar field potential is not
bounded from below is not dangerous – the vacuum solution
is classically stable for hφ0 > 0.2 As for the flat direction,
its existence is also not dangerous. Indeed, let us consider a
scalar field (not interacting with gauge fields) with the stan-
dard “Mexican hat”-type potential. There is a class of vac-
uum solutions, all of them having the same zero energy –

2 Moreover, it will be shown below that the scalar field potential can be
modified to become bounded from below while keeping in the theory
the most interesting Q-ball solutions.

there exists a flat direction. But the existence of the massless
Goldstone bosons does not indicate any instability of such a
vacuum, because an infinite energy is necessary to change the
vacuum solution of the scalar field in the whole space [14].
Our case is exactly the same – it is also necessary to have an
infinite energy to change the vacuum solution with hφ0 > 0
in the whole space, whereas it is the corresponding massless
mode that provides the attraction force forming Q-balls in
the Wick–Cutkosky model.

The equations of motion, following from the action (1),
take the form

�χ + hφχ = 0, (4)

�φ + hχ∗χ = 0. (5)

In the following, we will be looking for stationary spherically
symmetric solutions without nodes, which take the form

χ(t, x) = eiωt f (r), (6)

φ(t, x) = φ(r) (7)

with ∂r f |r=0 = 0, limr→∞ f (r) = 0, ∂rφ|r=0 = 0,
limr→∞ φ(r) = φ0, where r = √

x2 and ω is real.
For convenience, from the very beginning it is useful to

represent the field φ as

φ = φ0 + φ̃ (8)

and to consider the system of equations

− ω2 f − � f + m2 f + hφ̃ f = 0, (9)

−�φ̃ + h f 2 = 0, (10)

with m2 = hφ0 > 0 and

∂r f |r=0 = 0, lim
r→∞ f (r) = 0, (11)

∂r φ̃|r=0 = 0, lim
r→∞ φ̃(r) = 0. (12)

Equations (9) and (10) follow from the action of the Wick–
Cutkosky model in its common form in which the mass term
of one of the scalar fields exists from the very beginning. In
principle, the shift (8) can be considered just as a redefini-
tion of the field φ without any reference to vacuum, in this
case one should consider the theory with the vacuum solution
φ̃ ≡ 0.

In order to ensure that the field f (r) falls off exponentially
for r → ∞, providing the finiteness of the Q-ball charge
and energy, the frequency ω should be bounded as |ω| < m
(moreover, it is not difficult to show that there are no Q-ball
solutions for ω2 − m2 ≥ 0, including the case m2 ≤ 0;
see Appendix A). From the structure of these equations we
expect that φ̃(r) ∼ 1

r for large r . We see that in the physically
reasonable cases (i.e., in the cases with stable vacua) this
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system describes a massive charged scalar field in the long-
range attractive potential provided by the field φ.3

3 Q-ball solution and its properties

Suppose that there exists a Q-ball solution to the system of
equations (9) and (10), satisfying the boundary conditions
(11) and (12). In this case, the U (1) global charge of the
Q-ball can be defined as

Q = i
∫

(χ∂0χ
∗ − χ∗∂0χ)d3x

= 4π

∞∫

0

2ω f 2r2dr, (13)

whereas the Q-ball energy takes the form

E = 4π

∞∫

0

(
ω2 f 2 + ∂r f ∂r f + m2 f 2 + h f 2φ̃

+1

2
∂r φ̃∂r φ̃

)
r2dr. (14)

Using the equations of motion for the fields, it is not diffi-
cult to show that the Q-ball solution possesses the following
properties:

E = ωQ + 2π

∞∫

0

(∂r φ̃)2r2dr > ωQ, (15)

dE

dQ
= ω; (16)

see also Appendix B for details. The latter relation is well
known for the one-field Q-balls.

The system of equations (9) and (10) can be brought into
dimensionless form by means of the transformations

R = r
√
m2 − ω2, F(R) = h

m2 − ω2 f (r),

G(R) = h

m2 − ω2 φ̃(r), (17)

resulting in

− �RF + F + FG = 0, (18)

− �RG + F2 = 0, (19)

3 The Schrödinger–Poisson systems, which appear, for example, when
one considers the Newtonian limit for boson stars made of scalar fields
[15–17], also provide equations of motion very similar to Eqs. (9) and
(10). But though the equations of motion in different models look similar
from the mathematical point of view, the physical essence of different
theories is completely different, starting from the origin of the coupling
between the fields and ending with the definition of important physical
characteristics of the solutions.

with the boundary conditions

∂RF |R=0 = 0, lim
R→∞ F(R) = 0,

∂RG|R=0 = 0, lim
R→∞G(R) = 0. (20)

Without loss of generality, we suppose that F(R) > 0 for
any R.

In Fig. 1 the explicit numerical solution to Eqs. (18), (19)
with (20) is presented (see Appendix C for the details of the
numerical analysis). In fact, this numerical solution is neces-
sary only for the visualization of the Q-ball – all the important
characteristics of the Q-ball can be obtained either analyti-
cally or with the help of the auxiliary numerical solution
presented in Appendix C. The form of the solution implies
that in general the thin-wall approximation cannot be used
for describing solutions for the complex scalar field. Since
the system of equations (18), (19) with (20) is devoid of
the parameters φ0, h, and ω, the dimensionless solution pre-
sented in Fig. 1 can be used to restore the actual solution for
the scalar fields χ , φ for any physically reasonable choice of
the coupling constant h, the vacuum expectation value φ0,
and the frequency ω.

We note that very often Q-ball solutions are obtained by
minimization of the energy at a fixed charge. This procedure
is fully equivalent to solving the corresponding equations of
motion [2,9].

For the charge and the energy of the Q-ball we get

Q = 2ω
√
m2 − ω2

h2 I, E = ωQ + (m2 − ω2)
3
2

h2 J, (21)

where

I = 4π

∞∫

0

F2R2dR, J = 2π

∞∫

0

(∂RG)2R2dR. (22)

Using (16), it is easy to show that J = 2
3 I , leading to

Q = I

h2 2 ω
√
m2 − ω2, (23)

E = I

h2

√
m2 − ω2

(
4

3
ω2 + 2

3
m2

)
. (24)

In Fig. 2 the E(Q) dependence, corresponding to (23),
(24), is presented.

The parameter I can be found numerically and turns out
to be I ≈ 44.05 (see Appendix C for details). The cusps in
Fig. 2, corresponding to the points with dQ

dω
= 0 (at ω =

− m√
2

and ω = m√
2

), are a direct consequence of Eq. (16).

The form of the E(Q) dependence shows that there exist
solutions with the maximal and minimal charges Qmax =
−Qmin = Im2

h2 , both possessing maximal energy Emax =
2
√

2 Im3

3h2 . It should be mentioned that an analogous form of
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Fig. 1 Numerical solution for
the functions F(R) and G(R)
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Fig. 2 E(Q) dependence for Q-balls

the E(Q) dependence for Q-balls appears in the model of [4],
describing a single complex scalar field with the logarithmic
scalar field potential, see [8]. However, contrary to the case of
the Wick–Cutkosky model, in the model of [4] the complex
scalar field formally has an infinite mass.

From (23) and (24) it is not difficult to obtain explicit for-
mulas for this E(Q) dependence: the upper branch in Fig. 2
is described by

E =
√

2 I

3 h2

⎛
⎝2m2 −

√
m4 − Q2h4

I 2

⎞
⎠

×

√√√√
m2 +

√
m4 − Q2h4

I 2 , (25)

whereas the lower branches are described by

E =
√

2 I

3 h2

⎛
⎝2m2 +

√
m4 − Q2h4

I 2

⎞
⎠

×

√√√√
m2 −

√
m4 − Q2h4

I 2 . (26)

Let us briefly discuss the stability of the obtained solu-
tions. First, the stability criterion proposed in [9,18] implies
that solutions on the lower branches of the E(Q) dependence
in Fig. 2 are classically stable, i.e., stable with respect to small
perturbations of the fields. Indeed, for these solutions the rela-
tion dQ

dω
< 0, which is one of the conditions necessary for the

classical stability of such a two-field model [9], holds. Sec-
ond, since d2E/dQ2 < 0 for the lower branches in Fig. 2, the
Q-balls, corresponding to these solutions, are stable against
fission (a simple justification of this fact in the general case
can be found in [7]). And third, it is not difficult to check
that the lower branches of the E(Q) dependence in Fig. 2
lie below the lines E = m|Q|, standing for free particles of
massm. The latter means that Q-balls, corresponding to these
branches, are also quantum mechanically stable, i.e., stable
with respect to decay into free scalar particles of mass m (of
course, the statement about the quantum mechanical stabil-
ity is valid if there are no interactions with other particles in
the theory under consideration). Thus, Q-ball solutions from
the lower branches of the E(Q) dependence in Fig. 2 can be
thought of as absolutely stable.

There exists a classically unstable time-independent solu-
tion with ω = 0 (and, consequently, Q = 0) with nonzero
finite energy. Such solutions are usually called “sphalerons”
and can play an interesting role in quantum theory [14,19].

In this connection it is interesting to check whether the
values of the initial scalar field φ (not φ̃!) in the Q-ball are
such that hφ becomes negative at least for some r , which
corresponds to the area of unstable vacua in the scalar field
potential. The smallest value of hφ is attained at r = 0, so we
will consider hφ(0). Using (8), (17) and the results presented
in Appendix C, we get

hφ(0) = hφ0

(
1 − C

(
1 − ω2

m2

))
, (27)

where we have used the fact that hφ0 = m2. HereC ≈ 1.938;
see Appendix C. It is easy to find that hφ(0) ≥ 0 (and, conse-

quently, hφ(r) ≥ 0 for any r ) for |ω| ≥ m
√

C−1
C ≈ 0.696·m.

We see that Q-balls from the lower (“stable”) branches (i.e.,
Q-balls with m > |ω| ≥ m√

2
≈ 0.707 ·m) and from the small

parts of the upper (“unstable”) branch reside in the area of the
scalar field potential (2) which corresponds to stable vacua,
i.e., V (φ, χ) > 0 for these Q-balls. This also indicates that
there is no direct and simple connection between the val-
ues of the Q-ball scalar fields, the form of the scalar field
potential, and the Q-ball stability, as noted in [21]. As for
the rest of the Q-balls (for which hφ(0) < 0), some parts
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of such Q-balls reside in the area of the scalar field poten-
tial for which V (φ, χ) < 0 holds, corresponding to unstable
vacua. An interesting observation is that all Q-ball solutions
with hφ(r) > 0 for any r (which includes all Q-balls from
the lower branches) can be reproduced in a theory with the
scalar field potential

V (φ, χ) = h|φ|χ∗χ, (28)

where h > 0, which is bounded from below.
Now let us compare the Wick–Cutkosky model with the

model proposed and examined in [10] (as noted in the Intro-
duction, the latter is a simplification of the two-field model of
[9]). First, for Q-ball solutions in both models the real scalar
field behaves as ∼ 1

r at large r , so different Q-balls undergo
long-range Coulomb attraction between each other regard-
less of the sign of theirU (1) global charges. As noted in [10],
one can say that Q-balls possess a (non-conserved) “scalar
charge”, which characterizes the strength of this long-range
attraction. It will be defined explicitly in the next section.

Second, there is no sphaleron solution in the model of
[10]. Indeed, according to the Derrick theorem [20], there
are no time-independent localized solutions in a theory with
nonnegative scalar field potential, which is exactly the case
of [10].

Finally, it is possible to show that, for M − |ω| � M ,
where M is the mass of the free charged scalar particle (M =
m = √

hφ0 in the Wick–Cutkosky model), both models have
almost the same E(Q) dependencies such that Q → 0, E →
0 for |ω| → M ; see Appendix D for details. However, in the
Wick–Cutkosky model the Q-ball energy is bounded from
above, whereas in the model of [10] the charge and the energy
go to infinity for ω → 0 such that E ∼ √|Q| for large |Q|.
The latter implies that all Q-balls in the model of [10] can
be absolutely stable (because dQ

dω
< 0 and E < M |Q|),

whereas in our case there may exist absolutely stable and
unstable Q-balls.

4 Q-ball as a bound state of scalar particles

As noted in Sect. 1, Q-balls can be considered as bound states
of scalar particles of the theory. In order to calculate the
binding energy of a Q-ball, it is necessary to know the number
of scalar particles forming the Q-ball. In this case the binding
energy ε is simply

ε = Nm − E, (29)

where N is the number of scalar particles in the Q-ball, E is
the Q-ball energy and m is the mass of the free scalar particle
of the theory. An obvious problem is to estimate the number
of particles N .

Indeed, Q-balls are formed not only from particles, but
also from anti-particles, i.e., it is a bound state of particles and
anti-particles (it is obvious for sphalerons – solutions with
Q = 0 and E �= 0). In quantum field theory the operator of
charge Q̂ gives

〈N+, N−|Q̂|N+, N−〉 = N+ − N−, (30)

where |N+, N−〉 defines the state with N+ particles and N−
anti-particles, whereas we need N = N+ + N−. However, it
was shown in [10] that there exists a “scalar charge”, which
characterizes the strength of the long-range attraction of Q-
balls in the model of [10] regardless of the sign of their
global charges. The latter suggests that in the general case
this “scalar charge” can be somehow connected with the total
number of particles in a Q-ball.

In order to examine such a possibility, let us define the
scalar charge as

QSC = 2m
∫

χ∗χ d3x . (31)

It is clear that this charge is non-conserved in general. But
for Q-balls at rest we get

QSC = 8πm

∞∫

0

f 2r2dr, (32)

which obviously is conserved in time. It is not difficult to
check that for the non-relativistic particles, i.e., for k0 −m �
m, the following relation holds in quantum field theory:

〈N+, N−|Q̂SC |N+, N−〉 ≈ N+ + N−, (33)

where Q̂SC = 2m : ∫
χ∗χ d3x :, which is exactly what

we need. So, we can assume that in a Q-ball N ≈ QSC . Of
course, this estimate can be used for N � 1.

Now, under the assumption that the most of scalar particles
in the Q-ball are non-relativistic, with the help of (32) we can
estimate the binding energy of any Q-ball. For example, for
the Q-balls in the Wick–Cutkosky model we get from (32)
and (29)

QSC (ω) = 2m
√
m2 − ω2

h2 I, (34)

ε(ω) = 4I

3h2 (m2 − ω2)
3
2 > 0. (35)

The corresponding ε(Q) dependence is presented in Fig. 3.
It is also illustrative to consider the contributions of par-

ticles and anti-particles to the total charge Q:

Q+ = N+ ≈ Q + QSC

2
, Q− = −N− ≈ Q − QSC

2
.

(36)
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Fig. 3 ε(Q) dependence for Q-balls in the Wick–Cutkosky model
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for Q-balls in the Wick–Cutkosky model

For the Q-balls in the Wick–Cutkosky model the correspond-
ing plots are presented in Fig. 4.

Several comments are in order here. As noted above, in the
scalar field theory there are no conserved charges giving N ,
N+ or N−, so we cannot define the quantities N , N+ or N−
in a completely rigorous way. However, at the classical level
(when N is supposed to be very large) we may assume that we
have approximately N particles in a Q-ball – since there are
no corresponding conserved charges, the “actual” numbers
of particles and anti-particles can vary in time accounting
for virtual processes of creation, annihilation, etc. inside a
Q-ball. Meanwhile, the mean values N+ and N− can have
the following meaning – if we add the energy ε to the Q-ball,
we expect that it can disassemble into approximately N+
free particles and N− free anti-particles (i.e., it is the binding
energy of the whole Q-ball). It is the scalar charge QSC that
determines how Q-balls in the Wick–Cutkosky model (as
well as in the model of [10]) interact with each other by means
of the field φ̃. The field φ̃ is also responsible for forming a Q-
ball from the quanta of the field χ , so the choice of QSC for
determining the approximate number of particles and anti-
particles makes sense. Although this choice is motivated by
the properties of the Wick–Cutkosky model and the model of

[10], we think that this approach can be used in the general
case too.

It is clear that unstable Q-balls cannot decay into N =
N+ + N− particles, it is energetically forbidden. A Q-ball
of charge Q may decay into Ñ particles and/or anti-particles
(with |Q| ≤ Ñ < N ) plus quanta of the field φ̃. For example,
a possible decay channel of sphalerons is the decay only into
quanta of the massless field φ̃. The latter is similar to the
case of, say, positronium – its mass is a few eV , less than
twice the electron mass, and it decays only into photons.
Thus, the description of a Q-ball as a collection of, say, |Q|
particles or anti-particles is inappropriate – it obviously fails
for sphalerons with Q = 0, E �= 0.

Now let us look at this problem from another point of
view. Suppose that we have a Q-ball with, say, charge Q > 0
and we add a single particle of mass m (and charge +1) to
it. If Q � 1 (i.e., if Im2

h2 � 1), then, according to (16),
we get the Q-ball of charge Q + 1 and with the energy
E(Q + 1) ≈ E(Q) + ω (here ω is similar to the chem-
ical potential in thermodynamics). It is clear that in order
to release a particle from this Q-ball, we should add the
energy m − ω to the Q-ball.4 For the anti-particle, the cor-
responding “chemical potential” is −ω, whereas the “ion-
ization” energy is m + ω. One may think that by adding
a particle to a Q-ball, we just increase the corresponding
number N+ by unity. It is not so in general. For example,
for ω = m

2 , using (23), (34) and (36) we get �N+ ≈
0, �N− ≈ −1. In this case the interpretation is clear
– namely, the incoming particle annihilate with an anti-
particle inside the Q-ball. However, for ω = 0, we get
�N+ ≈ 1

2 , �N− ≈ − 1
2 , which has no such a clear inter-

pretation. For ω → m we get �N+ ≈ 1, �N− ≈ 0.
These examples indicate that the numbers N+, N−, which
are specific to each Q-ball, should be considered only as
approximate values for estimates. Namely, if we increase
the charge of a Q-ball by a finite value �Q > 0, the
values �N+ = N+(Q + �Q) − N+(Q) and �N− =
N−(Q + �Q) − N−(Q) indicate, of course approximately,
how many of the incoming particles are absorbed by the Q-
ball and how many anti-particles inside the Q-ball are anni-
hilated by the incoming particles. A fully analogous consid-
erations can be made for �Q < 0, i.e., for the incoming
anti-particles.

Finally, let us compare the Q-ball binding energy, obtained
using the procedure presented in this section, with the energy
of the bound state coming from the solution to the Bethe–
Salpeter equation for Q = 2, h2

Im2 � 1. For the compar-
ison, one should take Q-balls from the lower branches of
Fig. 2, for which N ≈ 2. Of course, Q-ball is a classical
object and the use of our classical solution is not justified

4 When we add a particle to the Q-ball, the remaining energy m − ω

should be radiated out, say, by the field φ.
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for such small values of Q and E . However, an analogous
comparison of the energy of a small Q-ball in the Min-
imal Supersymmetric Standard Model with the energy of
the two-particle bound state in the Wick–Cutkosky model,
which was performed in [22], revealed a good qualitative
agreement. Here we have the Q-ball solution in the Wick–
Cutkosky model, so such a comparison can be even more
illustrative.

The energy of the bound state in the Wick–Cutkosky
model in the leading order in h4

m4 takes the form

EBS = m

(
2 −

(
h2

16πm2

)2
1

4n2

)
, (37)

where n = 1, 2, 3, . . .; see, for example, [23,24]. As for the
Q-balls, since the use of classical solutions is not justified
for such small values of Q and it is not clear what quantity
should exactly correspond to EBS , we will take both (26) and
(35). Thus, in the leading order in h4

m4 and for Q = 2 we get
from (26) and (23), (35)

E ≈ m

(
2 − h4

3I 2m4

)
, (38)

ε ≈ m
4h4

3I 2m4 . (39)

Using I ≈ 44.05 and with n = 1 in (37), we obtain

2m − EBS ≈ h4

m3 9.9 × 10−5, (40)

2m − E ≈ h4

m3 1.7 × 10−4, (41)

ε ≈ h4

m3 6.9 × 10−4. (42)

Surprisingly, the agreement is very good taking into account
the use of a classical solution for describing purely quantum
effects. This implies that, for N � 1, for which the use of
classical Q-ball solutions is justified, the method presented
above indeed can give a result somewhat close to the real
binding energy and it can be used at least for rough estimates.
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Appendix A: The absence of Q-balls for ω2 − m2 ≥ 0

According to (6)–(8), we can use the effective action

Sef f =
∫ (

(ω2 − m2) f 2 − ∂i f ∂i f

−1

2
∂i φ̃∂i φ̃ − hφ̃ f 2

)
d3x, (43)

where i = 1, 2, 3, instead of the initial action. Suppose that
there exists a Q-ball solution f (x), φ̃(x). Let us apply the
scale transformation f (x) → fλ(x) = λ f (λx), φ̃(x) →
φ̃λ(x) = λφ̃(λx) to this solution and substitute the result
into the effective action (43) instead of the original solution
(in fact, it is just a generalization of the technique which was
used in [20] to show the absence of time-independent soliton
solutions in some nonlinear scalar field theories). We get

Sλ
eff =

∫
d3y

1

λ3

(
λ2(ω2 − m2) f 2(y)

−λ4 ∂ f (y)
∂yi

∂ f (y)
∂yi

− λ4 1

2

∂φ̃(y)
∂yi

∂φ̃(y)
∂yi

−λ3hφ̃(y) f 2(y)
)

, (44)

where we have passed to the new coordinates y = λx.
According to the principle of least action

Sλ
eff

dλ

∣∣∣∣
λ=1

= 0, (45)

which results in

(ω2 − m2)

∫
f 2 d3x +

∫
∂i f ∂i f d3x

+1

2

∫
∂i φ̃∂i φ̃ d3x = 0. (46)

It is clear that if ω2 − m2 ≥ 0 (which includes the case
m2 = hφ0 ≤ 0), then the only solution to (46) is

f (x) ≡ 0, (47)

φ̃(x) ≡ 0. (48)

Appendix B: The relation dE
dQ = ω

It is reasonable to suppose that the only parameter, which
characterizes the charge and the energy of the Q-ball, is ω.
Thus, differentiating (14) with respect to ω, we get

dE

dω
= 4π

∫ (
2ω f 2 + 2ω2 f

d f

dω
+ 2∂r f ∂r

d f

dω

+ 2m2 f
d f

dω
+ 2h f

d f

dω
φ̃ + h f 2 dφ̃

dω
+ ∂r φ̃∂r

dφ̃

dω

)
r2dr.
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Integrating by parts the terms with derivatives in the latter
formula (since it is supposed that φ̃(r) ∼ 1

r for r → ∞ and

consequently dφ̃(r)
dω

∼ 1
r , the surface term, arising when an

integration by parts is performed, obviously vanishes), using
equations of motion (9), (10) and the definition of the charge
(13), we get

dE

dω
= 4π

∫ (
2ω f 2 + 4ω2 f

d f

dω

)
r2dr = ω

dQ

dω
,

leading to

dE

dQ
= ω (49)

for dQ
dω

�= 0. The points at which dQ
dω

= 0 (and, consequently,
dE
dω

= 0) correspond to the cusps on the E(Q) diagram and
separate “stable” and “unstable” branches.

Appendix C: Numerical solution

In order to solve the system of equations (18), (19) numeri-
cally, it is convenient to pass to the new variables

F(R) = (C − 1)F̂(Y ), (50)

G(R) = −C + (C − 1) Ĝ(Y ), (51)

Y = √
C − 1 R, (52)

where C = −G(0) > 1. In these notations the system of
equations (18), (19) can be rewritten as

− �Y F̂ − F̂ + F̂ Ĝ = 0, (53)

− �Y Ĝ + F̂2 = 0, (54)

with the boundary conditions

∂Y F̂ |Y=0 = 0, lim
Y→∞ F̂(Y ) = 0,

∂Y Ĝ|Y=0 = 0, Ĝ|Y=0 = 0. (55)

Without loss of generality, we suppose that F̂(Y ) > 0 for
any Y .

Contrary to the case of initial equations (18), (19) with
(20), in which it is necessary to scan over the two parameters
F(0) and G(0) in order to find a solution, in the case of the
system of equations (53), (54) with (55) one should scan over
only the one parameter F̂(0) searching for such F̂(Y ) that
it falls off exponentially for Y → ∞. The corresponding
solution to equations (53), (54) with (55) can easily be found
numerically; the result is presented in Fig. 5.

The value of F̂(0) for this solution turns out to be F̂(0) ≈
1.089.

Now let us calculate the value of the constant C . From Eq.
(54) it follows that

Ĝ(∞) =
∞∫

0

F̂2(Y )YdY. (56)

On the other hand, from (51) we get

C = (C − 1) Ĝ(∞), (57)

leading to

C = Ĝ(∞)

Ĝ(∞) − 1
=

∫ ∞
0 F̂2(Y )YdY∫ ∞

0 F̂2(Y )YdY − 1
. (58)

Using the numerical solution for F̂(Y ), the value of the con-
stant C was found to be C ≈ 1.938. Using the explicit value
of the constant C , it is not difficult to restore the solution to
Eqs. (18), (19) with (20), which is presented in Fig. 1, from
the numerical solution for the functions F̂(Y ) and Ĝ(Y ).

The last step is to find the value of the parameter I in
formulas (23), (24). According to the definition (22) of the
parameter I and with the help of (50), we get

I = 4π
√
C − 1

∞∫

0

F̂2(Y )Y 2dY. (59)

The latter integral can also easily be evaluated numerically,
resulting in I ≈ 44.05.

Fig. 5 Numerical solution for
the functions F̂(Y ) and Ĝ(Y )
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Appendix D: The model of [10] for M − |ω| � M

The scalar field potential in [10] has the form hφ2χ∗χ . For
the vacuum solution χ ≡ 0, φ ≡ φ0 the mass of the free
charged scalar particle is defined by M2 = hφ2

0 . Using (6),
(7) and the redefinition

R = r
√
M2 − ω2, F(R) = 2hφ0

M2 − ω2 f (r),

G(R) = 2hφ0

M2 − ω2 φ̃(r), (60)

we get for the model of [10]

−�RF + F + FG + 1

4
λ(ω)FG2 = 0, (61)

−�RG + F2 + 1

2
λ(ω)F2G = 0, (62)

where λ(ω) = 1 − ω2

M2 . It is clear that λ(ω) � 1 for
M−|ω| � M and the terms proportional to λ(ω) in (61), (62)
can be neglected in this case, leading to the system of equa-
tions (18), (19). Thus, the E(Q) dependence for Q-balls in
the model of [10] for very small charges is almost the same
as the one for Q-balls with small charges from the lower
branches of Fig. 2.
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