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The robust stability analysis problem is investigated for a class of Markovian jumping genetic
regulatory networks with parameter uncertainties and mode-dependent delays, which varies
randomly according to the Markov state and exists in both translation and feedback regulation
processes. The purpose of the addressed stability analysis problem is to establish some easily
verifiable conditions under which the Markovian jumping genetic regulatory networks with
parameter uncertainties and mode-dependent delays is asymptotically stable. By utilizing a new
Lyapunov functional and a lemma, we derive delay-dependent sufficient conditions ensuring the
robust stability of the gene regulatory networks in the form of linearmatrix inequalities. Illustrative
examples are exploited to show the effectiveness of the derived linear-matrix-inequalities- (LMIS-)
based stability conditions.

1. Introduction

In the past few years, genetic regulatory networks (GRNs) have been playing more and more
important role in biological and biomedical sciences. With the study of genetic regulatory
networks, scientists can gain insight into the underlying process of living systems at the
molecular level; the dynamic behaviors of the GRNs in living organisms have received
increasing attentions in the past decade [1–9].

Generally, GRNs can be described by two types of models, the Boolean networks
models [10–12] and differential equation models [13–17]. Recently, the differential models
have received an increasing amount of research attention since it can be provide detailed
understanding of the nonlinear behavior exhibited by biological systems. Hence, our present
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research further examines the differential GRN models with both mode-dependent time
delays and Markovian jumping parameters.

Time delays are inevitably occurred due to the slow processes of transcription,
translation, and translocation or the finite switching speed of amplifiers. The theoretical
models without consideration of time delays may provide wrong predictions [15, 18]. The
stability problem of genetic regulatory network with time delays has been investigated
by many researches [15, 19–24]. For instance, Chen and Aihara [15] presented a different
equation model for GRNs with constant time delays and proposed necessary and sufficient
conditions for such GRNs. Ren and Cao [22] derived delay-dependent robust asymptotic
stability criteria for a class of genetic regulatory networks with time-varying delays and
parameter uncertainties. Wang et al. [24] developed a model for genetic regulatory networks
with polytopic parameter uncertainties and derived delay-dependent stability criteria for
such network. Moreover, due to the modeling inaccuracies and changes in the environment
of the model, parameter uncertainties can be often encountered in the genetic regulatory
networks. Therefore, the problem of robust stability analysis for uncertain GRNs emerges
as a research topic of primary importance.

On the other hand, as shown in [25, 26], GRNs with Markovian jump parameters are a
systemwith transitions among the states governed by aMarkov chain taking values in a finite
set. Therefore, it is of significance to model genetic regulatory networks with hybrid system.
Recently, Hybrid system with time-varying delays has received increasing attention [27, 28].
Specially, the stability of Markovian genetic regulatory networks, which are subject to mode
switching (or jumping), has been thoroughly investigated in [25, 26]. It should be pointed out
that the delays in [25, 26] were a deterministic case. Ribeiro et al. [29] has pointed out that
the transmission delay may occur randomly in GRNs and their probabilistic characteristics
can often be obtained by statistical methods.

However, most of the reported works focus on the effect of a deterministic time delay
case for the Markovian jumping genetic regulatory networks; a very few studies on the effect
of stochastic delays have been reported.

In this paper, firstly, we deal with the stability problem of Markovian jumping
genetic regulatory networks with mode-dependent delays, that is, the delay varies randomly
according to theMarkov state. Then, the results are extended to an uncertain case. By utilizing
a new Lyapunov-Krasovskii function and a novel lemma, we derive new delay-dependent
stability criteria in the form of linear matrix inequalities (LMIs), which can be easily checked
by LMI Toolbox. Finally, two numerical examples are provided to show the effectiveness of
the results.

Notations 1. Throughout this paper, R
n and R

n×m denote, respectively, n-dimensional
Euclidean space and the set of all n×m real matrices. The superscript “T” denotes the matrix
transposition and the notation X ≥ Y (resp., X > Y ) where X and Y are symmetric matrices,
which means that X − Y is a positive semidefinite (resp., positive definite) matrix, I is the
n × n identity matrix, and λmax(A) (resp., λmin(A)) represents the largest (resp., smallest)
eigenvalue of matrix A. For symmetric block matrices or long matrix expressions, an asterisk
� is used to represent a term that is induced by symmetry. Let h > 0, and C([−h, 0;Rn] denote
the family of continuous functions φ from [−h, 0] to R

n with the norm ‖φ‖ = sup−h≤θ≤0|φ(θ)|,
where | · | is the Euclidean norm in R

n; E{·} stands for the mathematical expectation operator.
Let (Ω,F, {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions (i.e., the filtration contains all P -null sets and is right continuous). Denote
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by L
p

F0
([−h, 0];Rn) the family of all F0-measurable C([−h, 0];Rn)-valued random variables

ξ = {ξ(θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0E|ξ(θ)|p <∞.

2. Model Description

In this paper, we will consider the following genetic regulatory networks [25]:

ṁ(t) = −Am(t) + Bf
(
p(t − σ(t))) + L,

ṗ(t) = −Cp(t) +Dm(t − τ(t)),
(2.1)

where m(t) = [m1(t), m2(t), . . . , mn(t)]
T , p(t) = [p1(t), p2(t), . . . , pn(t)]

T , and mi(t) and pi(t)
are the concentrations of mRNA and protein of the ith node at time t, respectively; A =
diag(a1, a2, . . . , an) and C = diag(c1, c2, . . . , cn) denote the degradation or dilution rates of
mRNAs and proteins, D = diag(d1, d2, . . . , dn) represents the translation rate, and B = (bij) ∈
R
n×n is defined as follows:

bij

⎧
⎪⎪⎨

⎪⎪⎩

> 0 if transcription j is an activator of gene i;
= 0, if there is no link fromnode j to i;
< 0 if transcription j is an repressor of gene i;

(2.2)

f(·) denotes the feedback regulation of the protein on the transcription, which is the
monotonic function in Hill form, fi(x) = xhi/(1 + xhi), and hi is the Hill coefficient; τ(t) and
σ(t) are the time delays; L = [l1, l2, . . . , ln]

T , li is the base transcriptional rate of the repressor
of gene i. Assume m� and p� are the equilibrium points of (2.1), defining x(t) = m(t) − m�,
y(t) = p(t) − p�, it is easy to get

ẋ(t) = −Ax(t) + Bg(y(t − σ(t))),
ẏ(t) = −Cy(t) +Dx(t − τ(t)),

(2.3)

where g(y(t)) = f(y(t) + P�) − f(p�), from the definition of g, it is easy to get

g(x)
(
g(x) −Kx) ≤ 0. (2.4)

Taking the Markovian jumping parameters and stochastic delays into account, a
Markovian jumping genetic regulatory networks model with mode-dependent delays is
considered as

ẋ(t) = −A(r(t))x(t) + B(r(t))g
(
y
(
t − σr(t)(t)

))
,

ẏ(t) = −C(r(t))y(t) +D(r(t))x
(
t − τr(t)(t)

)
,

(2.5)
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where r(t) is a continuous-time Markovian process with right continuous trajectories and
taking values in a finite set S = {1, 2, . . . ,N}with the following transition probabilities:

P
{
r(t + Δt) = j : r(t) = i

}
=

{
γijΔt +O(Δt) if j /= i,
1 + γijΔt +O(Δt) if j = i,

(2.6)

where Δt > 0 and limΔt→ 0O(Δt)/Δt = 0. Here, γij ≥ 0 is the transition rate from i to j if i /= j,
while γii = −∑N

j=1,j /= i γij .
τr(t)(t) and σr(t)(t) are the time-varying delays when the mode is in r(t) and we assume

that they satisfy the following conditions

0 ≤ d1i ≤ τi(t) ≤ d2i, τ̇i(t) ≤ hi, 0 ≤ e1i ≤ σi(t) ≤ e2i, σ̇i(t) ≤ μi, (2.7)

where d1i, d2i, e1i, e2i, hi, and μi are known real constants, for any i ∈ S, denote

d1 = min{d1i, i ∈ S}, d2 = max{d2i, i ∈ S}, e1 = min{e1i, i ∈ S},
e2 = max{e2i, i ∈ S}.

(2.8)

Remark 2.1. In [25], hi and μi are assumed to be less than 1. But in practice, they are not always
less than 1. In this paper, we develop the criteria without this restrict. In the following we will
give some lemmas, which will play an indispensable role in deriving our criteria.

Lemma 2.2 (see [24]). For any vector x, y ∈ R
n and matrixQ > 0, one has the following inequality:

2xTy ≤ xTQx + yTQ−1y. (2.9)

Lemma 2.3 (see [30]). For any positive definite matrix M > 0, scalar γ > 0 and vector function
ω : [0, γ] → R

n such that the integrations concerned are well defined, then the following inequality
holds:

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.10)

Lemma 2.4 (see [31]) (Schur complement). Given constant matrices X, Y , and Z where X = XT

and 0 < Y = YT . Then X + ZTY−1Z < 0 if and only if

[
X ZT

Z −Y
]
< 0, or

[−Y Z
ZT X

]
< 0. (2.11)

Lemma 2.5 (see [32]). Assume Ω, X1, and X2 are constant matrices with appropriate dimensions,
0 ≤ α(t) ≤ 1, then

Ω −X1 < 0,

Ω −X2 < 0,
(2.12)
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is equivalent to

Ω − α(t)X1 − (1 − α(t))X2 < 0. (2.13)

3. Main Results

In this section, we first deal with the asymptotical stability problem for the system (2.5). By
employing a new Lyapunov-Krasovskii function, some less conservative sufficient criteria
for the stability problem of Markovian jumping genetic regulatory networks with mode-
dependent delays are derived in terms of LMIs. Then the results are extended to uncertain
case.

Theorem 3.1. The genetic regulatory networks (2.5) is asymptotically stable, if there exist matrix
sets {Pi > 0, Qi > 0, ∀i ∈ S}, matricesNj, Mj (j = 1, 2, 3) > 0 Rj (j = 1, 2, 3, 4) > 0, any diagonal
positive definite matrixΛ, and any matricesU, V with appropriate dimensions such that the following
LMIs hold:

Ω1i − εT1R1ε1 − εT1R2ε1 < 0,

Ω1i − εT1R1ε1 − εT3R2ε3 < 0,

Ω1i − εT2R1ε2 − εT1R2ε1 < 0,

Ω1i − εT2R1ε2 − εT3R2ε3 < 0,

Ω2i − εT4R3ε4 − εT4R4ε4 < 0,

Ω2i − εT4R3ε4 − εT6R4ε6 < 0,

Ω2i − εT5R3ε5 − εT4R4ε4 < 0,

Ω2i − εT5R3ε5 − εT6R4ε6 < 0,

(3.1)

where

ε1 =
[
0 I 0 −I 0

]
, ε2 =

[
I −I 0 0 0

]
, ε3 =

[
0 −I I 0 0

]
,

ε4 =
[
0 I 0 −I 0 0

]
, ε5 =

[
I −I 0 0 0 0

]
, ε6 =

[
0 −I I 0 0 0

]
,

Ω1i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ1 R1 0 0 −UAi

� Ξ2 R2 R2 + R1 − d1R2

d2
0

� � −R2 −N1 0 0

� � � −R1 − R2 −N2 +
d1R2

d2
0

� � � � Ξ3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,
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Ω2i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π1 R3 0 0 −VCi 0

� Π2 R4 R3 + R4 − e1R4

e2
0 Λ

� � −R4 −M1 0 0 0

� � � −R3 − R4 −M2 +
e1R4

e2
0 0

� � � � Π3 0
� � � � � Π4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ξ1 = −PiAi −AT
i Pi +

N∑

j=1

γijPj +
3∑

j=1

Nj − γii(d2 − d1)N3 − R1 + Pi,

Ξ2 = −(1 − hi)N3 − 2R1 − 2R2 +DT
i VDi +DT

i QiDi +
d1R2

d2
,

Ξ3 = −U + d2
2R1 + (d2 − d1)2R2,

Π1 = −QiCi − CT
i Qi +

N∑

j=1

γijQj +
3∑

j=1

Mj − γii(e2 − e1)M3 − R3 +Qi,

Π2 = −(1 − μi
)
M3 − 2R3 − 2R4 +

e1R4

e2
,

Π3 = −V + e22R3 + (e2 − e1)2R4,

Π4 = −2ΛK−1 + BTi UBi + B
T
i PiBi.

(3.2)

Proof. Choose a Lyapunov-Krasovskii functional candidate:

V
(
i, t, x(t), y(t)

)
= V1

(
i, t, x(t), y(t)

)
+ V2

(
i, t, x(t), y(t)

)

+ V3
(
i, t, x(t), y(t)

)
+ V4

(
i, t, x(t), y(t)

)
,

(3.3)

where

V1
(
i, t, x(t), y(t)

)
= xT (t)Pix(t) + yT (t)Qiy(t),

V2
(
i, t, x(t), y(t)

)
=

2∑

j=1

∫ t

t−dj
xT (s)Njx(s)ds +

2∑

j=1

∫ t

t−ej
yT (s)Mjy(s)ds

+
∫ t

t−τi(t)
xT (s)N3x(s)ds +

∫ t

t−σi(t)
yT (s)M3y(s)ds,
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V3
(
i, t, x(t), y(t)

)
= −γii

∫−d1

−d2

∫ t

t+θ
xT (s)N3x(s)dsdθ − γii

∫−e1

−e2

∫ t

t+θ
yT (s)M3y(s)dsdθ,

V4
(
i, t, x(t), y(t)

)
= d2

∫0

−d2

∫ t

t+θ
ẋT (s)R1ẋ(s)dsdθ + (d2 − d1)

∫−d1

−d2

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ

+ e2

∫0

−e2

∫ t

t+θ
ẏT (s)R3ẏ(s)dsdθ + (e2 − e1)

∫−e1

−e2

∫ t

t+θ
ẏT (s)R4ẏ(s)dsdθ.

(3.4)

Let L be the weak infinite generator. Then for each r(t) = i, i ∈ S along the trajectory
of (2.5) one has

LV1
(
i, t, x(t), y(t)

)
= 2xT (t)Pi

(−Aix(t) + Big
(
y(t − σi(t))

))
+

N∑

j=1

γijx
T (t)Pjx(t)

+ 2yT (t)Qi

(−Ciy(t) +Dix(t − τi(t))
)
+

N∑

j=1

γijy
T (t)Qjy(t),

LV2
(
i, t, x(t), y(t)

) ≤
3∑

j=1

xT (t)Njx(t) − (1 − hi)xT (t − τi(t))N3x(t − τi(t))

+
3∑

j=1

yT (t)Mjy(t) −
(
1 − μi

)
yT (t − σi(t))M3y(t − σi(t))

−
2∑

j=1

xT
(
t − dj

)
Njx

(
t − dj

) −
2∑

j=1

yT
(
t − ej

)
Mjy

(
t − ej

)

+
N∑

j=1

γij

∫ t

t−τj (t)
xT (s)N3x(s)ds +

N∑

j=1

γij

∫ t

t−σj (t)
yT (s)M3y(s)ds,

N∑

j=1

γij

∫ t

t−τj (t)
xT (s)N3x(s)ds = γii

∫ t

t−τi(t)
xT (s)N3x(s)ds +

∑

j /= i

γij

∫ t

t−τj (t)
xT (s)N3x(s)ds

≤ γii

∫ t

t−d1
xT (s)N3x(s)ds +

∑

j /= i

γij

∫ t

t−d2
xT (s)N3x(s)ds

= γii

∫ t

t−d1
xT (s)N3x(s)ds − γii

∫ t

t−d2
xT (s)N3x(s)ds

= − γii
∫ t−d1

t−d2
xT (s)N3x(s) ds.

(3.5)
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Similarly

N∑

j=1

γij

∫ t

t−σj (t)
yT (s)M3y(s)ds ≤ −γii

∫ t−e1

t−e2
yT (s)M3y(s)ds,

LV3
(
i, t, x(t), y(t)

)
= − γii(d2 − d1)xT (t)N3x(t) + γii

∫ t−d1

t−d2
xT (s)N3x(s)ds

− γii(e2 − e1)yT (t)M3y(t) + γii

∫ t−e1

t−e2
yT (s)M3y(s)ds,

LV4
(
i, t, x(t), y(t)

)
= d2

2ẋ
T (t)R1ẋ(t) − d2

∫ t

t−d2
ẋT (s)R1ẋ(s)ds + (d2 − d1)2ẋT (t)R2ẋ(t)

+ (e2 − e1)2ẏT (t)R4ẏ(t)ds − e2
∫ t

t−e2
ẏT (s)R3ẏ(s)ds + e22ẏ

T (t)R3ẏ(t)

− (d2 − d1)
∫ t−d1

t−d2
ẋT (s)R2ẋ(s)ds − (e2 − e1)

∫ t−e1

t−e2
ẏT (s)R4ẏ(s)ds.

(3.6)

Note that

− d2
∫ t

t−d2
ẋT (s)R1ẋ(s)ds

= −d2
∫ t−τi(t)

t−d2
ẋT (s)R1ẋ(s)ds − d2

∫ t

t−τi(t)
ẋT (s)R1ẋ(s)ds

= −(d2 − τi(t))
∫ t−τi(t)

t−d2
ẋT (s)R1ẋ(s)ds − τi(t)

∫ t−τi(t)

t−d2
ẋT (s)R1ẋ(s)ds

− τi(t)
∫ t

t−τi(t)
ẋT (s)R1ẋ(s)ds − (d2 − τi(t))

∫ t

t−τi(t)
ẋT (s)R1ẋ(s)ds

≤ −xT (t − τi(t))R1x(t − τi(t)) + 2xT (t − τi(t))R1x(t − d2) − xT (t − d2)R1x(t − d2)

− xT (t)R1x(t) + 2xT (t)R1x(t − τi(t)) − xT (t − τi(t))R1x(t − τi(t))

−
[

τi(t)
d2 − τi(t)

][
xT (t − τi(t)) − xT (t − d2)

]
R1[x(t − τi(t)) − x(t − d2)]

−
[
d2 − τi(t)
τi(t)

][
xT (t) − xT (t − τi(t))

]
R1[x(t) − x(t − τi(t))]

≤ −xT (t − τi(t))R1x(t − τi(t)) + 2xT (t − τi(t))R1x(t − d2) − xT (t − d2)R1x(t − d2)

− xT (t)R1x(t) + 2xT (t)R1x(t − τi(t)) − xT (t − τi(t))R1x(t − τi(t))
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−
(
τi(t)
d2

)[
xT (t − τi(t)) − xT (t − d2)

]
R1[x(t − τi(t)) − x(t − d2)]

−
[
1 −

(
τi(t)
d2

)][
xT (t) − xT (t − τi(t))

]
R1[x(t) − x(t − τi(t))].

(3.7)

Similarly,

− (d2 − d1)
∫ t−d1

t−d2
ẋT (s)R2ẋ(s)ds

≤ −xT (t − τi(t))R2x(t − τi(t)) + 2xT (t − τi(t))R2x(t − d2) − xT (t − d2)R2x(t − d2)

− xT (t − d1)R2x(t − d1) + 2xT (t − d1)R2x(t − τi(t)) − xT (t − τi(t))R2x(t − τi(t))

+
(
d1
d2

)[
xT (t − τi(t)) − xT (t − d2)

]
R2[x(t − τi(t)) − x(t − d2)]

−
(
τi(t)
d2

)[
xT (t − τi(t)) − xT (t − d2)

]
R2[x(t − τi(t)) − x(t − d2)]

−
[
1 −

(
τi(t)
d2

)][
xT (t − d1) − xT (t − τi(t))

]
R2[x(t − d1) − x(t − τi(t))],

− e2
∫ t

t−e2
ẏT (s)R3ẏ(s)ds

≤ −yT (t − σi(t))R3y(t − σi(t)) + 2yT (t − σi(t))R3y(t − e2) − yT (t − e2)R3y(t − e2)

− yT (t)R3y(t) + 2yT (t)R3y(t − σi(t)) − yT (t − σi(t))R3y(t − σi(t))

−
[
σi(t)
e2

][
yT (t − σi(t)) − yT (t − e2)

]
R3

[
y(t − σi(t)) − y(t − e2)

]

−
[
1 −

(
σi(t)
e2

)][
yT (t) − yT (t − σi(t))

]
R3

[
y(t) − y(t − σi(t))

]
,

− (e2 − e1)
∫ t−e1

t−e2
ẏT (s)R4ẏ(s)ds

≤ −yT (t − σi(t))R4y(t − σi(t)) + 2yT (t − σi(t))R4y(t − e2) − yT (t − e2)R4y(t − e2)

− yT (t − e1)R4y(t − e1) + 2yT (t − e1)R4y(t − σi(t)) − yT (t − σi(t))R4y(t − σi(t))

+
(
e1
e2

)[
yT (t − σi(t)) − yT (t − e2)

]
R4

[
y(t − σi(t)) − y(t − e2)

]

−
(
σi(t)
e2

)[
yT (t − σi(t)) − yT (t − e2)

]
R4

[
y(t − σi(t)) − y(t − e2)

]

−
[
1 −

(
σi(t)
e2

)][
yT (t − e1) − yT (t − σi(t))

]
R4

[
y(t − e1) − y(t − σi(t))

]
.

(3.8)
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Noting the sector condition (2.4), for any positive matrix Λ we have

2yT (t − σi(t))Λg
(
y(t − σi(t))

) − 2gT
(
y(t − σi(t))

)
ΛK−1g

(
y(t − σi(t))

) ≥ 0. (3.9)

For any matricesU and V with appropriate dimensions, we have

−2ẋT (t)U[
ẋ(t) +Aix(t) − Big

(
y(t − σi(t))

)]
= 0,

−2ẏT (t)V [
ẏ(t) + Ciy(t) −Dix(t − τi(t))

]
= 0.

(3.10)

By Lemma 2.3 we can get the following inequalities:

2xT (t)PiBig
(
y(t − σi(t))

) ≤ xT (t)Pix(t) + gT
(
y(t − σi(t))

)
BTi PiBig

(
y(t − σi(t))

)
,

2yT (t)QiDix(t − τi(t)) ≤ yT (t)Qiy(t) + xT (t − τi(t))DT
i QiDix(t − τi(t)),

2ẋT (t)UBig
(
y(t − σi(t))

) ≤ ẋT (t)Uẋ(t) + gT(y(t − σi(t))
)
BTi UBig

(
y(t − σi(t))

)
,

2ẏT (t)VDix(t − τi(t)) ≤ ẏT (t)V ẏ(t) + xT (t − τi(t))DT
i VDix(t − τi(t)).

(3.11)

From (3.3) to (3.11) we can get

LV (
i, t, x(t), y(t)

) ≤ ξTΩ1iξ(t) −
(
τi(t)
d2

)
ξT (t)εT1R1ε1ξ(t) −

[
1 −

(
τi(t)
d2

)]
ξT (t)εT2R1ε2ξ(t)

−
(
τi(t)
d2

)
ξT (t)εT1R2ε1ξ(t) −

[
1 −

(
τi(t)
d2

)]
ξT (t)εT3R2ε3ξ(t)

+ ηTΩ2iη(t) −
(
σi(t)
e2

)
ηT (t)εT4R3ε4η(t) −

[
1 −

(
σi(t)
e2

)]
ηT (t)εT5R3ε5η(t)

−
(
σi(t)
e2

)
ηT (t)εT4R4ε4η(t) −

[
1 −

(
σi(t)
e2

)]
ηT (t)εT6R4ε6η(t),

(3.12)

where

ξ(t) =
[
xT (t), xT (t − τi(t)), xT (t − d1), xT (t − d2), ẋT (t)

]T
,

η(t) =
[
yT (t), yT (t − σi(t)), yT (t − e1), yT (t − e2), ẏT (t), gT

(
y(t − σi(t))

)]T
.

(3.13)

By Lemma 2.5, (3.12) < 0 is equivalent to (3.1). Then by the Lyapunov-Krasovskii stability
theorem that the genetic regulatory networks (2.5) is asymptotically stable in the mean
square. Hence, this completes the proof.
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In the proof of Theorem 3.1, if we deal with the terms −d2
∫ t
t−d2 ẋ

T (s)R1ẋ(s)ds, −(d2 −
d1)

∫ t−d1
t−d2 ẋ

T (s)R2ẋ(s)ds, −e2
∫ t
t−e2 ẏ

T (s)R3ẏ(s)ds, −(e2 − e1)
∫ t−e1
t−e2 ẏ

T (s)R4ẏ(s)ds as follows:

− d2
∫ t

t−d2
ẋT (s)R1ẋ(s)ds

≤ −xT (t − τi(t))R1x(t − τi(t)) + 2xT (t − τi(t))R1x(t − d2) − xT (t − d2)R1x(t − d2)

− xT (t)R1x(t) + 2xT (t)R1x(t − τi(t)) − xT (t − τi(t))R1x(t − τi(t)),

− (d2 − d1)
∫ t−d1

t−d2
ẋT (s)R2ẋ(s)ds

≤ −xT (t − τi(t))R2x(t − τi(t)) + 2xT (t − τi(t))R2x(t − d2) − xT (t − d2)R2x(t − d2)

− xT (t − d1)R2x(t − d1) + 2xT (t − d1)R2x(t − τi(t)) − xT (t − τi(t))R2x(t − τi(t)),

− e2
∫ t

t−e2
ẏT (s)R3ẏ(s)ds

≤ −yT (t − σi(t))R3y(t − σi(t)) + 2yT (t − σi(t))R3y(t − e2) − yT (t − e2)R3y(t − e2)

− yT (t)R3y(t) + 2yT (t)R3y(t − σi(t)) − yT (t − σi(t))R3y(t − σi(t)),

− (e2 − e1)
∫ t−e1

t−e2
ẏT (s)R4ẏ(s)ds

≤ −yT (t − σi(t))R4y(t − σi(t)) + 2yT (t − σi(t))R4y(t − e2) − yT (t − e2)R4y(t − e2)

− yT (t − e1)R4y(t − e1) + 2yT (t − e1)R4y(t − σi(t)) − yT (t − σi(t))R4y(t − σi(t))
(3.14)

that is, we do not use Lemma 2.5, then we will have the following corollary.

Corollary 3.2. The genetic regulatory networks (2.5) is asymptotically stable, if there exist matrix
sets {Pi > 0, Qi > 0, ∀i ∈ S}, matrices Nj, Mj (j = 1, 2, 3) > 0 Rj (j = 1, 2, 3, 4) > 0, any
diagonal positive definite matrix Λ, and any matricesU and V with appropriate dimensions such that
the following LMIs hold:

Ω1i < 0, Ω2i < 0, (3.15)

where, Ω1i and Ω2i are defined in Theorem 3.1.

Remark 3.3. In the proof of Theorem 3.1, if we ignore the terms −(τi(t)/d2)ξT (t)εT1R1ε1ξ(t),
−[1 − (τi(t)/d2)]ξT (t)εT2R1ε2ξ(t), and −(σi(t)/e2)ηT (t)εT4R3ε4η(t), −[1 − (σi(t)/e2)]ηT (t)εT5
R3ε5η(t), we can also get sufficient conditions ensuring the robust stability of the genetic regu-
latory networks. But the conditions are conservative to some extent. By considering the terms
−(τi(t)/d2)ξT (t)εT1R1ε1ξ(t), and −[1 − (τi(t)/d2)]ξT (t)εT2R1ε2ξ(t), −(σi(t)/e2)ηT (t)εT4R3ε4η(t),
−[1 − (σi(t)/e2)]ηT(t)εT5R3ε5η(t), we can get a less conservative criterion. The illustrate
examples will show this in Section 4.
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In the following, we will extend our results to uncertain case. We consider the
followingMarkovian jumping genetic regulatory networks withmode-dependent delays and
parameter uncertainties:

ẋ(t) = −(Ai + ΔAi)x(t) + (Bi + ΔBi)g
(
y(t − σi(t))

)
,

ẏ(t) = −(Ci + ΔCi)y(t) + (Di + ΔDi)x(t − τ i(t)),
(3.16)

where ΔAi, ΔBi, ΔCi, and ΔDi are the parametric uncertainties satisfying:

[ΔAi,ΔBi,ΔCi,ΔDi] = EiFi[Hai,Hbi,Hci,Hdi]. (3.17)

Ei,Hai,Hbi,Hci, andHdi are the known real constant matrices with appropriate dimensions,
Fi satisfies

FTi Fi ≤ I, i ∈ S. (3.18)

Theorem 3.4. The genetic regulatory networks (3.16) is robust asymptotically stable, if there exist
P1 > 0, P2 > 0, . . ., Pn > 0,Q1 > 0,Q2 > 0, . . .,Qn > 0,Nj ,Mj (j = 1, 2, 3) > 0, Rj (j = 1, 2, 3, 4) >
0, real number {εi, i ∈ S}, any diagonal positive definite matrix Λ, and any matrices U and V with
appropriate dimensions such that the following LMIs hold:

Ω1i − εT1R1ε1 − εT1R2ε1 < 0,

Ω1i − εT1R1ε1 − εT3R2ε3 < 0,

Ω1i − εT2R1ε2 − εT1R2ε1 < 0,

Ω1i − εT2R1ε2 − εT3R2ε3 < 0,

Ω2i − εT4R3ε4 − εT4R4ε4 < 0,

Ω2i − εT4R3ε4 − εT6R4ε6 < 0,

Ω2i − εT5R3ε5 − εT4R4ε4 < 0,

Ω2i − εT5R3ε5 − εT6R4ε6 < 0,

(3.19)

where
Ω1i =

[
Γ1i φ1i

� ψ1i

]

, Ω2i =

[
Γ2i φ2i

� ϕ2i

]

,

Γ1i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ1 R1 0 0 −UAi

� Ξ2 R2 R2 + R1 − d1R2

d2
0

� � −R2 −N1 0 0

� � � −R1 − R2 −N2 +
d1R2

d2
0

� � � � Ξ3,

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Ξ1 = −PiAi −AT
i Pi +

N∑

j=1

γijPj +
3∑

j=1

Nj − γii(d2 − d1)N3 − R1 + Pi + 2εiHT
aiHai,
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Ξ2 = −(1 − hi)N3 − 2R1 − 2R2 +DT
i VDi +DT

i QiDi + 2εiHT
diHdi +

d1R2

d2
,

ψ1i = diag(−εiI,−I,−I,−I,−εiI),

φ1i =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
2PiEi 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
√
2UEi

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Γ2i =

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π1 R3 0 0 −VCi 0

� Π2 R4 R3 + R4 − e1R4

e2
0 Λ

� � −R4 −M1 0 0 0

� � � −R3 − R4 −M2 +
e1R4

e2
0 0

� � � � Π3 0

� � � � � Π4

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

Π1 = −QiCi − CT
i Qi +

N∑

j=1

γijQj +
3∑

j=1

Mj − γii(e2 − e1)M3 − R3 +Qi + 2εiHT
ciHci,

Π4 = −2ΛK−1 + BTi UBi + B
T
i PiBi + 2εiHT

biHbi,

φ2i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

√
2QiEi 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0
√
2VEi 0

0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

ψ2i = diag(−εiI,−I,−I,−I,−I,−εiI).
(3.20)

Proof. Consider the same Lyapunov-Krasovskii functional (3.3), do the differential along the
trajectory (3.16), one can readily get

LV (
i, t, x(t), y(t)

) ≤ ξTΓ1iξ(t) −
(
τi(t)
d2

)
ξT (t)εT1R1ε1ξ(t) −

[
1 −

(
τi(t)
d2

)]
ξT (t)εT2R1ε2ξ(t)

−
(
τi(t)
d2

)
ξT (t)εT1R2ε1ξ(t) −

[
1 −

(
τi(t)
d2

)]
ξT (t)εT3R2ε3ξ(t)



14 Mathematical Problems in Engineering

+ ηTΓ2iη(t) −
(
σi(t)
e2

)
ηT (t)εT4R3ε4η(t) −

[
1 −

(
σi(t)
e2

)]
ηT (t)εT5R3ε5η(t)

−
(
σi(t)
e2

)
ηT (t)εT4R4ε4η(t) −

[
1 −

(
σi(t)
e2

)]
ηT (t)εT6R4ε6η(t)

+ 2ε−1i x
T (t)PiEiETi Pix(t) + 2ε−1i y

T (t)QiEiE
T
i Qiy(t)

+ 2ε−1i ẋ
T (t)UEiETi Ux(t) + 2ε−1i ẏ

T (t)VEiETi V ẏ(t).

(3.21)

By Lemmas 2.4 and 2.5, we can get that LV (i, t, x(t), y(t)) < 0 is equivalent to (3.19).
Hence the Markovian jumping genetic regulatory network with mode-dependent delays and
parameter uncertainties is robust asymptotically stable. This completes the proof.

As mentioned in Theorem 3.1, if we ignore the terms −(τi(t)/d2)ξT (t)εT1R1ε1ξ(t), −[1 −
(τi(t)/d2)]ξT (t)εT2R1ε2ξ(t), −(σi(t)/e2)ηT (t)εT4R3ε4η(t), and −[1 − (σi(t)/e2)]ηT (t)εT5R3ε5η(t),
we can get the following corollary.

Corollary 3.5. The genetic regulatory networks (3.16) is robust asymptotically stable, if there exist
P1 > 0, P2 > 0, . . ., Pn > 0,Q1 > 0,Q2 > 0, . . .,Qn > 0,Nj ,Mj (j = 1, 2, 3) > 0, Rj (j = 1, 2, 3, 4) >
0, real number {εi, i ∈ S}, any diagonal positive definite matrix Λ, and any matrices U and V with
appropriate dimensions such that the following LMIs hold:

Ω1i < 0, Ω2i < 0, (3.22)

where Ω1i and Ω2i are defined in Theorem 3.4.

4. Illustrative Examples

In this section, two numerical examples are given to illustrate the effectiveness of the derived
results.

Example 4.1. Consider (2.5) where

A1 =
[
3 0
0 3

]
, B1 =

[
1 −2
0.8 0

]
, C1 =

[
2 0
0 2

]
, D1 =

[
1 0
0 1

]
,

A2 =
[
3 0
0 3

]
, B2 =

[−1 0
1 2

]
, C2 =

[
2 0
0 2

]
, D2 =

[−1 0
0 1

]
.

(4.1)

The nonlinear regulation function is taken as g(x) = x2/(1 + x2), so we can easily get
ki = 0.65, the transmission probability is assumed to be γ =

[ −0.4 0.4
0.6 −0.6

]
, and time delays are

chosen as

τ1(t) = 0.4 + 0.2 cos(t), τ2(t) = 0.4 + 0.1 sin(t), σ1(t) = 0.2 + 0.1 sin(t),

σ2(t) = 0.2 + 0.1 cos(t).
(4.2)
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Then we have

h1 = 0.2, h2 = 0.1, d1 = 0.2, d2 = 0.6, μ1 = 0.1, μ2 = 0.1,

e1 = 0.1, e2 = 0.3.
(4.3)

By using Matlab Toolbox, solving (3.1)we can obtain the feasible solutions

P1 =
[
0.6720 0.0062
0.0062 0.7652

]
, P2 =

[
0.7743 0.0563
0.0563 0.7245

]
, Q1 =

[
1.0529 0.0021
0.0021 1.2663

]
,

Q2 =
[
1.0926 0.0036
0.0036 1.3185

]
, N1 =

[
0.3602 0.0278
0.0278 0.3244

]
, N2 =

[
0.3521 0.0244
0.0244 0.3215

]
,

N3 =
[
1.6260 0.0284
0.0284 1.8337

]
, M1 =

[
0.0070 0.0016
0.0016 0.0052

]
, M2 =

[
0.0338 −0.0002
−0.0002 0.0353

]
,

M3 =
[
0.0891 −0.0029
−0.0029 0.0920

]
, R1 =

[
0.1534 0.0253
0.0253 0.1688

]
, R2 =

[
0.4415 −0.0022
−0.0022 0.3993

]
,

R3 =
[
0.4192 0.0053
0.0053 0.3845

]
, R4 =

[
1.2767 −0.0102
−0.0102 2.0128

]
, U =

[
0.0410 0.0032
0.0032 0.0373

]
,

V =
[
0.1146 0.0024
0.0024 0.1054

]
, Λ =

[
1.3501 0

0 2.0371

]
.

(4.4)

Hence the Markovian jumping genetic regulatory networks with mode-dependent delays is
asymptotically stable. Assume h1 = 0.2, μ1 = 0.1, μ2 = 0.2, e1 = 0.1, e2 = 0.5, and d1 = 0.2.
Then we can calculate the maximal allowable bounds of d2 with different values of h2.

Example 4.2. Consider (3.16)where

A1 =
[
5 0
0 5

]
, B1 =

[
0 0
1 0

]
, C1 =

[
2.5 0
0 2.5

]
, D1 =

[
1 0
0 1

]
,

A2 =
[
5 0
0 5

]
, B2 =

[
0 0
2 0

]
, C2 =

[
3 0
0 3

]
, D2 =

[
0.8 0
0 0.8

]
.

(4.5)

The uncertain parameters for every mode of the Markovian genetic regulatory net-
works are given by

Ha1 =
[−0.2 0

0 −0.2
]
, Hb1 =

[−0.1 0.2
0.08 0

]
, Hc1 =

[−0.1 0
0 −0.1

]
, Hd1 =

[
0.15 0
0 0.15

]

E1 =
[
0.3 0
0 0.3

]
, Ha2 =

[−0.3 0
0 −0.3

]
, Hb2 =

[
0.1 0
0 0.1

]
, Hc2 =

[−0.1 0
0 −0.1

]
,

Hd2 =
[
0.1 0
0 0.1

]
, E2 =

[
0.1 0
0 0.1

]
.

(4.6)
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Table 1: The maximal allowable bounds of d2.

Methods h2 = 0 h2 = 0.5 h2 = 1 h2 = 1.5
Theorem 3.1 d2 = 5.84 d2 = 2.65 d2 = 0.46 d2 = 0.46
Corollary 3.2 d2 = 5.8 d2 = 2.635 d2 = 0.407 d2 = 0.406

Table 2: The maximal allowable bounds of d2.

Methods h2 = 0.5 h2 = 1 h2 = 1.5 h2 = 2
Theorem 3.4 d2 = 323 d2 = 3.475 d2 = 2.376 d2 = 2.14
Corollary 3.5 d2 = 309 d2 = 3.11 d2 = 1.97 d2 = 1.76

The nonlinear regulation function is taken as g(x) = x2/(1+x2), so we can easily get ki = 0.65,
the transmission probability is assumed to be γ =

[ −0.4 0.4
0.6 −0.6

]
.

Choosing h1 = 0.1, h2 = 0.1, d1 = 0, d2 = 0.2, μ1 = 0.1, μ2 = 0.1, e1 = 0.2, and e2 = 0.4.
Applying Theorem 3.4 to system (3.16), we can get the following feasible solutions:

P1 =
[
3.6297 −0.0003
−0.0003 2.7195

]
, P2 =

[
3.6878 −0.0003
−0.0003 2.5334

]
, Q1 =

[
6.3467 −0.0029
−0.0029 5.0050

]
,

Q2 =
[
5.6235 −0.0024
−0.0024 4.5655

]
, N1 =

[
4.6944 0

0 3.5184

]
, N2 =

[
4.4643 0

0 3.2752

]
,

N3 =
[
10.6313 −0.0028
−0.0028 7.8495

]
, M1 =

[
0.2268 0

0 0.2555

]
, M2 =

[
0.2297 0

0 0.2511

]
,

M3 =
[
0.2155 0

0 0.2095

]
, R1 =

[
0.4985 0

0 0.4617

]
, R2 =

[
4.0194 0.0002
0.0002 3.8311

]
,

R3 =
[
3.8486 0.0002
0.0002 3.6607

]
, R4 =

[
7.0716 −0.0110
−0.0110 3.3522

]
, U =

[
0.2339 0

0 0.1500

]
,

V =
[
0.6615 0

0 0.6188

]
, Λ =

[
5.1026 0

0 1.6577

]
, ε1 = 5.4301, ε2 = 4.9533.

(4.7)

Assume h1 = 0.1, μ1 = 0.1, μ2 = 0.1, e1 = 0.2, e2 = 0.4, and d1 = 0. Then we can calculate the
maximal allowable bounds of d2 with different values of h2.

It can be seen from Tables 1 and 2 that using the lemma will yield less conservative
results.

5. Conclusions

In this paper, we have delt with the robust stability analysis problem for theMarkovian jump-
ing genetic regulatory networks with parameter uncertainties and mode-dependent delays.
By employing a new Lyapunov-Krasovskii function and a lemma to deal with the terms
−(τi(t)/d2)ξT (t)×εT1R1ε1ξ(t), −[1−(τi(t)/d2)]ξT (t)εT2R1ε2ξ(t), −(σi(t)/e2)ηT (t)εT4R3ε4η(t), and
−[1 − (σi(t)/e2)]ηT (t) × εT5R3ε5η(t), some less conservative sufficient conditions in the terms
of LMIs to ensure the robust stability of the addressed Markovian jumping genetic networks
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are derived. Finally, two examples are given to illustrate the usefulness of the derived LMIs-
based stability conditions.
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