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The effects of slip boundary condition on peristaltic transport of incompressible Newtonian viscous fluid in an asymmetric
channel is investigated, under the conditions of low Reynolds number and long wavelength. The pumping characteristics,
trapping and reflux limits are studied for different values of the dimensionless slip parameter β.
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1. Introduction

Peristalsis is defined as a wave of relaxation or contraction
(expansion) of the walls of a flexible conduit, which
pumps the enclosed material inside or outside the conduit
(Mekheimer 2003; Mishra and Rao 2003). Peristalsis is
now well known to the physiologists to be one of the
major mechanisms of fluid transport in many biological
systems, e.g. swallowing food through the oesophagus,
movement of chyme in the gastrointestinal tract, urine
transport from the kidney to the bladder through the ureter,
transport of spermatozoa, movement of ova in the fallopian
tube, vasomotion of small blood vessels such as venules
and capillaries and blood flow in arteries and in many
other glandular ducts (Srivastava and Srivastava 1982;
El-Shehawey and Husseny 2000; Mekheimer 2003; Mishra
and Rao 2003; El-Shehawey et al. 2006; El-Hakeem et al.
2006). There are many industrial applications for peristaltic
transport, like blood pumps in a heart–lung machine, and
furthermore there are many applications in biomechanical
and engineering sciences for peristaltic motion (El-
Shehawey and Husseny 2000; Mishra and Rao 2003).
Peristaltic motion results physiologically from neuron
muscular properties of the tubular smooth muscles (Ghars-
seldien 2003). Recently, some studies have proven that the
intra-uterine fluid flow due to myometrial contraction is a
peristaltic motion (Eytan et al. 2001; Strandell and Lind-
hard 2002; Nakai et al. 2003, 2004; Nishino et al. 2005).

Several mathematical and experimental models have
been developed to understand the fluid mechanical aspects
of peristaltic flows with considerations of the nature of
the fluid, the geometry of the channel, propagating waves
and inclusion of other physical effects such as magnetic
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fields and porous media (Fung and Yih 1968; Srivastava
and Srivastava 1982; Gharsseldien 2003; Mekheimer 2003;
Mishra and Rao 2003; El-Shehawey et al. 2006; Ali and
Hayat 2007, 2008; Hayat et al. 2008).

We are aware that the no-slip condition in fluid me-
chanics means that the fluid velocity matches the velocity
of the solid boundary. Nearly 200 years ago Navier pro-
posed in his original paper on linearly viscous fluids a gen-
eral boundary condition that permits the possibility of slip
at a solid boundary (Joshi and Denn 2003). This bound-
ary condition assumes that the tangential velocity of the
fluid relative to the solid at a point on its surface is pro-
portional to the tangential stress acting at that point. The
constant of proportionality between these two quantities
may be termed a coefficient of sliding friction, which is
assumed to depend on the nature of the fluid and the solid
surface:

U = ∓ η τw,

where U is the tangential velocity in the X direction; η is
a constant of proportionality (the slip parameter); and τw is
the shear stress at the wall (Rao and Rajagopal 1999; Joshi
and Denn 2003; Faltas and Saad 2005).

Recently, some studies that explain the effect of slip
boundary conditions on the peristaltic dynamics for dif-
ferent fluids under different conditions have been carried
out (El-Shehawey et al. 2006; Ali et al. 2008; Ebaid 2008;
Hayat et al. 2008,b; Ellahi 2009). But to the best of our
knowledge, no one has attempted to calculate the trapping
and reflux limits for a slip flow in an asymmetric channel
with peristalsis.
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The aim of this paper is to investigate the influence
of the slip boundary conditions on the trapping phenom-
ena and the reflux limits with peristaltic transport in an
asymmetric channel under the conditions of low Reynolds
number and long wavelength. Therefore, we will consider
peristaltic transport in the uterus (transport of intra-uterine
fluid flow) as an example of the applications which involve
the peristaltic transport technique in an asymmetric channel
with the slip condition.

2. Formulation of the problem and solution

We consider the motion of incompressible viscous Newto-
nian fluid in a two-dimensional asymmetric channel. Equa-
tions of motion are governed by the Navier–Stokes equa-
tions in two dimensions,

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= − 1

ρ

∂P

∂X
+ ν∇2U, (1)

∂V

∂t
+ U

∂V

∂X
+ V

∂V

∂Y
= − 1

ρ

∂P

∂Y
+ ν∇2V , (2)

and the continuity equation

∂U

∂X
+ ∂V

∂Y
= 0, (3)

where U and V are the fluid velocity components in the
X and Y directions in laboratory frame; ρ is the density
of the fluid; P is the pressure; ν is the kinematic viscosity
(ν = µ/ρ, with µ the coefficient of the viscosity of the
fluid); and

∇2 = ∂2

∂X2
+ ∂2

∂Y 2
.

The channel asymmetry is produced by choosing the
peristaltic wave train on the walls to have different ampli-
tudes and phase as shown in Figure 1. Consider the upper
and lower channel walls:

Y = H1 = d1 + a1 cos
2π

λ
(x − c t), (4)

Y = H2 = − d2 − b1 cos

[
2π

λ
(x − c t) + φ

]
, (5)

where a1 and b1 are the amplitudes of the waves; λ is the
wavelength; (d1 + d2) is the width of the channel; and φ

is the phase difference that varies in the range 0 ≤ φ ≤ π.
Further, a1, b1, d1, d2 and φ satisfy the condition a2

1 + b2
1 +

2a1b1 cos φ ≤ (d1 + d2)2.
Now introduce a wave frame (x, y) moving with the

velocity c away from the fixed frame (X, Y ) by the trans-

formations

x = X − c t, y = Y, u = U − c, v = V,

p (x) = P (X, t), (6)

where u and v are the fluid velocity components and p is
the pressure in the wave frame of references.

Furthermore, introduce the Reynolds number R, the
wave number δ, the stream function ψ (where u = ∂ψ/∂y

and v = −∂ψ/∂x) and the following non-dimensional vari-
ables:

x̄ = x

λ
, ȳ = y

d1
, ū = u

c
, v̄ = v

cδ
, δ = d1

λ
,

R = c d1

ν
, t̄ = c t

λ
, a = a1

d1
, b = b1

d1
, d = d2

d1
,

h1 = H1

d1
, h2 = H2

d1
, ψ̄ = ψ

c d1
, p̄ = d2

1 p

µ λ c
.

(7)

Using the transformations (6) and the non-dimensional vari-
ables (7) and after eliminating the pressure and dropping
the bars, Equations (1)–(3) in terms of the stream function
will take the form

R δ [(ψyψyxy − ψxψyyy) + δ2 (ψyψxxx − ψxψxyx)]

= δ4 ψxxxx + 2δ2 ψxxyy + ψyyyy. (8)

Under the assumptions of long wavelength, δ � 1 and low
Reynolds number, Equation (8) becomes

ψyyyy = 0. (9)

Also, the upper and lower channel walls will become

y = h1 = 1 + a cos 2πx, (10)

y = h2 = −d − b (cos 2πx + φ). (11)

The non-dimensional boundary conditions are

ψ = q

2
at y = h1, (12)

ψ = −q

2
at y = h2, (13)

∂ψ

∂y
+ β

∂2ψ

∂y2
= −1 at y = h1, (14)

∂ψ

∂y
− β

∂2ψ

∂y2
= −1 at y = h2, (15)

where q is the flux between the two walls in the wave
frame and β = η/d1 is the non-dimensional slip parameter.
The first and second conditions come from the relation
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Figure 1. Geometry of the problem.

Figure 2. The variation of Q̄ with �p for a = b = 0.2 and d = 1, for different values of φ and β.
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Figure 3. The variation of Q̄ with �p for a = 0.7, b = 1.2 and d = 2 , for different of φ and β.

Figure 4. The variation of Q̄ with φ for a = b = 0.5 and d = 1, for different values of �p and β.
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between the flux q and the stream function ψ , where q =
ψ(h1) − ψ(h2). The third and fourth conditions come from
the slip boundary condition (u = ∓η(∂u/∂y)).

Using these boundary conditions, the solution of Equa-
tion (15) is

ψ =
(

y − h1 + h2

2

)[
− 1 + (q + h1 − h2)

×
( −2

(
y − h1+h2

2

)2

(h1 − h2)2(6β + h1 − h2)

+ 3(4β + h1 − h2)

2(h1 − h2)(6β + h1 − h2)

)]
. (16)

In the limit as β → 0 (no slip flow), we get

ψ = q + h1 − h2

(h2 − h1)3
(2y3 − 3(h1 + h2)y2 + 6h1h2) − y

+ 1

(h2 − h1)3

[(
q

2
+ h1

)(
h3

2 − 3h1h
2
2

)

−
(

h2 − q

2

)(
h3

1 − 3h2h
2
1

)]
, (17)

which is the same as the result obtained by Mishra and
Ramachandra Rao (2003).

3. The average volume flow rate

The flux at any axial station in the fixed frame is given by

Q =
∫ H2

H1

U (y) dY. (18)

Integrating the non-dimensional form of this equation we
have

Q = q + h1 − h2. (19)

The average volume flow rate over one period, T = λ/c, of
the peristaltic wave is defined as

Q̄ = 1

T

∫ T

0
Q dT . (20)

By using Equation (19) in Equation (20) we get

Q̄ = 1

T

∫ T

0
(q + h1 − h2) dT = q + d + 1. (21)

Figure 5. The variation of Q̄ with φ for a = 0.7 b = 1.2 and d = 2, for different values of �p and β.
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4. The pressure gradient

The pressure gradient obtained from the dimensionless mo-
mentum equation for the axial velocity is as follows:

dp

dx
= ∂3ψ

∂y3
. (22)

From Equation (16) we get

dp

dx
= −12(q + h1 − h2)

(6β + h1 − h2)(h1 − h2)2
, (23)

through substitution from Equation (21) into Equation (23).
Then

dp

dx
= −12(Q̄ − (1 + d) + h1 − h2)

(6β + h1 − h2)(h1 − h2)2
. (24)

In the limit as β → 0 (no slip flow), we get

dp

dx
= −12

[
1

(h1 − h2)2
+ (Q̄ − (1 + d))

(h1 − h2)3

]
,

which is the same as the result obtained by Mishra and
Ramachandra Rao (2003).

5. Discussion of the results

5.1. Pumping characteristics

By integrating the axial pressure gradient (24) over one
wavelength λ, the pressure rise is given by

�p =
∫ 1

0

dp

dx
dx

=
∫ 1

0

−12(Q̄ − (1 + d) + h1 − h2)

(6β + h1 − h2)(h1 − h2)2
dx, (25)

Figure 6. Streamlines for a = b = 0.5, d = 1, φ = 0 and Q̄ = 2Q̄+ for different values of β: (a) β = 0, (b) β = 0.08, (c) β = 0.15 and
(d) β = 0.2.
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Figure 6. (Continued)

which can be written as

�p = −12((Q̄ − (1 + d)) I1 + I2), (26)

where

I1 =
∫ 1

0

1

(6β + h1 − h2)(h1 − h2)2
dx

and

I2 =
∫ 1

0

1

(6β + h1 − h2)(h1 − h2)
dx.

Also, we can write the average volume flow rate in terms
of the pressure rise as follows:

Q̄ = (1 + d) −
�p

12 + I2

I1
. (27)

The maximum pressure rise �p0 is obtained by putting
Q̄ = 0, i.e.

�p0 = 12((1 + d) I1 − I2). (28)

The maximum volume flow rate Q̄0 is obtained by putting
�p = 0, i.e.

Q̄0 = (1 + d) − I2

I1
. (29)

In the limit as β → 0 (no slip flow),

�p =
∫ 1

0

dp

dx
dx

= −12
∫ 1

0

[
1

(h1 − h2)2
+ (Q̄ − (1 + d))

(h1 − h2)3

]
dx,

which is the as the same result obtained by Mishra and
Ramachandra Rao (2003).
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Figure 6. (Continued)

Figure 2 represents the variation of volume flow rate
Q̄ with the pressure rise �p, for different values of the
phase difference φ, when the peristaltic wave amplitudes
are the same (a = b = 0.2, d = 1), taking into account
different values of the dimensionless slip parameter β (β =
0, 0.05, 0.1, 0.2). When φ = 0, it is observed that �p has
maximum value when Q̄ = 0 (�p = �p0 for Q̄ = 0), and
the pressure rise �p decreases with increase in Q̄ until �p

becomes zero for the maximum value of Q̄ (Q̄ = Q̄0 for
�p = 0). When φ = π/2, �p has values smaller than it
has when φ = 0; �p decreases with increase in β and Q̄,
but after a critical value of Q̄ we observe that �p decreases
with β but still decreases with increase in Q̄. Also, this
observation remains for φ = π, where �p begins from a
negative value.

Figure 3 displays the variation of �p with the volume
flow rate Q̄ for different values of φ and β in the case of
different peristaltic wave amplitudes (a = 0.7, b = 1.2, d =

2). From Figures 2 and 3 we can see that �p decreases
slowly with Q̄ for waves of different amplitudes than for
waves of equal amplitudes.

The variation of volume flow rate Q̄ with the phase
difference φ (φ = πS, 0 ≤ S ≤ 1), for different values of
the pressure rise �p (�p = −0.5, 0, 0.5) and the slip pa-
rameter β (β = 0, 0.05, 0.1, 0.2 ) at the peristaltic wave
amplitudes (a = b = 0.5, d = 1), is represented in Figure 4.
We observe from this figure that when �p = −0.5, Q̄ in-
creases as β increases and remains positive for all values
of S. When �p = 0, we observe that Q̄ decreases and ap-
proaches zero as S → 1 (φ → π) for all values of β. When
�p = 0.5, we observe that Q̄ has negative values for all
values of S and decreases as β increases.

Figure 5 is the same as Figure 3 but with different
peristaltic wave amplitudes (a = 0.7, b = 1.2, d = 2), and
we can see that the relation between Q̄ and S is a non-linear
function and rapidly decreases with S.
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Figure 6. (Continued)

5.2. Trapping

The phenomenon of trapping is the manner, whereby a bolus
(defined as the volume of a fluid bounded by closed stream-
lines in the wave frame) is transported at a wave speed as if
trapped by the wave (Eytan et al. 2001; Gharsseldien 2003;
Mishra and Rao 2003; El-Hakeem et al. 2006). The trapping
limits are determined by calculating the ratio between the
minimum volume flow rate Q− and the maximum volume
flow rate Q+, where ψ = 0 and y �= 0 (El-Hakeem et al.
2006). So by equating (16) to zero and solving it with re-
spect to y we get that y1 = (h1 + h2)/2 is one of the three
roots of this equation. So, we can write

− 1

(q + h1 − h2)

[
2y2(−q − h1 + h2) + 2y

(
h2

1 − h2
2

+ qh1 + qh2
) + q

(
h2

1 + h2
2 − 4h1h2 + 6β(h1 − h2)

)
− 2h2

1h2 + 2h1h
2
2

] = 0. (30)

This equation gives two real roots for y, when the dis-
criminate

q + (h1−h2)2

3(4β+h1−h2)

q + h1 − h2
≥ 0. (31)

By simplifying this equation we get

q → − (h1 − h2)2

3(4β + h1 − h2)
.

So we can say that Equation (30) gives two real roots if
Q̄ satisfies the condition

(1 + d) − F 2
min

3(4β + Fmin)
> Q̄ > (1 + d) − F 2

max

3(4β + Fmax)
,

(32)
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where F = h1 − h2 = 1 + d + a cos(2πx) + b cos(2πx +
φ), which leads to

Fmax = 1 + d +
√

a2 + b2 + 2ab cos φ,

Fmin = 1 + d −
√

a2 + b2 + 2ab cos φ .

To determine the ratio between the minimum volume
flow rate and the maximum volume flow rate, we will
choose

Q̄+ = (1 + d) − F 2
min

3(4β + Fmin)
(33)

and

Q̄− = (1 + d) − F 2
max

3(4β + Fmax)
. (34)

In the limit as β → 0 (no slip flow), we get

2(1 + d) −
√

a2 + b2 + 2ab cos φ

3
< Q̄

<
2(1 + d) +

√
a2 + b2 + 2ab cos φ

3
,

which is the same as the result obtained by Mishra and
Ramachandra Rao (2003).

By using the relation between Q̄, Q̄+ and Q̄− in the
current study, we can explain that the trapping occurs at two
regions of the channel, one at the channel centre (central
trapping) and the other at the walls (peripheral trapping).
The central trapping is observed when Q̄− < Q̄ < Q̄+; the
trapping moves far from the centre line towards the walls
when Q̄ > Q̄+.

In the case of the central trapping (Q̄− < Q̄ < Q̄+), it
is observed that the effect of the slip is very weak; so we
can say that there is no effect of the slip on the trapping
phenomenon in the centre of the channel.

Figure 7. Streamlines for a = b = 0.5, d = 1, β = 0.1 and Q̄ = 2Q̄+ for different values of φ: (a) φ = 0, (b) φ = π

2 and (c) φ = π.
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Figure 7. (Continued)

Figure 6 explains the streamlines when Q̄ > Q̄+ for
β = 0, 0.08, 0.15, 0.2 and the wave amplitudes a = b =
0.5 and d = 1; it is observed that the bolus of the trap-
ping will travel to the walls (peripheral trapping), and
furthermore, the size of the trapping bolus increases and
the centre of the trapping moves closer to the walls as β

increases.
Figure 7 investigates the effect of the phase shift φ on

the trapping when Q̄ = 2Q̄+. In Figure 7, the wave am-
plitudes are a = b = 0.5 and d = 1 and the slip parameter
β = 0.1, and φ takes the values 0, π/2 and π. It is ob-
served that the bolus of the trapping will travel to the walls
(peripheral trapping), and further, the size of the trapping
bolus increases and the centre of trapping moves closer to
the walls as φ increases.

5.3. Reflux

Reflux is defined as the presence of some fluid particles
whose mean motion over one cycle is against the net

pumping direction. Following Shapiro et al. (1969), Qψ

is defined as the dimensionless volume flow rate in the
laboratory frame between the centre line of the channel
((h1 + h2)/2) and the wave frame streamline ψ , which is an
indicator of material particles in a fixed frame, and is given
by

Qψ =
∫ Y (ψ,X,t)

h1+h2
2

U (X, Y, t)dY. (35)

After using the transformations (6) and the non-
dimensional variables (7), we get

Qψ =
∫ y(ψ,x,t)

h1+h2
2

udy +
∫ y(ψ,x,t)

h1+h2
2

dy = ψ + y(ψ, x, t)

− h1 + h2

2
. (36)
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Figure 7. (Continued)

Averaging this equation over one period of the wave, we get

Qψ = ψ +
∫ 1

0
y(ψ, x)dx − 1 − d

2
. (37)

A reflux layer exists near the wall whenever Q∗ > 1, where
Q∗ = Qψ/Qw = 2Qψ/Q̄.

In order to calculate the limits on Q̄ for reflux, we will
consider a wave streamline very close to the wall; so we
will expand y about the wall in powers of a small parameter
ε, where

ε = ψ − ψw = ψ − q

2
. (38)

Then

ψ = ε + q

2
, (39)

and we will take

y = h1 + aε + bε2 + . . . . (40)

Substituting Equation (16) into Equation (39) and then us-
ing Equation (40), we can calculate after some simplifica-
tions the values of coefficients a, b, . . . . Then y takes the
form

y = h1 − ε + 6β(q + h1 − h2)ε

6qβ − (h1 − h2)2

− 3(q + h1 − h2)(h1 − h2)2(6β + h1 − h2)2ε2

(−6qβ + (h1 − h2)2)3

+ . . . .
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Figure 8. Reflux limits with the phase difference for a = b = 0.2 and d = 1, or different values of β.

Integrating y with respect to x and neglecting that term
which contains ε2, we have

∫ 1

0
y(ψ, x)dx = 1 − ε + ε

×
[ √

3β

2 (
√

q − √
6β)

((1 + d + √
6qβ)2 − (a2 + b2 + 2ab cos φ))

1
2

−
√

3β

2 (
√

q + √
6β)

((1 + d − √
6qβ)2 − (a2 + b2 + 2ab cos φ))

1
2

]
. (41)

Substituting from Equations (38) and (41) into Equation
(37), we obtain

Qψ = Q̄

2
+ ε

×
[ √

3β

2 (
√

q − √
6β)

((1 + d + √
6qβ)2 − (a2 + b2 + 2ab cos φ))

1
2

−
√

3β

2 (
√

q + √
6β)

((1 + d − √
6qβ)2 − (a2 + b2 + 2ab cos φ))

1
2

]
.(42)

Applying the reflux condition Q∗ > 1 which we refer to,
we get that the reflux limits are given when

Q̄ < Q̄crit,

where

Q̄crit = a2 + b2 + 2ab cos φ

1 + d + 6β
. (43)

At this value the of Qcrit reflux limits are observed.
Finally, our results about reflux agree with those of

Mishra and Ramachandera (2003) when β → 0 (no slip
flow) for every equation.

Figure 8 investigates the influence of the slip parameter
β and the phase difference φ = πS (0 ≤ S ≤ 1) on the
reflux limits, when the peristaltic wave amplitudes are a =
b = 0.2 and d = 1. We observe that the reflux limits have
the maximum value (0.08) when β = 0 and φ = 0 (i.e. S =
0; symmetric channel). Also, the reflux limits approaches
zero when the phase difference φ → π or S → 1, which
means that the channel becomes asymmetric, for any value
of β.

Finally we observe that the values of the reflux limits
decrease with increase in β and φ. So we can say that there
is an obvious influence of the slip parameter and the phase
difference on the value of Q̄crit at which the reflux limits
occur.
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