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Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that
can be harnessed in promising engineering applications. However, due to its complex synapse
learning rules and network structure, it is difficult to update its synaptic weights quickly and
implement its large scale physical circuit. This paper addresses an implementation scheme of
a novel CNN with memristive neural synapses that may provide a feasible solution for further
development of CNN. Memristor, widely known as the fourth fundamental circuit element, was
theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in
Hewlett-Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected
to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has
four significant features: (1) nanoscale memristors can simplify the synaptic circuit greatly and
enable the synaptic weights update easily; (2) it can separate stored patterns from superimposed
input; (3) it can deal with one-to-many associative memory; (4) it can deal with many-to-many
associative memory. Simulation results are provided to illustrate the effectiveness of the proposed
scheme.

1. Introduction

Over the last three decades, chaos has been extensively studied by many researchers to
understand complex dynamical phenomenon of nonlinear circuits. It has been found that
chaotic dynamics may exist in biological neurons in human brain and play important role
in associative memory [1, 2]. To mimic biological neuron, a chaotic neuron model has been
proposed by Aihara et al. and subsequently many associative chaotic neural network models
have been developed by other researchers [3–13].

In the traditional study of associative chaotic neural networks, researchers generally
considered that each historic event works on the network with equal degree, which is,
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however, hardly the situation in reality. In fact, it has been observed that long-term memory
that stores historic events in human brain always decays with time at an exponential rate.
Moreover, for traditional chaotic neural network, its structure is very complex, its size is
difficult to expand, and its capacity of information processing is limited. Those characteristics
pose significant obstacles in CNN’s further development. Based on our previous work
[10–13], in this paper, we propose a novel associative chaotic neural network with a new
exponential decay spatiotemporal effect and a part of spatiotemporal summation whose
behavior is more similar to the physiological senses. A memristive neuronal synapse has
been designed taking advantage of the variable memristance (resistance of memristor) and
memory ability (even if power off) of the memristor [14, 15]. This is expected to simplify the
connections between neurons and reduce the complexity of chaotic neural network greatly.

A memristor or memristive device is essentially a basic two-terminal electronic
element with nonvolatile continuously variable resistance which can be modulated by
the flux or the charge through it. In 1971, Chua theoretically formulated and defined
memristor and described that the memristance (resistance of memristor) is defined by the ϕ-q
constitutive relation, that is, M = dϕ/dq [14]. For about four decades, it did not draw much
attention until the recent TiO2-based nanoscale practical memristor was developed by the HP
Labs [16, 17]. Since the startling behavior of metal oxide film as a simple memristor structure
was reported, it immediately garnered extensive interests among numerous researchers from
academia and industry. Due to the perfect characteristics, it has been proposed in a broad
range of applications including resistive random access memory (RRAM) [18, 19], artificial
neural networks [20–22], chaotic circuits [23, 24], Boolean logic implementation [25, 26],
signal processing, and pattern recognition [27–29]. Here, we show that analog memristive
effects can be achieved in a nanoscale TiO2-based memristor and this type of device exhibits
reliable synaptic behavior. It is expected to change the way computer works completely.
Moreover, it has potential applications in modern intelligent information processing.

In this paper, we present an implementation scheme for a new chaotic neural network
with memristive neural synapse (MCNN). The classical CNN proposed by Aihara et al. is
reviewed and the dynamical behaviors for this chaotic neuron are analyzed experimentally
in Section 2. Following that the MCNN is presented in Section 3. Firstly, the memristor model
is described through mathematical theory, its behaviors are simulated by computer, and its
principle characteristics are analyzed in detail. Next, we explain the structure of the MCNN
and its dynamical equations also with the simplified memristive synaptic circuit. Associative
memory abilities of the MCNN are introduced finally. In order to illustrate the effectiveness
of the MCNN, we design a series of computer simulations in Section 4. Reported results
indicate that the MCNN can deal with the separation of superimposed patterns, one-to-many
and many-to-many association successfully. By integrating the advantages of memristor,
chaos, and neural networks, this design will provide theoretical and practical foundations
for developing intelligent information processing system.

2. Chaotic Neural Networks with Dynamical Behaviors Analysis

In this section, we briefly review chaotic neural networks. A series of numerical analysis of
the firing rate, the bifurcation structure, and the Lyapunov exponent demonstrate the rich
dynamical behaviors of the CNN.
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2.1. CNN Based on Aihara’s Model

The dynamical equation of a chaotic neuron model with continuous functions described by
[1],

x(t + 1) = f

(
A(t) − α

t∑
d=0

kdg(x(t − d)) − θ

)
, (2.1)

where x(t + 1) is the output of the chaotic neuron at the discrete time t + 1, which is an
analogue value between 0 and 1; f is a continuous output function, such as logistic function
f(y) = 1/(1+e−y/ε)with the steepness parameter ε; g is a function describing the relationship
between the analog output and the refractoriness which can be defined as g(x) = x; A(t) is
the external stimulation; α, k, and θ are positive refractory scaling parameter, the damping
factor, and the threshold, respectively. If defining the internal state y(t + 1) as

y(t + 1) = A(t) − α
t∑

d=0

kdg(x(t − d)) − θ (2.2)

we can reduce (2.1) to the following

y(t + 1) = ky(t) − αg
(
f
(
y(t)
))

+ a(t),

x(t + 1) = f
(
y(t + 1)

)
,

(2.3)

where a(t) is called bifurcation parameter and defined by

a(t) = A(t) − kA(t − 1) − θ(1 − k). (2.4)

The neuron model with chaotic dynamics described above can be generalized as an
element of neural network called chaotic neural network (CNN). The dynamics of the ith
chaotic neuron with spatiotemporal summation of feedback inputs and externally applied
inputs in a CNN composed of M chaotic neurons and N externally applied inputs can be
modeled as

xi(t + 1) = f
(
ξi(t + 1) + ηi(t + 1) + ζi(t + 1)

)
, (2.5)
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where the external inputs ξi(t+1), the feedback inputs ηi(t+1), and the refractoriness ζi(t+1)
are defined as (2.6)–(2.8), respectively.

ξi(t + 1) =
N∑
j=1

VijAj(t) + keξi(t) =
N∑
j=1

Vij

t∑
d=0

kd
eAj(t − d), (2.6)

ηi(t + 1) =
M∑
j=1

Wijxj(t) + kfηi(t) =
M∑
j=1

Wij

t∑
d=0

kd
fxj(t − d), (2.7)

ζi(t + 1) = −αg{xi(t)} + krζi(t) − θi = −α
t∑

d=0

kd
r g{xi(t − d)}, (2.8)

where Vij serves as the synaptic weight between the external inputs and the neurons.
Similarly,Wij indicates the synaptic weights between two neurons and is trained by Hebbian
learning algorithm, such as,

Wij =
M∑
k=1

(
xk
i x

k
j

)
or Wij =

1
M

M∑
k=1

(
2xk

i − 1
)(

2xk
j − 1

)
. (2.9)

2.2. Dynamical Behaviors Analysis

The firing rate of a neuron is a fundamental characteristic of the message that conveys to
other neurons. It is variable and denotes the intensity of its activation state. As such, it ranges
from near zero to some certain maximum depending on its need to convey a particular level
of activation. Traditionally, it has been thought that most of the relevant information was
contained in the average firing rate of the neuron. The firing rate is usually defined by a
temporal average meaning the spikes that occur in a given time window. Division by the
length of the time window gives the average firing rate [30]. Here, the average firing rate or
excitation number of a single chaotic neuron depicted in (2.3) is defined as

ρ = lim
n→+∞

1
n

n−1∑
t=0

h(x(t)), (2.10)

where h is a transfer function which represents waveform-shaping dynamics of the axon
with a strict threshold for propagation of action potentials initiated at the trigger zone and
assumed to be h(x) = 1 for x ≥ 0.5 and h(x) = 0 for x < 0.5. By adjusting the bifurcation
parameter a(t) from 0 to 1, when the other parameters are set as k = 0.7, α = 1.0, ε =
0.02, y(0) = 0.5, and the average firing rate is shown in Figure 1.

It is a characteristic of chaotic systems that initially nearby trajectories separate
exponentially with time. The Lyapunov exponent or Lyapunov characteristic exponent of
a dynamical system is a quantity that characterizes the rate of separation of infinitesimally
close trajectories. The rate of separation can be different for different orientations of initial
separation vector. Thus, there is a spectrum of Lyapunov exponents—equal in number to the
dimensionality of the phase space. It is common to refer to the largest one as the Maximal
Lyapunov exponent (MLE), because it determines a notion of predictability for a dynamical
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Figure 1: The average firing rate of the chaotic neuron.
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Figure 2: Response characteristics diagram of (2.3): (a) the bifurcation structure; (b) the Lyapunov
exponent.
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system. Specifically, a positiveMLE is usually taken as an indication that the system is chaotic
[31].

For quantitative analysis of the system (2.3), the Lyapunov exponent λ is defined as
follows,

λ = lim
n→+∞

1
n

n−1∑
t=0

ln
∣∣∣∣dy(t + 1)

dy(t)

∣∣∣∣. (2.11)

Response characteristics of this system are shown in Figure 2. From Figure 2(a), one
can see the bifurcation structure clearly. Figure 2(b) shows the Lyapunov exponent spectrum
of this system. The values of the parameters employed are set as the same as those in Figure 1.

3. The Chaotic Neural Network with Memristive Neuronal Synapses

In this section, the memristor is introduced at first to describe its typical characteristics. Then
a new chaotic neural network (MCNN) with memristive synapses is presented in detail.
Finally, the associative memory abilities of the MCNNmodel are analyzed.

3.1. Memristor Model Description

All two-terminal nonvolatile memory devices based on resistance switching are memristors,
regardless of the device material and physical operating mechanisms [15]. Similar to the
resistor (which relates voltage v and current i), capacitor (which relates charge q and voltage
v) and inductor (which relates flux ϕ and current i), the memristor relates the flux ϕ, and the
charge q of a device.

The behaviors of a general memristive device can be described by a pair of coupled
equations as following:

v = R(w, i)i, (3.1a)

ẇ = f(w, i), (3.1b)

where (3.1a) is the i-v equation for the memristive device andw is an (or a group of) internal
state variable which is determined by the excitation history of the device. A mathematical
model of the typical HP TiO2-based memristor can be described by [16]

v(t) =
(
Mon

w(t)
D

+Moff

(
1 − w(t)

D

))
i(t),

dw

dt
=

μvMon

D
i(t),

w(t) =
μvMon

D

∫ t

0
i(t)dt +w(0) =

μvMon

D
q(t) +w(0),

(3.2)
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Figure 3: Characteristics of memristor. (a) Typical memristor i-v pinched-hysteresis loop; (b) memristor
q-φ curve; (c) memristance versus state map; (d) memristance changes with a series of voltages pulses.

where, M(t) = Mon(w(t)/D) +Moff(1 −w(t)/D) is the total memristance, D and w indicate
the thickness of the whole TiO2 film and the high conductive region, respectively. If w = 0 or
w = 1, memristor reaches the memristance limit value, Moff or Mon. w(0) denotes the initial
value of w. μv is average ion mobility parameter in units of m2 s−1 V−1.

Characteristics of thememristor have been analyzed through simulations. By applying
a sinusoidal voltage, we can observe the symbolic pinched hysteresis loop (in Figure 3(a))
confined to the first and the third quadrants of the i-v plane. The switching characteristic can
be seen from this figure [28], that is, memristor can switch between the high-resistance state
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(“OFF”) and the low-resistance state (“ON”), which has been proposed in binary memory,
Boolean calculation, crossbar array, and signal processing abundantly. It should be noted that
the pinched hysteresis loop for i-v characteristic implies the device is a memristor, but this
curve itself is useless as a model since its contour shape changes with both the amplitude
and the frequency of any periodic sine wave like applied voltage or current source and thus
cannot be used to predict the current response to arbitrarily applied voltage signals, and vice
versa [15]. Moreover, it also can be found that under low-frequency AC excitation, there is
an obvious i-v pinched hysteresis loop, but under high-frequency case, the hysteresis loop
collapses and memristor degenerates into a fixed resistor.

One of the twoways to predict the response of the device is the q-ϕ constitutive relation
(in Figure 3(b)). As seen in this figure, the memductanceG(ϕ(tk)) at the time t = tk is equal to
the slope of the q-ϕ curve at ϕ = ϕ(tk), which is called small-signal memductance. Similarly,
if the stimulation is a current source, the memristance M(q(tk)) at the time t = tk is equal to
the slope of the ϕ-q curve at q = q(tk), and called small-signal memristance. Assuming the
constitutive relation curve is continuous at the time t = tk and the stimulation has sufficiently
small amplitude with a fixed frequency, which is called as small-signal condition [15], the
small-signal memductance or memristance approximately keeps constant being equal to the
curve slope at the time tk over time and would be indistinguishable from a linear resistance.

Memristance versus state map is an equivalent representation as q-ϕ curve and also
obeys Ohm’s Law except that the memristance is not a constant, as illustrated by the example
in Figure 3(c). The memristance decreases continuously with the flux increasing, and vice
versa. When the flux reaches the limits, minimum or maximum, for a given memristive
device, the memristance remain the ultimate value,Moff or Mon.

Figure 3(d) clearly presents the relationship between the memristance and the applied
voltage. By applying a series of small voltage pulses with the same magnitude but
opposite polarity, we have observed the stair-like decrement (or increment) of memristance
correspondingly. If the bias is a big stimulation, memristance changes continuously. Thus,
one can tune and choose different memristances flexibly according to the requirements in
different applications by controlling the amplitude, polarity, and duration of the stimulation.

3.2. Memristive Chaotic Neural Network

Based on previous works [10–13, 28], we propose a new chaotic neural network with
memristive neuronal synapses (MCNN). This MCNNmodel has four distinguishing features
from the traditional CNN: (1) continuously external input replaces initial input, (2)
spatiotemporal effect is replaced with a new exponential decreasing effect, and (3) a part of
summation replaces the whole spatiotemporal summation. In traditional associative CNN,
researchers considered that each historic effect worked on the network with the same equal
level, so they usually assumed decay parameters as constant values which are far from
the truth in facts. (4) The memristor is exploited for the synaptic weights. Memristors
exhibit dynamical resistance modeled by the stimulation history, which is very similar to
the biological neuron synapse and has been proposed in artificial neural network (ANN)
as synaptic connection. The MCNN with the features above is more suitable to mimic the
biological neuron. Moreover, since the memristor is a nanoscale device and it can simplify the
synaptic circuit obviously, the MCNN is expected to be realized in physical implementation
as a part of a VSLI chip.
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Figure 4: Structure of the memristive chaotic neural networks.

Figure 4 shows the structure of the proposedMCNNmodel that consists of three layers
and all of the neurons are fully connected, which is similar to the Hopfield neural networks.

In the MCNN, the dynamics of the ith chaotic neuron in the αth layer is given as
follows:

(1) while t > t0,

xi
α(t + 1) = φ

⎛
⎜⎜⎝

L∑
β=1
β /=α

N∑
j=1

W
αβ

ij (t)
t∑

d=t−t0
k(r1)hj

(
xj(t − d)

)
+

M∑
j=1

Wαα
ij (t)

t∑
d=t−t0

k(r2)hj

(
xj(t − d)

)

+ V α
i (t)

t∑
d=t−t0

k(r3)Ii(t − d) − a
t∑

d=t−t0
k(r4)gi(xi(t − d)) − θ

(α)
i

⎞
⎟⎟⎠,

(3.3)

(2) while t ≤ t0, replace d = t − t0 with d = 0 in (3.3).

Here, xi
α(t + 1) is the output of the chaotic neuron. L, N, and M are the number of

layers, the chaotic neurons in the βth layer and in the αth layer; Ii(t − d) is the input of the ith
neuron in the αth layer; Vi

α(t) is the connection weight between the input and the neurons
in the αth layer; Wαβ

ij (t) indicates the weight between the ith chaotic neuron in the αth layer
and the jth neuron in the βth layer. The decay parameter and transfer function are defined
as k(u) = e−u and φ(y) = 2/(1 + e−y/ε), respectively. For simplicity, g(x) = x and h(x) =
x. Moreover, we utilize Hebbian learning regulation as learning algorithm of the synaptic
weights.
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Figure 5: Simplified schematic diagram of the memristive synaptic circuit.

3.3. Memristive Neuronal Synapse in MCNN

We present a simplified memristive synapse circuit using memristors as part of the neuronal
synapse taking advantage of the continuously variable memristance and memory ability
of memristors. Figure 5 shows the schematic diagram of the memristive synaptic circuit, in
which the input voltage source Vin is assumed as the output of a neuron, and the output of
the synaptic circuit Vout is connected to next neuron as the input signal after weighting. The
memristor placed in the feedback path can be programmed by the constant programming
current using the circuit’s voltage to current conversion for a big programming voltage Vpro.
Assume that the Op-amp is ideal, and then the memristance after programming by a low-
frequency voltage Vpro for a time width tp is given by

w
(
tp
)
= uv

Mon

DR

∫ tp

0
Vprodt +w(0),

M
(
tp
)
= Moff + (Mon −Moff)

w
(
tp
)

D
.

(3.4)

The synaptic weight (Wij in (3.3)) is realized by the gain of the amplifier:

Wij = Gain =
vout(t)
vin(t)

= −M
(
tp
)

R
. (3.5)

Different weight values can be obtained easily by changing memristance and the
memristance can be set by applying different programming voltages. The synaptic weight
keeps constant after the programming operation (the programming voltage cut off) based on
thememory ability ofmemristor. If the synaptic weight should be a positive value, connecting
a reversing amplifier to the memristive synaptic circuit may be an effective method.

Next, when the MCNN has been trained by setting its connection weights, it will
work normally in some applications such as associative memory. As described in the front,
memristors can be considered as a content resistor under a high frequency (or very short
operation time) or a small enough external excitation. In this paper, each step of the programs
in the simulations uses very short time, about 0.01 s in MATLAB, thus in order to simplify
the experiments, we assume that the memristance approximately levels off at the value
set in programming stage. At the practical level, for a real memristor, it has some certain
threshold voltages presented in literatures [19]. Therefore, in physical implementation of the
MCNN, this behavior can be realized by using some voltage-controlling solutions that enable
memristance changeable depending on the operation requirement.
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3.4. Associative Memory for MCNN

Here, we will primarily analyze the ability of associative memory of the memristive chaotic
neural network by undertaking three important applications of the MCNN for examples.

3.4.1. Separation of Superimposed Patterns

Let us assume that a training pattern set {X,Y} is memorized in the neural network. When
X is given to the network as an externally applied input continuously, the network searches
around the input pattern, so pattern X is recalled. When the superimposed pattern (X + Y )
is given, the network searches around the X and Y . Due to the property that the chaotic
neurons change their states by chaos, the X and the Y can be recalled, respectively. We can
also simplify the separation procedure as follows:

X + Y −→ · · · −→ X −→ · · · −→ Y −→ · · · −→ X −→ · · · . (3.6)

3.4.2. One-to-Many Associations

Based on the property of separation of superimposed patterns, assume the following training
set (X1, Y1, Z1) has been memorized in a three-layered MCNN, When X1 is given to the first
layer of the network continuously as input, the first layer searches and recalls the X1 without
doubt, the second and the third layer can search around Y1 and Z1 by chaotic itinerancy,
respectively. So, X1, Y1, and Z1 can be recalled in three layers, respectively, and one-to-many
associations is realized.

3.4.3. Many-to-Many Associations

Let us consider the following training set {(X1, Y1, Z1), (X1, Y2, Z2), (X3, Y3, Z3)}, two patterns
of which contain a common term X1. When X1 is given to the first layer of the network
continuously, the internal state of the chaotic neuron in the second layer is determined by
the following formula:

Iβ = X1W
(αβ) = X1X

T
1 Y1 +X1X

T
1 Y2 +X1X

T
3 Y3

= X1X
T
1 (Y1 + Y2) +X1X

T
3 Y3,

(3.7)

where W (αβ) is the connection weight matrix between the first layer and the second layer,
X1X

T
3 Y3 is the noise term, and Y1 + Y2 is the superimposed term resulting from the common

term X1. Similarly, the superimposed term Z1 + Z2 appears in the third layer. The network
searches around Y1 and Y2 by chaotic itinerancy in the second layer and searches around Z1

andZ2 in the third layer. Then, pattern (X1, Y1, Z1) and (X1, Y2, Z2) can be recalled at different
time, realizing the many-to-many associations.
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4. Simulation Results

In order to demonstrate the effectiveness and associative memory ability of the proposed
MCNN, we perform a series of computer simulations. Since bipolar data (−1 or 1) are used
in patterns, the weight values can be calculated by simple derivation based on the Hebbian
algorithm formula (the first formula in (2.9)) according to the number of the patterns to be
remembered, that is,W ∈ {−N,−N +2, . . . , 0, . . . ,N −2,N}, whereW is the weight value and
N (N > 1) is the number of the patterns. For example, if there are three patterns used in the
weight computation at one time, the weight values belong to {−3,−1, 0, 1, 3}.

In the following experiments, the number of the patterns in the training set used for
computing the weights is one, two, and three, respectively. So all of the weight values belong
to {−3,−2,−1, 0, 1, 2, 3}, where, the value “0” means there is no connection between the two
neurons, so we do not need to consider it. Moreover, it is known that thememristancemust be
positive, so the output of the synaptic circuit is negative (seen from (3.5)). Since the weight
values X and −X imply the same memristance state but with an opposite weight sign, so
we use a reversing amplifier connected to the synaptic circuit to realize the positive weight.
Therefore, for a given resistorR = 10 kΩ, thememristor should be programmed to three states
30 kΩ, 20 kΩ, 10 kΩ, to realize the weights −3,−2,−1 (and 3, 2, 1). Figure 6 shows such three
memristance states which we have got and the corresponding voltage pulses (1V, 0.36 s),
(1V, 1.02 s), (1V, 1.42 s). Next, by using the synaptic weights obtained from the memristive
synaptic circuit, we will study the associative memory ability of the MCNN.

4.1. Separation of Superimposed Patterns of a MCNN

We have designed a MCNN containing 49 neurons to realize the separation of superimposed
pattern and the training set is shown in Figure 7. The superimposed pattern A + B is input
to the network continuously and the number of output is 20. Network Parameters are set as
a = 9.8, kr1 = 0.9, kr2 = 0, kr3 = 0.1, kr4 = 0.9, V = 200, θ = 0, and logistic function with
ε = 0.02. This MCNN has a layer and the total valid weight values belong to {−3,−1, 1, 3}.

Figure 8 shows the output of the MCNN for separation of superimposed pattern, in
which pattern A is separated from the superimposed pattern at step 6, 9, 13, and 16, and
pattern B is separated at step 5, 8, 11, 14, and 17 successfully. This processing progress takes
about 0.01 s in software MATLAB.

4.2. One-to-Many Associations of a MCNN

We have designed a 3-layeredMCNNwith each layer containing 81 neurons. The parameters
are: a = 10, kr1 = 0.95, kr2 = 0.1, kr3 = 0.1, kr4 = 0.95, V = 100, θ = 0, and logistic
function with ε = 0.015. The valid weight values in each layer belong to {−1, 1} and those
between two layers also belong to {−1, 1}.

Figure 9 shows the training set (A, a, 1). After the whole pattern set is stored in
the MCNN by Hebbian learning algorithm, when a pattern A is given to the network as
an external input continuously, the whole pattern set can be recalled perfectly (Figure 10)
and realize one-to-many associations. This processing progress takes about 0.3 s in software
MATLAB.
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Figure 6: Three memristance states and the corresponding programming voltage pulses.

4.3. Many-to-Many Associations of a MCNN

A 3-layered 81-81-81 MCNN has been designed for many-to-many associations with a part
of spatiotemporal summation (t0 = 3 the same as that in the experiments above). The
parameters are a = 10, kr1 = 0.95, kr2 = 0.1, kr3 = 0.1, kr4 = 0.95, V = 100, θ = 0,
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Figure 10: Output of a MCNN for one-to-many associations.
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Figure 11: Training set.

and logistic function with ε = 0.015. The valid weight values in each layer belong to {−2, 2}
and those between two layers belong to {−3,−1, 1, 3}.

The training set {(A, a, 1), (A, b, 2), (C, c, 3)} shown in Figure 11 is stored in the
MCNN, in which the first two patterns include the common term A. The terms A and C

are remembered in the first layer, the terms a, b, and c are remembered in the second layer,
and 1, 2, and 3 in the third layer. In order to show the outputs clearly, we put the outputs
from three layers at the same time together. Figure 12 shows the responses when A is given
to the first layer as an external input, in which (A, a, 1) appears 9 times and (A, b, 2) appears
10 times in 30 steps of output. That implies the realization of the many-to-many associative
memory of MCNN. This simulation takes about 0.4 s in MATLAB software.

It can be seen from the above experiments that the MCNN can realize associative
memory successfully, which indicates it can perform the typical applications as the traditional
CNN. Moreover, this MCNN has special characteristics over the traditional ones. First of
all, it needs set its connection weights to realize memory ability for a CNN, which is
usually called training operation. In order to perform different tasks, these weights should
be updated correspondingly. Traditionally, changing these weights is difficult because the
synaptic circuit is fixed and complex. In the meantime, this is also a key factor why CNN
has not been practically implemented widely. Fortunately, the memristor possesses fast
switching (<10 ns), low energy (∼1 pJ/operation), high write endurance (1010), multiple-
state operation, scalability, synapse-like behaviors, and CMOS compatibility. The size of a
memristor is 1/10 of that of a transistor and requires much less energy, so the memristive
synaptic circuit would be more simple and smaller than the traditional circuits. What is more
important is it can be very easy to update the connection weights just by reprogramming the
memristors in the synaptic circuits with proper programming voltages, which saves the big
replacement of the synaptic circuit as in traditional CNN and makes the MCNN be expected
to be realized in large scale physical circuit.
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Figure 12: Output of the proposed MCNN for many-to-many associative memory.

5. Conclusions

An implementation scheme for a new Chaotic Neural Network with memristive neuronal
synapses (MCNN) is addressed in this paper. Exponential decay spatiotemporal effect and a
part of spatiotemporal summation are considered in the MCNN, which is closer to biological
neuron behavior and has higher efficiency in information processing such as associative
memory. The characteristics of memristors are analyzed including the i-v characteristics,
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q-ϕ constitutive relation, and memristance versus state map with the relationship between
the applied voltage and memristance. A memristive synaptic circuit is designed based on
a variable gain amplifier. The weight value can be updated easily taking advantage of the
variable memristance by programming memristor. When an input signal passes through the
memristive synaptic circuit, the weighting operation is realized. Reported simulation results
show the effectiveness of the memristive chaotic neural network, that is, it can separate
stored patterns from superimposed input pattern and can deal with one-to-many associative
memory and many-to-many associative memory perfectly. Furthermore, the memristive
synaptic circuit makes the network structure of MCNN more simple and more powerful. At
the same time, due to the simple structure (two-terminal), small device size (nano-scale) of
the memristor, the proposed MCNNmodel has a brighter future in physical implementation
and holds potential to be implemented in VLSI chips.
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