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We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution
algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods
have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced
by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The
orthogonal learning (OL) strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful
information via orthogonal experimental design (OED). Differential evolution (DE) is a heuristic algorithm. It has shown to be
efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE)
is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more
useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

1. Introduction

Image registration is an important step for many fields [1],
such as change detection, image fusion, and object recog-
nition. In order to provide complete information about the
image, it is necessary to register the images taken from dif-
ferent sensors or from the same sensor at different times. The
result of image registration will greatly influence the perfor-
mance of the follow-up procedure. So remote sensing image
registration methods should be efficient, robust, and accu-
rate.

Image registration methods are usually divided into two
categories: feature-based and intensity-based methods [2,
3]. Many feature-based methods have been proposed [4,
5]. These methods usually need to initially extract salient
features, such as point, edge, contour, and region. Those fea-
tures are matched using similarity measures to establish
the geometric correspondence between two images. One of
the main advantages of these approaches is that they are
efficient and robust to noise, complex geometric distortions,
and significant radiometric differences. However, they will
only perform well on the condition that suitable features

are extracted and reliable algorithms are used [3]. For some
images, where features are not obvious, intensity-based meth-
ods perform better than feature-based methods.

The key procedure of intensity-based method is to find
the optimal similarity metric. The similarity metric is to mea-
sure how closely the gray values of two images are matched.
The similarity metric for remote sensing image registration
must be robust. There are many commonly used similarity
metrics [2, 6-11]. Mutual information which is based on the
Shannon definition of entropy [9, 10] was widely used in a
lot of current work. Mutual information has been shown to
be robust and does not depend on the intensity scaling or
specific dynamic range of the images [12].

The searching strategy optimizes the similarity metric.
Both local and global search strategies are commonly used.
Many local methods have been used in image registration
[13, 14]. These local methods yield the best registration when
the initial orientation is very close to the true transformation.
Besides, they are still easy to be trapped in a local optimum
[14, 15]. So the global optimization is often required and
global methods have been successfully applied to image
registration [8, 12, 16-22].



The differential evolution (DE) algorithm was proposed
by Storn and Price for global optimization over continuous
search space [23]. DE is a version of evolutionary algorithm
(EA) that has proven to be fast and reliable in many appli-
cations [23-29]. The DE algorithm has shown to be efficient
in remote sensing image registration [30]. The seminal idea
of DE is to generate a new vector by adding the weighted
difference between two trial vectors to a third vector. The
new vector is defined as V = X, + F(X, — X3), where X,
X,, and X; are three randomly selected trial vectors from the
population and F is a multiplier, which is the main parameter
of the DE algorithm [25].

The orthogonal experimental design (OED) offers an
ability to discover the best combination levels for different
factors with a reasonably small number of experimental
samples [31]. Owing to the OEDs orthogonal prediction
ability and test ability, the orthogonal learning (OL) strategy
can construct a guidance exemplar with the ability to predict
promising search directions toward the global optimum [31].
The OL strategy has been successfully applied to many areas
[32-38]. In this paper, we will apply the OL strategy to image
registration problem. Considering the effectiveness of the DE
algorithm in image registration [30], we combine the OL
strategy with the DE. The main idea of our method is based
on the observation that the major step in the DE can be
considered to be an “experiment.” Based on this “experiment,”
the OL strategy will construct a guidance exemplar with
an ability to predict promising search directions toward the
global optimum. In our method, the OED is used to discover
the best combination of three trial vectors.

The rest of this paper is organized as follows. In Section 2,
image transformation, similarity metrics, and optimization
techniques are discussed. In Section 3, the orthogonal learn-
ing strategy is formulated. In Section 4, the proposed OLDE
for image registration is presented. Experimental results are
described in Section 5. Finally, conclusions are drawn in
Section 6.

2. Image Registration

2.1. Image Transformation. The image registration process is
actually a process to seek the one-to-one mapping between
two images. The process links the points in two images
corresponding to the same spatial position. The mapping
is commonly referred to as a transformation. It is a two-
dimensional transformation in a two-dimensional space. The
proposed approach in this paper is to be used in image
registration in two-dimensional space. We are using a widely
applied affine transformation model to transform the target
image. This will allow us to demonstrate the efficacy of the
OLDE method in image registration.

2.2. Similarity Metrics. At the correct registration, similarity
metrics must be robust. They should attain a global or a very
distinct local maximum. Most of the current work on remote
sensing image registration utilizes mutual information which
has been shown to be robust for remote sensing image regis-
tration. Mutual information represents the relative entropy of
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two images [6]. The larger the value of mutual information,
the better the registration of the two images. In general, given
two images U and V, their mutual information is

(U, V) = HU) + H(V) - H(U, V), 1)

where H(U, V) is the joint entropy and the H(U) and H(V)
are the entropies of U and V. Respectively, H({U), H(V), and
H(U, V) are given as

H(U) = =) Py(u)log Py(u),
H(V) = =) P,(v)log P, (v), )

HU,V) = —ZPU,V(u, v) log Py (u, v),

where Pj(u) is the marginal probability density function
of U, Py,(v) is the marginal probability density function of V,
and Py, (u,v) is the joint probability density function of U
and V. The Py (u), Py,(v), and Py (1, v) can be estimated with
the Parzen windows [10]. Normalized mutual information Iy
is given as

H(U) + H(V)

HU,V) )

IN(U7 V)=

Normalized mutual information is less sensitive to the
size of overlap area. It has been proved that normalized
mutual information is an accurate and robust image reg-
istration similarity metric in previous studies [6, 8, 39].
Therefore, in current study, normalized mutual information
was selected as the similarity measure. In image registration,
the greater the value of I, the better the match between the
two images. So this is a maximization problem. Many opti-
mization problems are formulated as minimization problems,
where the objective function is denoted as f(x), and, thus,
it is understood that for image registration, the goal is to
minimize — f(x), without loss of generality.

2.3. Optimization of Similarity Metrics. The goal of image
registration is to find the best transformation parameters
to maximize the object function (similarity metric). Both
image interpolation and joint probability density estimation
are involved in image registration. Thus, computing input
parameters for (3) is computationally expensive. Therefore, it
is necessary to get an effective method to reduce this cost. The
OLDE algorithm, which this paper proposes, is an efficient
global method for image registration.

3. Motivation

3.1 Motivation of Orthogonal Learning Strategy. The OL strat-
egy can discover more useful information toward the global
optimum [31]. Here is a simple case to illustrate the impor-
tance of the OL strategy. Given a 3-dimension sphere func-
tion, f(x) = X} + x5 + x5, whose global optimum value
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TABLE 1: Factors and levels of the chemical experiment example.

Factors
Level A B C
Temperature (°C) Time (min) Alkali (%)
L1 80 90 5
L2 85 120 6
L3 920 150 7

is 0 and the minimum point is [0,0,0]. Suppose that the
current trial vectors are X; = [3,0,1], X, = [2,1,4], and
X5 = [0, 1,2]. Furthermore, assume that the value of F is 0.5,
and then the new vector is V = X, + F(X, — X;) = [4,0,2].
This results in the new vector with a cost value of 20, which is
worse than both X, and X;. However, if we can discover good
dimensions of the three vectors, we can then combine them
to form three new trial vectors X, .., = [0,0,2], X, .
[0,1,2], and X5, = [0,1,1]. Then, the updated vector is
V = [0,0,1.5], resulting in the updated vector with a cost
value of 2.25. Thus, the object function is moving toward the
global optimum value of 0.

The simple case above has illustrated the importance of
designing three new trial vectors to generate the updated
vector V. In order to find the best combination of trial
vectors, we use orthogonal experimental design (OED) [40],
which can get a relatively good vector through only a few
experimental tests [31].

3.2. Orthogonal Experimental Design. We use a simple exam-
ple to explain OED. In this example, to yield maximum
chemical product, we should find the best level combination
of the three factors: temperature, time, and alkali. These three
factors which will affect experimental results are shown in
Table 1 and we denoted them as factors A, B, and C. The
temperature has three levels: 80°C, 85°C, or 90°C. The time
can be 90 min, 120 min, and 150 min. And the alkali can be
5%, 6%, and 7%. Therefore, there are 27 (3° = 27) com-
binations of experimental designs totally. It is desirable to
obtain or predict the best combination by sampling only a few
representative experimental cases.

Let L;(n™) denote an orthogonal array, where m is the
number of factors and each factor has nlevels, k is the number
of the combinations of levels, and “L” denotes a Latin square.
Table 2 shows an orthogonal array Ly(3%). Each row in this
table shows one combination of levels. The orthogonal array
has three properties. First, for the factor in any column,
every level occurs in equal times. Secondly, for the two
factors in any two columns, every combination of two levels
occurs in equal times. Thirdly, the selected combinations
are uniformly distributed over the whole space of all the
possible combinations [32]. We apply L,(3°) to the example of
chemical experiment. An orthogonal array with three factors
is shown in Table 3.

In this paper, we use OL strategy to guide the DE
algorithm to select promising search directions towards the
global optimum, which will enable us to achieve the best

3
TaBLE 2: Orthogonal array of Ly(3°).

Combination Factor 1 Factor 2 Factor 3
1st 1 1 1
2nd 1 2 2
3rd 1 3 3
4th 2 1 2
5th 2 2 3
6th 2 3 1
7th 3 1 3
8th 3 2 1
9th 3 3 2

TABLE 3: Orthogonal array L4(3%) of the chemical experiment.

Combination Factors
A: temperature ("C) B:time (Min) C: alkali (%)

1st 80 90 5
2nd 80 120 6
3rd 80 150 7
4th 85 90 6
5th 85 120 7
6th 85 150 5
7th 90 90 7
8th 90 120 5
9th 90 150 6

image registration results in terms of the normalized mutual
information similarity metric.

4. OLDE Algorithm for Image Registration

4.1. Encoding. We make use of the aforementioned affine
transformation model:

a; ap b

T=|ay ayp b |, (4)
0 0 1

where ay,, ay,, a1, a5, by, and b, are six transformation
parameters. Then, the transformation formulas of image are
represented as

x =a;x+apy+b,
, )
Y =ayx+any+b,

where (x, y) is the coordinate of the target image and (x', ")
is the coordinate of the transformed target image. Given 6
real parameters, a,;, dy,, dy;, dy,, by, and b,, trial vectors are
formed based on those values. Therefore, each trial vector
in the initial population of n trial vectors is an array with
6 positions, with the parameter vector denoted by T =
(a11>a12> Gy1> Ay, by, by). The initial population is randomly
initialized so that each parameter can uniformly vary within
a range of its own.



4.2. Population Evolution. To create a new population, both
orthogonal crossover and the DE algorithm are executed
consecutively. We refer to this combination as the OLDE
algorithm.

4.2.1. Orthogonal Crossover Based on Orthogonal Array. Here,
we introduce the process of n-to-g orthogonal crossover. For
example, we have a population with N vectors. We select n of
them to be the parent vectors and each parent vector with /
real values. The details of the orthogonal crossover that these
n parents are based on L (n™) to produce g vectors are as
follows.

n-to-g Orthogonal Crossover

Step 1. Input n parent vectors X; = (x;;, Xj, ..., X;), where
1 <i < nand X, has [ real values.

Step 2. For all 1 < i <, randomly and independently gener-
ate t(i) € {1,2,...,m}.

Step 3. For all 1 < i < k, produce the vectors p; = (x, )15
X. (iyar---»Xe (y;) based on the ith combination of factor
G (0,2 cay (D)

levels (¢, (i), &, (i), .. ., ¢, (7)) in the orthogonal array L (n™).

Step 4. Evaluate the fitness of vectors py, p,, ..., P, and then
select g of them to be the offspring (these offspring are
denoted as p}, pj, ... ,p;).

Step 5. Output g offspring vectors p, = (p;, piy>- - -» Py, for
alll<i<g.

Example. We choose three parent vectors X, X,, and Xj,
and each vector has 6 real values. Consider three-to-one
orthogonal crossover. Let the parent vectors be

X, = (xl,l’ X1,25 X1,35 X145 X1 5 xl,s)
X, = (xz,l’ X2,25 X235 X245 X355 xz,s) (6)
X3 = (x3,1>x3,2’ X3,3> X345 X355 x3,6)'
In Step 2, we can choose t(1) = 2,£(2) = 3,t(3) = 1, t(4) = 3,
t(5) = 1,and ¢(6) = 2. After that, using Step 3, we get 9 vectors

P1> Pa»- -+ > Do based on the 9 combinations of the orthogonal
array in Table 2 as follows:

P =

X1,10 X1,20 X1,3> X140 X1,5 X1 6

s

2 = \X2,1> %220 X1,3> X245 X150 Xo 6

3

3 = \X3,1> %32 X1,3> X34 X155 X36

5~ B~

5 = \X2,10 X320 X2,3> X3.4> X35, X6

~

6 = \X3,1>X1,2> %23, X1 4> X35> X356

( )
( )
( )
p = (X110 X020 X035, X040 Xp50 X1 )
( )
( )
( )

P7 = \X1,1, X325 X33, X34, X35, X1 6
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Pg = (x2,1’ X1,2> %33> X1,4> X35> x2,6)

Py = (x3)1, X2,2> X33 X245 X355 x3,s)-

7)

Evaluate the fitness of vectors p;, p,, ..., Pg, and then select
the best one of them to be the offspring.

4.2.2. Differential Evolution Algorithm. Then we execute DE
N times to generate N new vectors. Each new vector V is
created by combining three randomly selected trial vectors
from the population. This combination process is defined as
follows:

V=X, +F(X, - X;), (8)

where X, X,, and X; are three randomly selected trial
vectors from the population and F is a multiplier, which is
the main parameter of the DE.

4.3. Fitness of Image Registration Using the OLDE. We take (3)
as a fitness function. Given two images A and B, the aim of
the problem becomes finding the best affine transformation
T for A so that the normalized mutual information of B and
T(A) is maximized.

4.4. The Procedure of Image Registration Using the OLDE. The
procedure of the OLDE is as follows.

Step 1 (input). Input target image and reference image.

Step 2 (initialization). Within the range of 6 parameters, ran-
domly initialize population X, consisting of N trial vectors,
denoted as X, = {p;, p,, ..., pn}- Each trial vector is made up
of 6 real values, represented as p; = (x;,, X3, X35 Xjs> Xi5> Xig)>
where 1 < i < N and we initialize the generation number g
to 0.

Step 3 (population evolution)

Step 3.1. DE, as (8), is executed N times using multiplier F. A
new population X ., = {P1> Pom> - - - » P} IS generated with
Pim = (Xim> Xim> Xim3> Xima> Xims»> Xime)» 1 <1 < N.

Step 3.2. Randomly choose three vectors in X, to undergo
three-to-three orthogonal crossover. After evaluating the
fitness of vectors py,., Pams---> Pnm @S (3), the worst three
vectors of them are recorded. The worst three vectors are
replaced with three new vectors generated by the orthogonal
crossover. This results in a new population X ..

Step 3.3. Evaluate the fitness of vectors in X ., and choose
the best one p, and record its fitness value f(p,). After that
increment the generation number g by 1.

Step 3.4. If stopping criterion is satisfied, then the algorithm
terminates, and generate the best vector pge = (Xpeqr>
Xpestz> Xbests> Xpestar Xbests> Xbests); Otherwise, return to Step 3.1.
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FIGURE 1: Ottawa dataset: (a) target image acquired in May 1997. (b) Reference image acquired in August 1997.

Step 4 (transform the target image). Affine transform the
target image as (5), where a;; = Xpes1> G12 = Xpestzr Fo1 =
Xpestz> B = Xpestas bl = Xpests> and b2 = Xpest6> and get T (tar-
get) image.

Step 5 (fusion). Fuse the T (target) image and reference image
to generate the result image.

In Step 3, the population is evolved and improved itera-
tively until halting criterion is satisfied. One possible halting
criterion is to stop when the number of generation g is
equal to a given maximum value. In Step 3.1, we must check
that if x;,,; has been out of the range of jth parameters,
we should replace x;,,; with the initialized value x;;, where
1 <i < N,1< j < 6. In Step 3.2, execute three-to-three
orthogonal crossover. An orthogonal array is generated as
in Table 2. Carry out the procedure of n-to-g orthogonal
crossover. Here, we set n = 3 and g = 3. In this step, three
worst vectors are eliminated. Experiments proved that the
speed of convergence can be improved and the diversity of the
population can be kept by replacing the three worst vectors
with three vectors generated by orthogonal crossover.

5. Experiments and Discussion

To investigate the performance of our method, we have com-
pared it against three image registration methods: genetic
algorithm (GA), particle swarm optimization (PSO) [12], and
the differential evolution (DE) [30] algorithm.

In both experiments, we set the size of the population
n = 30 and the maximum allowed number of generations g =
200. In the GA algorithm, we set M = 0.05, C = 0.8, where
M is the probability of mutation and C is the probability of
crossover of GA algorithm. In the PSO algorithm, the weight
w is declining linearly from 0.9 to 0.4 and ¢, = ¢, = 2.0. In
the DE algorithm, we set the multiplier FD = 0.7 and the
probability of crossover CR = 0.5. In the OLDE algorithm,
we set initial value F = 0.7, where F is the multiplier of DE

5
TABLE 4: Variation ranges of 6 affine transformation parameters.
an b 9n e} by b,
Min 0.50 -0.50 -0.50 0.50 =200 =200
Max 1.50 0.50 0.50 1.50 200 200

procedure in the OLDE. The allowed variation ranges of 6
affine transformation parameters used in our experiments are
shown in Table 4. To test the performance of all methods, we
have run each method for 20 times. We record the value of the
normalized mutual information (NMI) for the best solution
NM]I, ., the worst solution NMI, ., and the mean value
NMI over the 20 times and w is the standard deviation (see
Tables 5 and 6).

5.1. Ottawa Dataset Task. In the first experiment, we select
two images from Ottawa dataset as shown in Figure 1 as the
experimental images. These two images are the portions of
the city of Ottawa acquired by RADARSAT SAR sensor in
May 1997 and August 1997, respectively. They were provided
by Defense Research and Development Canada (DRDC),
Ottawa. Figure 1(a) shows the image acquired in May 1997
during the summer flooding and Figure 1(b) shows the image
acquired in August 1997 after the summer flooding. The
resolution of both images is 290 x 350 with 8 bits per pixels.

In Figure 2, image registration results are shown only
for the best experiment out of 20 experiments; that is,
an image for each search method corresponding to the
highest NMI value is shown in the figure. The matching
image is created by one superimposed on the other. Table 5
records the statistical results for each method. The table also
contains optimal transformation parameter values obtained
by each optimization method. Our method can get the best
result compared with the other three methods. In addition,
our method can receive much smaller w value than the
other methods. In fact, the standard deviation of 0.0002 for
the OLDE is very small. Therefore, the OLDE method is
robust with respect to the initial parameter values.
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FIGURE 2: Result of Ottawa dataset: image (a) is the result of image registration using OLDE. Image (b) is the result of image registration using
DE. Image (c) is the result of image registration using PSO. Image (d) is the result of image registration using GA.

TABLE 5: Comparison of the image registration results on the Ottawa dataset obtained by different methods.

Method  NMI,, NMI, .« NMI w ay ap, ay ay, b, b,

OLDE 0.5588 0.5573 0.5581 0.0002 1.2180 0.2381 -0.2371 1.2135 8.4485 —52.7456
DE 0.5563 0.4847 0.5019 0.0005 1.2213 0.2390 -0.2371 1.2138 9.7243 -50.9686
PSO 0.5509 0.3732 0.4457 0.0204 1.2255 0.2179 -0.2034 1.1520 2.7101 —40.4702
GA 0.5274 0.3633 0.4503 0.0135 1.3817 0.0082 -0.1569 1.0422 —-31.1995 -1.6593

TaBLE 6: Comparison of the image registration results on the Yellow River dataset obtained by different methods.

Method  NMI, ., NMI,, .« NMI w ay ap, ay ay, b, b,

OLDE 0.2187 0.2066 0.2126 0.0002 0.9841 0.3140 -0.3217 0.9494 45.7927 —-111.1126
DE 0.2135 0.1865 0.1976 0.0018 0.9482 0.3151 -0.3217 0.9482 45.6404 —111.3498
PSO 0.1976 0.1420 0.1765 0.0147 0.9260 0.4094 —-0.4227 0.9283 39.3913 -102.9269

GA 0.1618 0.1256 0.1469 0.0130 1.1479 0.3741 —-0.2629 0.9641 —41.8955 —-136.3805
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TaBLE 7: Comparison of the image registration results on the Yellow River dataset obtained by different methods.

Method ~ NMIJ,, NMI, NMI w ay a, a, ay b, b,

OLDE 0.6974 0.6950 0.6959 0.0001 0.9492 0.2523 —-0.3966 0.9524 22.1166 —44.9263

DE 0.6317 0.5985 0.6027 0.0014 0.9680 0.2982 —-0.3572 0.9333 25.5351 —45.7148

PSO 0.6292 0.3691 0.5527 0.0250 1.0163 0.2645 —-0.4910 1.0429 58.4900 -11.6157

GA 0.1918 0.1479 0.4974 0.0130 1.1054 0.1851 -0.2129 0.9952 30.0790 -113.4680

Normal mutual information

0 20 40 60 80 100 120 140 160 180 200
Generation

— OLDE --= PSO

--- DE GA

FIGURE 3: Result of Ottawa dataset: behavior of GA, PSO, DE, and OLDE for optimizing the normalized mutual information.

(a)

FIGURE 4: Yellow River dataset: (a) target image was acquired in June 2008. (b) Reference image was acquired in June 2009.

In Figure 3, the NMI values are shown as a function of
the generation number. As shown in the figure, the OLDE has
a much higher NMI value than the other methods. Thus, our
method outperforms all the comparison methods.

5.2. Yellow River Dataset Task. In the second experiment, we
use two images acquired by RADARSAT-2 at the Yellow River
Estuary region in China in June 2008 and June 2009 as the
experimental images. The two images are shown in Figure 4.
The resolution of both Figures 4(a) and 4(b) is 600 x 500
pixels with an 8-bit dynamic range.

The numerical results of independently running the
optimization algorithms 20 times are shown in Table 6. Also
in this case, the OLDE method is the best method in terms of
the NMI. Our method can receive much smaller w value than
DE, PSO, and GA. Therefore, the OLDE method is robust
with respect to the initial parameter values.

In Figure 5, the NMI values are shown as a function of a
generation number. As can be observed from the results, with

(b)

the increase of generation, the performance of the other two
methods, PSO and GA, is far worse than the OLDE method
and the DE method. In more detail, after the 60th generation,
the OLDE method emerges as a better method than DE
method. Therefore, using OL to guide DE can improve the
performance of DE method.

In Figure 6, image registration results are shown only for
the best experiment out of 20 experiments; that is, an image
for each search method corresponding to the highest NMI
value is shown in the figure. The best results for each one of
the four optimization methods are included in the figure.

In the third experiment, we also select two images
acquired by RADARSAT-2 at the Yellow River Estuary region
in June 2008 and June 2009. The two images are shown in
Figure 7. The resolution of both images is 400 x 400 pixels
with an 8-bit dynamic range.

The numerical results of independently running the
optimization algorithms 20 times are shown in Table 7. Also
in this case, the OLDE method can receive the largest value
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Generation
— OLDE -- PSO
--- DE GA

FIGURE 5: Result of Yellow River dataset: behavior of GA, PSO, DE, and the OLDE for optimizing the normalized mutual information.

FIGURE 6: Result of Yellow River dataset: image (a) is the result of image registration using the OLDE method. Image (b) is the result of image
registration using DE. Image (c) is the result of image registration using PSO. Image (d) is the result of image registration using GA.

(a) (b)

FIGURE 7: Yellow River dataset: (a) target image was acquired in June 2008. (b) Reference image was acquired in June 2009.
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Normal mutual information

0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Generation
— OLDE -= PSO
--- DE GA

FIGURE 8: Result of Yellow River dataset: behavior of GA, PSO, DE, and the OLDE for optimizing the normalized mutual information.

(c)

(d)

FIGURE 9: Result of Yellow River dataset: image (a) is the result of image registration using the OLDE method. Image (b) is the result of image
registration using DE. Image (c) is the result of image registration using PSO. Image (d) is the result of image registration using GA.

of the NMI and much smaller w value. In Figure 8, the
NMI values are shown as a function of a generation number.
In Figure 9, image registration results are shown only for
the best experiment out of 20 experiments; that is, an image
for each search method corresponding to the highest NMI
value is shown in the figure. The best results for each one of
the four optimization methods are included in the figure.

6. Conclusion

This paper proposed a method for remote sensing image reg-
istration using the orthogonal learning differential evolution
(OLDE). The orthogonal learning (OL) strategy can construct
a guidance exemplar with an ability to predict promising
search directions toward the global optimum. Differential
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evolution (DE) is a version of evolutionary algorithm (EA)
that has proven to be fast and reliable in many applications.
The OLDE method uses the OL strategy to guide the DE
algorithm to select promising search directions towards the
global optimum.

To investigate the performance of our method, we have
compared it against three image registration methods: genetic
algorithm (GA), particle swarm optimization (PSO), and the
differential evolution (DE) algorithm. The OLDE method was
shown to be able to achieve the best image registration results
in terms of the normalized mutual information similarity
metric. Furthermore, experiments showed that the OLDE
method was robust and efficient with respect to the initial
parameter values.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Z. Z. Shi, S. Vadera, A. Aamodt, and D. Leake, “Pattern
recognition,” in Intelligent Information Processing V, pp. 326-
351, 2010.

[2] J.B. A. Maintz and M. A. Viergever, “A survey of medical image
registration,” Medical Image Analysis, vol. 2, no. 1, pp. 1-36,1998.

[3] M. Gong,S. Zhao, L. Jiao, D. Tian, and S. Wang, “A novel coarse-
to-fine scheme for automatic image registration based on SIFT
and mutual information,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 52, no. 7, pp. 4328-4338, 2014.

[4] Y. Wu, W. P. Ma, M. G. Gong, L. Z. Su, and L. C. Jiao, “A novel
point-matching algorithm based on fast sample consensus
for image registration,” IEEE Geoscience and Remote Sensing
Letters, vol. 12, no. 1, pp. 43-47, 2015.

[5] H. Goncalves, J. A. Goncalves, and L. Corte-Real, “HAIRIS: a
method for automatic image registration through histogram-
based image segmentation,” IEEE Transactions on Image Pro-
cessing, vol. 20, no. 3, pp. 776-789, 2011.

[6] D. L. G. Hill and P. Batchelor, “Registration methodology:
concepts and algorithms,” in Medical Image Registration, pp. 39—
67, 2001.

[7] A. Roche, A. Pennec, G. Malandain, and N. Ayache, “Rigid
registration of 3-d ultrasound with mr images: a new approach
combining intensity and gradient information,” IEEE Transac-
tions on Medical Imaging, vol. 20, no. 10, pp. 1038-1049, 2001.

[8] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
“Medical image registration,” Physics in Medicine and Biology,
vol. 46, no. 3, pp. R1-R45, 2001.

[9] E Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P.
Suetens, “Multimodality image registration by maximization of
mutual information,” IEEE Transactions on Medical Imaging,
vol. 16, no. 2, pp. 187-198, 1997,

[10] W. M. Wells I1L, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis,
“Multi-modal volume registration by maximization of mutual
information,” Medical Image Analysis, vol. 1, no. 1, pp. 35-51,
1996.

[11] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap
invariant entropy measure of 3D medical image alignment,’
Pattern Recognition, vol. 32, no. 1, pp. 71-86, 1999.

Mathematical Problems in Engineering

[12] M. Wachowiak, R. Smolikova, Y. Zheng, J. M. Zurada, and
A. S. Elmaghraby, “An approach to multimodal biomedical
image registration utilizing particle swarm optimization,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
289-301, 2004.

[13] E Maes, D. Vandermeulen, and P. Suetens, “Comparative
evaluation of multiresolution optimization strategies for mul-
timodality image registration by maximization of mutual infor-
mation,” Medical Image Analysis, vol. 3, no. 4, pp. 373-386,1999.

[14] J. L. Bernon, V. Boudousgq, J. E Rohmer et al., “A comparative
study of Powell's and downhill simplex algorithms for a fast
multimodal surface matching in brain imaging,” Computerized
Medical Imaging and Graphics, vol. 25, no. 4, pp. 287-297, 2001.

(15] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual
information matching in multiresolution contexts,” Irmage and
Vision Computing, vol. 19, no. 1-2, pp. 45-52, 2001.

[16] M. Jenkinson and S. Smith, “A global optimisation method
for robust affine registration of brain images,” Medical Image
Analysis, vol. 5, no. 2, pp. 143-156, 2001.

[17] G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis,
and K. S. Nikita, “Automatic retinal image registration scheme
using global optimization techniques,” IEEE Transactions on
Information Technology in Biomedicine, vol. 3, no. 1, pp. 47-60,
1999.

[18] J.-M. Rouet, J.-J. Jacq, and C. Roux, “Genetic algorithms
for a robust 3-D MR-CT registration,” IEEE Transactions on
Information Technology in Biomedicine, vol. 4, no. 2, pp. 126—
136, 2000.

[19] R. He and P. A. Narayana, “Global optimization of mutual
information: application to three-dimensional retrospective
registration of magnetic resonance images,” Computerized Med-
ical Imaging and Graphics, vol. 26, no. 4, pp. 277-292, 2002.

[20] M. P. Wachowiak and A. S. Elmaghraby, “The continuous tabu
search as an optimizer for 2D-to-3D biomedical image registra-
tion,” in Proceedings of Medical Image Computing and Computer
Assisted Intervention, vol. 2208, pp. 12731274, Springer, Berlin,
Germany, 2001

[21] H. V. Phan, M. Lech, and T. D. Nguyen, “Registration of 3D
range images using particle swarm optimization,” in Advances in
Computer Science—ASIAN 2004. Higher-Level Decision Making,
vol. 3321 of Lecture Notes in Computer Science, pp. 223-235,
Springer, Berlin, Germany, 2005.

[22] X. Yang, J. Pei, and W. Xie, “Maximization of feature poten-
tial mutual information in multimodality image registration
using particle swarm optimization,” in Medical Imaging—Image
Processing, Proceedings of the SPIE, pp. 1300-1309, San Diego,
Calif, USA, February 2005.

[23] K. Price, R. Storn, and J. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization, Natural Computing
Series, Springer, 2005.

[24] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948, 1995.

[25] K. Kachitvichyanukul, “Comparison of three evolutionary algo-
rithms: GA, PSO, and DE,” Industrial Engineering ¢~ Manage-
ment Systems, vol. 11, no. 3, pp. 215-223, 2012.

[26] K. Chandrasekar and N. V. Ramana, “Performance comparison
of GA, DE, PSO and SA approaches in enhancement of total
transfer capability using facts devices,” Journal of Electrical
Engineering & Technology, vol. 7, no. 4, pp. 493-500, 2012.

[27] R. Storn and K. Price, “Differential evolution-a simple and
efficient heuristic for global optimization over continuous



Mathematical Problems in Engineering

(31]

(32]

(36]

(37]

(38]

(39]

[40]

spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341-
359,1997.

M. Omran, A. P. Engelbrecht, and A. Salman, “Differential
evolution methods for unsupervised image classification,” in
Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 2, pp. 966-973, 2005.

I. D. Falco, A. D. Cioppa, and E. Tarantino, “Automatic
classification of handsegmented image parts with differential
evolution,” Computer Science, vol. 3907, pp. 403-414, 2006.

I. de Falco, A. Della Cioppa, D. Maisto, and E. Tarantino,
“Differential Evolution as a viable tool for satellite image
registration,” Applied Soft Computing Journal, vol. 8, no. 4, pp.
1453-1462, 2008.

Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning
particle swarm optimization,” IEEE Transactions on Evolution-
ary Computation, vol. 15, no. 6, pp. 832-847, 2011.

Q. Zhang and Y.-W. Leung, “An orthogonal genetic algorithm
for multimedia multicast routing,” IEEE Transactions on Evolu-
tionary Computation, vol. 3, no. 1, pp. 53-62, 1999.

Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm
with quantization for global numerical optimization,” IEEE
Transactions on Evolutionary Computation, vol. 5, no. 1, pp. 41-
53,2001

X. M. Hu, J. Zhang, and J. H. Zhong, “An enhanced genetic
algorithm with orthogonal design,” in Proceedings of the IEEE
Transactions on Evolutionary Computation, pp. 3174-3181, 2006.
S.-Y. Ho, S.-J. Ho, Y.-K. Lin, and W. C.-C. Chu, “An orthogonal
simulated annealing algorithm for large floorplanning prob-
lems,” IEEE Transactions on Very Large Scale Integration (VLSI)
System, vol. 12, no. 8, pp. 874-876, 2004.

S.-J. Ho, S.-Y. Ho, and L.-S. Shu, “OSA: orthogonal simulated
annealing algorithm and its application to designing mixed
H,/H_, optimal controllers,” IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans., vol. 34, no.
5, pp. 588-600, 2004.

X.-M. Hu, J. Zhang, and Y. Li, “Orthogonal methods based ant
colony search for solving continuous optimization problems,”
Journal of Computer Science ¢ Technology, vol. 23, no. 1, pp. 2-
18, 2008.

S.-Y. Ho, H.-S. Lin, W.-H. Liauh, and S.-]J. Ho, “OPSO: orthog-
onal particle swarm optimization and its application to task
assignment problems,” IEEE Transactions on Systems, Man, and
Cybernetics A: Systems and Humans, vol. 38, no. 2, pp. 288-298,
2008.

B. Likar and F. Permis, “A hierarchical approach to elastic
registration based on mutual information,” Iimage and Vision
Computing, vol. 19, no. 1-2, pp. 33-44, 2001.

D. C. Montgomery, Design and Analysis of Experiments, John
Wiley & Sons, New York, NY, USA, 3rd edition, 1991.

1



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




