
Research Article
Performance Evaluation of MDO Architectures within a Variable
Complexity Problem

Daiyu Zhang, Baowei Song, Peng Wang, and Yanru He

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Correspondence should be addressed to Daiyu Zhang; daiyu@mail.nwpu.edu.cn

Received 27 October 2016; Accepted 7 February 2017; Published 23 February 2017

Academic Editor: Quang Phuc Ha

Copyright © 2017 Daiyu Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Though quite a number of multidisciplinary design optimization (MDO) architectures have been proposed for the optimal design
of large-scale multidisciplinary systems, how their performance changes with the complexity of MDO problem varied is not well
studied. In order to solve this problem, this paper presents a variable complexity problem which allows people to obtain a MDO
problem with arbitrary complexity by specifying its changeable parameters, such as the number of disciplines and the numbers of
design variables. Then four investigations are performed to evaluate how the performance of different MDO architectures changes
with the number of disciplines, global variables, local variables, and coupling variables varied, respectively. Finally, the results supply
guidance for the selection of MDO architectures in solving practical engineering problems with different complexity.

1. Introduction

Multidisciplinary design optimization (MDO) is a growing
field of research in the design of large-scale engineering sys-
tems that consist of a number of interacting subsystems. The
main motivation for using MDO is that the performance of a
multidisciplinary system is driven not only by the individual
disciplines but also by their interactions. By coordinating
each discipline and decoupling their interaction reasonably in
the design cycle, designers can improve the design and reduce
the time and cost simultaneously.

Until now, many MDO architectures have been pro-
posed for the optimal design of large-scale engineering
systems. Generally, the architectures can be divided into two
classes: monolithic architectures and distributed architec-
tures. Monolithic architectures solve the MDO problem by
casting it as a single optimization problem, which is easy to be
implemented for small MDO problems. But for complicated
engineering systemswhere people in charge of each discipline
work independently of one another, these architectures may
encounter big difficulty in integrating all the disciplines
together. The monolithic architectures commonly include
multidisciplinary feasible (MDF) [1–3], Individual Discipline
Feasible (IDF) [1, 2, 4], and Simultaneous Analysis and

Design (SAND) [1, 5]. However, the distributed architectures
solve theMDO problems by decomposing it into smaller and
more manageable discipline optimization problems that have
the same solution when reassembled. One big advantage of
these architectures is that they promote discipline autonomy
and make people in different groups and teams just be
in charge of their own fields and use their own discipline
legacy. The distributed architectures usually include Con-
current Subspace Optimization (CSSO) [6, 7], Collaborative
Optimization (CO) [8–10], Bilevel Integrated Systems Syn-
thesis (BLISS) [11], Bilevel Integrated Systems Synthesis 2000
(BLISS-2000) [12, 13], Analytical Target Cascading (ATC)
[14, 15], andMDObased on independent subspaces (MDOIS)
[16].

Though many MDO architectures are available, the big
challenge is to determine which architecture is the most
efficient for a given MDO problem. To solve the problem, a
benchmarking study of differentMDO architectures needs to
be carried out. Though many researches [17–23] have done
excellent work in comparing the performances of different
MDO architectures and Martins et al. [24] have made an
initial exploration in assessing the computational complexity
of MDO architectures, there are still some limitations of
them. Firstly, many of the test MDO problems are of low
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dimensionality with few disciplines and variables. They lack
the ability to test the performance of different MDO archi-
tectures for the practical engineering problems which are
often composed of hundreds of design variables, constraints,
and coupling variables. Secondly, the MDO architectures
may perform differently when the test problem has different
number of disciplines, design variables, constraints, or cou-
pling variables. How the performance of MDO architectures
changes with the complexity of MDO problem varied is not
well studied.

In order to deal with the problems above, two works
will be done in this paper. The first one is to present a vari-
able complexity problem which is a nonseparable nonlinear
problem that allows people to specify its complexity, such
as the number of disciplines, design variables, and coupling
variables. This makes it feasible to test the performance of
different MDO architectures not only for high complexity
problem, but also for problem with arbitrary complexity. The
second one is to implement different MDO architectures
to solve the variable complexity problem in four cases to
evaluate how the performance ofMDO architectures changes
with the complexity of MDO problem varied.

The remainder of this paper is organized as follows.
In Section 2, we state the terminology and mathematical
notation that will be used throughout this paper. In Section 3,
we present a variable complexity problem whose complexity
can be varied by the changeable parameters. In Section 4,
we give the specific formulations of four MDO architectures
associatedwith the variable complexity problem. In Section 5,
we evaluate how the performance of MDO architectures
changeswith the complexity ofMDOproblem varied. Finally,
some conclusions are presented in the last section.

2. Terminology and Mathematical Notation

Before introducing the variable complexity problem, we need
to describe the terminology and mathematical notation that
will be used throughout this paper.

Firstly, we define and clarify several terms that are specific
to the field ofMDO.Discipline analysis is usually a simulation
that models the performance of one discipline in a multi-
disciplinary system. Global variables are the design variables
that are shared by multiple disciplines. Local design variables
are the design variables that only apply to one discipline.
Coupling variables are the outputs that one discipline passes
to other disciplines. Local constraints are the constraints that
are only decided by one discipline. Global constraints are the
constraints that are determined by multiple disciplines.

Then the common mathematical notation that will be
used in the following sections is listed as follows. Note that all
vectors in this paper are assumed to be column vectors unless
indicated otherwise.

Mathematical Notation for MDO Problem

x0: the vector of global variables shared by more than
one discipline

𝑥0𝑖: the 𝑖th element of x0

x𝑖: the vector of local design variables included in
discipline 𝑖𝑥𝑖𝑗: the 𝑗th element of x𝑖
y𝑖: the vector of coupling variables included in disci-
pline 𝑖𝑦𝑖𝑗: the 𝑗th element of y𝑖
c𝑖: the vector of local constraints included in discipline𝑖𝑐𝑖𝑗: the 𝑗th element of c𝑖
c0: the vector of global constraints depending on the
variables of multiple disciplines𝑐0𝑖: the 𝑖th element of c0

3. Variable Complexity Problem

In this section, a variable complexity problem is proposed to
allow the investigation that how the performance of MDO
architectures changes with its complexity varied. It is a non-
separable nonlinearMDOproblemwhich provides the ability
to specify the changeable parameters in the following. Those
parameters can be used to change the problem complexity as
the user desires.

Changeable Parameters in Variable Complexity Problem

𝑁: the number of disciplines𝑛𝑥0 : the number of global variables𝑛𝑥𝑖 : the number of local variables included in disci-
pline 𝑖𝑛𝑦𝑖 : the number of coupling variables included in
discipline 𝑖𝑛𝑐𝑖 : the number of local constraints included in disci-
pline 𝑖𝑛𝑐0 : the number of global constraints

The remaining part of this section is laid out as follows
to introduce the variable complexity problem. Firstly, the
discipline analysis, constraint functions, and objective func-
tion of the variable complexity problem are described in
detail, respectively.Then themonolithic mathematical model
of the variable complexity problem is built and a simple
example consisting of three disciplines is given for a more
vivid description.

3.1. Discipline Analysis. A discipline analysis is a simulation
that models the behavior of one discipline. Generally, per-
forming a discipline analysis is to solve an equation group,
such as the Navier-Stokes equation in fluid mechanics, the
static equilibrium equation in structural mechanics, or the
equations of motion in control simulations. So a set of
equations are created to represent the analysis of discipline𝑖 in the variable complexity problem as follows.

B𝑖𝑖y𝑖 = −C𝑖x0 −D𝑖x𝑖 − 𝑁∑
𝑗=1,𝑗 ̸=𝑖

B𝑖𝑗y𝑗, (1)
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Figure 1: The coupling relationship of the three disciplines.

where y𝑗 is the vector of coupling variables of discipline 𝑗, B𝑖𝑗
is a coefficientmatrix of size 𝑛𝑦𝑖×𝑛𝑦𝑗 ,C𝑖 is a coefficientmatrix
of size 𝑛𝑦𝑖 × 𝑛𝑥0 , andD𝑖 is a coefficient matrix of size 𝑛𝑦𝑖 × 𝑛𝑥𝑖 .
In addition, all elements of B𝑖𝑗, C𝑖, andD𝑖 are real values.

If we denote (1) by R𝑖 = 0 in residual form as follows, the
values of y𝑖 can be obtained by solving the equation R𝑖 = 0
and they are the solution of the discipline analysis 𝑖

R𝑖 = B𝑖𝑖y𝑖 + C𝑖x0 +D𝑖x𝑖 + 𝑁∑
𝑗=1,𝑗 ̸=𝑖

B𝑖𝑗y𝑗 = 0. (2)

For (2), it is obvious that different disciplines are coupled
with each other through the global variables and the coupling
variables. In order to make it more clearly, a simple example
consisting of three disciplines is described in Figure 1 by
the extended design structure matrix (XDSM) method [25]
which makes the description of MDO problems and archi-
tectures very convenient and legible.

Another important thing is to determine the coefficient
matrices in (2). As for C𝑖 and D𝑖, they both can be generated
randomly or customized by user prior to the start of the
optimization. As for B𝑖𝑖, because the discipline analysis
needs to be individual disciplinary feasible, which means
(2) needs a feasible solution, B𝑖𝑖 needs to be nonsingular.
As for B𝑖𝑗, because the whole multidisciplinary analysis
which is composed of multiple discipline analyses needs to
be multidisciplinary feasible, which means the combined
equations composed of multiple equations (2) need a feasible
solution, the combined matrix B shown in (3) needs to be
nonsingular

B =
[[[[[[
[

B11 B12 ⋅ ⋅ ⋅ B1𝑁
B21 B22 ⋅ ⋅ ⋅ B2𝑁... ... d

...
B𝑁1 B𝑁2 ⋅ ⋅ ⋅ B𝑁𝑁

]]]]]]
]
. (3)

3.2. Constraint Functions. As stated in Section 2, there are
two kinds of constraints in the MDO problem. One is
the local constraints which depend on only one discipline
variables. The other one is the global constraints which
depend on multiple discipline variables.

For the variable complexity problem, its local constraints
included in discipline 𝑖 are built below
𝑐𝑖1 = xT0 x0 + xT𝑖 x𝑖 + ET

𝑖1x0 + FT𝑖1x𝑖 + GT
𝑖1y𝑖 − 𝑟𝑖1 ≤ 0,

𝑐𝑖2 = xT0 x0 + xT𝑖 x𝑖 + ET
𝑖2x0 + FT𝑖2x𝑖 + GT

𝑖2y𝑖 − 𝑟𝑖2 ≤ 0,
...
𝑐𝑖𝑛𝑐𝑖 = xT0 x0 + xT𝑖 x𝑖 + ET

𝑖𝑛𝑐𝑖
x0 + FT𝑖𝑛𝑐𝑖 x𝑖 + GT

𝑖𝑛𝑐𝑖
y𝑖 − 𝑟𝑖𝑛𝑐𝑖

≤ 0,

(4)

where E𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛𝑐𝑖) are the coefficient vectors of
x0, F𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛𝑐𝑖) are the coefficient vectors of x𝑖,
G𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛𝑐𝑖) are the coefficient vectors of y𝑖, and𝑟𝑖𝑗 (𝑗 = 1, 2, . . . , 𝑛𝑐𝑖) are positive scalars.

Its global constraints are built as follows:

𝑐01 = xT0 x0 + 𝑁∑
𝑖=1

xT𝑖 x𝑖 +HT
1 x0 + 𝑁∑

𝑖=1

IT1𝑖x𝑖 + 𝑁∑
𝑖=1

JT1𝑖y𝑖 − 𝑠1
≤ 0,
𝑐02 = xT0 x0 + 𝑁∑

𝑖=1

xT𝑖 x𝑖 +HT
2 x0 + 𝑁∑

𝑖=1

IT2𝑖x𝑖 + 𝑁∑
𝑖=1

JT2𝑖y𝑖 − 𝑠2
≤ 0
...
𝑐0𝑛𝑐0 = xT0 x0 +

𝑁∑
𝑖=1

xT𝑖 x𝑖 +HT
𝑛𝑐0
x0 + 𝑁∑
𝑖=1

IT𝑛𝑐0 𝑖x𝑖 +
𝑁∑
𝑖=1

JT𝑛𝑐0 𝑖y𝑖

− 𝑠𝑛𝑐0 ≤ 0,

(5)

where H𝑖 (𝑖 = 1, 2, . . . , 𝑛𝑐0) are the coefficient vectors of
x0, I𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑛𝑐0 ; 𝑗 = 1, 2, . . . , 𝑁) are the coefficient
vectors of x𝑖, J𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑛𝑐0 ; 𝑗 = 1, 2, . . . , 𝑁) are the
coefficient vectors of y𝑖, and 𝑠𝑖 (𝑖 = 1, 2, . . . , 𝑛𝑐0) are positive
scalars.

Note that all of the coefficient vectors and positive scalars
in (4) and (5) can be generated randomly or customized by
user prior to the start of the optimization.

3.3. Objective Function. For the objective function of MDO
problem, it usually can be divided into two types. One is
called the separable objective whose expression is a sum of
the local objectives, each of which is formulated just by the
variables included in one discipline. The other is called the
nonseparable objective whose expression cannot be divided
into a sum of local objectives. Because the separable objective
unintentionally is preferred to some distributed architectures
[16, 26, 27] and the objectives of most engineering problems
are nonseparable, the objective of the variable complexity
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problem is built by a nonseparable function below to show
the objectivity and generality

f = (𝑛𝑥0∑
𝑖=1

x0𝑖 + 𝑁∑
𝑖=1

𝑛𝑥𝑖∑
𝑗=1

x𝑖𝑗 + 𝑁∑
𝑖=1

𝑛𝑦𝑖∑
𝑗=1

y𝑖𝑗)
3

. (6)

3.4. Monolithic Model. Based on (2), (4), (5), and (6), the
monolithic mathematical model of the variable complexity
problem can be obtained as follows by assuming there are𝑁
disciplines:

minimize: 𝑓 (x0, x, y)
design variable: x0, x

constraints: c0 (x0, x, y) ≤ 0
c𝑖 (x0, x𝑖, y𝑖) ≤ 0 𝑖 = 1, 2, . . . , 𝑁

residuals: R𝑖 (x0, x𝑖, y𝑖, y𝑗 ̸=𝑖) = 0
𝑖 = 1, 2, . . . , 𝑁,

(7)

where x = [xT1 , . . . , xT𝑁]T, y = [yT1 , . . . , yT𝑁]T, c0 = [𝑐01,𝑐02, . . . , 𝑐0𝑛𝑐0 ]T, and c𝑖 = [𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑛𝑐𝑖 ]T.
The presented variable complexity problem is composed

of the design variables, local constraints, global constraints,
and nonseparable objective function. So it is a credible
MDO problem to benchmark different MDO architectures
without loss of generality. In order to make this problem be
easily understood, one simple example consisting of three
disciplines is represented in Figure 2 by the XDSMmethod.

4. MDO Architectures Associated with the
Variable Complexity Problem

There are a wide range of MDO architectures, each of which
formulates a given problem in a different manner. In this
section, four common MDO architectures are introduced to
formulate the variable complexity problem.Though only four
MDO architectures are included, they serve as templates for
future researchers towork from for otherMDOarchitectures.
For each architecture above, we firstly make a brief overview
of it and then give its specific formulation associated with the
variable complexity problem in the remaining section.

4.1. Multidisciplinary Feasible. Themultidisciplinary feasible
architecture is a traditional MDO approach. Its main idea
is to simply place an optimizer over a multidisciplinary
analysis (MDA) module that takes in the design variables
of the optimizer and iterates between the discipline analyses
until all the coupling variables have converged. Because the
solution of MDA module is required at each iteration of the
optimizer,MDF architecture grantees that theMDOproblem
is multidisciplinary feasible at each optimization iterations.

An obvious advantage of MDF architecture is that it is
easy to be implemented since it is a monolithic architecture
where the design variables, objective function, and design
constraints are directly under the control of optimizer.

Another advantage is that MDF architecture always returns
a feasible design even if the optimization is terminated early.
This is particularlymeaningful in some engineering problems
if the goal is just to obtain an improved design that is
unnecessary to be strictly mathematically optimal because of
the computation difficulty.

The main disadvantage of MDF architecture is that the
architecture requires a full MDA to be performed at each
optimization iteration, which can be very time-consuming
sometimes. Particularly when the gradient-based optimiza-
tion method is adopted in the optimizer, the gradient calcu-
lations are more difficult for MDF architecture because the
gradient information in MDF needs to be feasible with all
disciplines.

With regard to the variable complexity problem, the
specific formulation of MDF architecture can be stated as
follows:

minimize: 𝑓 (x0, x, y)
design variable: x0, x

constraints: c0 (x0, x, y) ≤ 0
c𝑖 (x0, x𝑖, y𝑖) ≤ 0 𝑖 = 1, 2, . . . , 𝑁

MDA: R𝑖 (x0, x𝑖, y𝑖, y𝑗 ̸=𝑖) = 0
𝑖 = 1, 2, . . . , 𝑁.

(8)

4.2. Individual Discipline Feasible. The Individual Discipline
Feasible architecture removes the need for MDA procedure
in MDF architecture that guarantees the multidisciplinary
feasibility. This architecture enables the discipline analyses
to be carried out in parallel by introducing the copies of
coupling variables in each discipline and the corresponding
consistency constraints. The copies of coupling variables are
applied to decouple the discipline analyses so that they no
longer depend on the coupling variables generated by other
disciplines. The consistency constraints are introduced to
make sure a multidisciplinary feasible solution is obtained
at the optimal points by constraining the copies of coupling
variables to match the actual coupling variables gradually.

An obvious advantage of IDF architecture is that the dis-
cipline analyses are decoupled so that they can be performed
in parallel, which will greatly increase the optimization
efficiency. In addition, IDF architecture is also more robust
than MDF architecture in the success rate of optimization
because MDF involves a MDA procedure and solving the
MDA module may sometimes be prone to error [24].

However, there are also some disadvantages about the
IDF architecture. The first one is that the multidisciplinary
feasibility is ensured at the last iteration of the optimization,
which means the optimization cannot be terminated early
for obtaining the optimal design. Another is that the intro-
duction of consistency constraints increases the scale of the
optimization problem. In particular, when the number of
coupling variables is large, the optimization problem might
be too large to solve efficiently.
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Figure 2: The variable complexity problem consisting of three disciplines.

With regard to the variable complexity problem, the
specific formulation of IDF architecture can be stated as
follows:

minimize: 𝑓 (x0, x, y)
design variable: x0, x, ŷ

constraints: c0 (x0, x, y) ≤ 0
c𝑖 (x0, x𝑖, y𝑖) ≤ 0 𝑖 = 1, 2, . . . , 𝑁
ŷ𝑖 − y𝑖 = 0 𝑖 = 1, 2, . . . , 𝑁

residuals: R𝑖 (x0, x𝑖, y𝑖, ŷ𝑗 ̸=𝑖) = 0
𝑖 = 1, 2, . . . , 𝑁,

(9)

where ŷ𝑖 is the copy of y𝑖 and ŷ = [ŷT1 , . . . , ŷT𝑁]T.
4.3. Simultaneous Analysis and Design. The Simultaneous
Analysis and Design architecture treats the entire multi-
disciplinary design problem as a single large optimization
problem, which is accomplished by converting the discipline
analysis equations into equality constraints and adding the
coupling variables and state variables into optimization vari-
ables. In this case, the task of the optimizer is to solve the
discipline analysis and the optimization problem simultane-
ously.This approach is also referred to as All-at-Once (AAO)
in some literature.

The primary advantage of SAND architecture is that the
costly solving of discipline analysis is eliminated at each
optimization iteration, which can make the optimal solution
of MDO problem found at a lower expense by letting the
optimizer explore regions that are infeasible with respect to
the discipline analysis equations. In addition, the parallel
computing can be performed not only between different
disciplines, but also within each disciplines. This character
makes it possible to further improve the optimization effi-
ciency bymaking full use of the parallelism ofMDOproblem.

In spite of having the benefits above, the SAND archi-
tecture has some major weaknesses in practice. The first one
is that the discipline feasibility is not guaranteed until the
last iteration of the optimization process. Therefore, if the
optimization is interrupted, the resulting design may not be

physically feasible. The second one is that SAND architec-
ture does require all coupling variables, state variables, and
discipline analysis equations. But in practical engineering
problem, the discipline analysis is mostly computed by
specialized software which often operates in a black-box
form, so the SAND architecture cannot be implemented
in this case. The last one is that the SAND architecture
can greatly increase the dimensionality of the optimization
problem by converting the discipline analysis equations into
equality constraints and adding the coupling variables and
state variables into optimization variables. Some gradient-
free optimization methods might be prohibitive because
the iterations of them show exponential growth with the
optimization variables increasing.

With regard to the variable complexity problem, the
specific formulation of SAND architecture can be stated as
follows:

minimize: 𝑓 (x0, x, y)
design variable: x0, x, y

constraints: c0 (x0, x, y) ≤ 0
c𝑖 (x0, x𝑖, y𝑖) ≤ 0 𝑖 = 1, 2, . . . , 𝑁
R𝑖 (x0, x𝑖, y𝑖, y𝑗 ̸=𝑖) = 0

𝑖 = 1, 2, . . . , 𝑁.

(10)

4.4. Collaborative Optimization. Collaborative Optimization
is a bilevel distributed architecture and was first proposed
by Braun and Kroo (1997). CO architecture is designed
to provide the discipline autonomy by decomposing the
optimization problem into a master problem and a number
of independent subproblems. The goal of each subproblem
is to minimize the corresponding compatibility function
which is defined by the discrepancy between the system
level variables and the values obtained by optimizing the
subproblem while satisfying the local constraints. The vari-
ables in each subproblem consist of local variables and
copies of global variables. Any nonlocal coupling variables
needed by the discipline analysis are passed from the master
problem and kept constant throughout the entire subproblem
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optimization. The aim of the master problem is to minimize
the design objective function while making the compatibility
function of each subproblem zero. The variables in master
problem are composed of global variables, copies of local
variables, and copies of coupling variables that explicitly affect
the design objective function.

As a bilevel architecture, there aremany advantages about
CO. The main one is that it accomplishes the discipline
autonomy. This allows the discipline design groups just to be
control of and responsible for their owndiscipline.Thepeople
are given the freedom to solve each subproblem optimization
using any efficient methods based on the characters of
each discipline. In addition, the autonomy also allows each
subproblem optimization to be carried out in parallel, which
can greatly improve the optimization efficiency.

But CO architecture has major drawback in its mathe-
matical formulation which results in its poor performance in
practice. DeMiguel and Murray (2000) [28] and Alexandrov
and Lewis (2002) [2] show that there is a breakdown in the
constraint qualification of the KKT optimality conditions in
the master problem of CO architecture, which slows down
the convergence rate for most gradient-based optimization
methods andmay prevent the CO architecture from converg-
ing in the worst case. A linear and a quadratic programming
problem given byAlexandrow and lewis (2000) demonstrates
that the CO architecture failed to converge to optimal solu-
tion even from starting points close to the optimal solution.

With regard to the variable complexity problem, the
specific formulation of CO architecture can be stated as
follows.

The master problem is as follows:

minimize: 𝑓 (x0, x̂, ŷ)
design variable: x0, x̂, ŷ

constraints: c0 (x0, x̂, ŷ) ≤ 0
𝐽∗𝑖
= 󵄩󵄩󵄩󵄩x0 − p̂𝑖󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩x̂𝑖 − x𝑖󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩ŷ𝑖 − y𝑖󵄩󵄩󵄩󵄩22 = 0 𝑖 = 1, . . . , 𝑁,

(11)

where x̂ = [x̂T1 , . . . , x̂T𝑁]T and x̂𝑖 is the copy of x𝑖, ŷ =[ŷT1 , . . . , ŷT𝑁]T and ŷ𝑖 is the copy of y𝑖, and 𝐽∗𝑖 is obtained by
solving the following optimization subproblem of discipline 𝑖

minimize: 𝐽𝑖
= 󵄩󵄩󵄩󵄩p̂𝑖 − x0󵄩󵄩󵄩󵄩22 + 󵄩󵄩󵄩󵄩x𝑖 − x̂𝑖󵄩󵄩󵄩󵄩22
+ 󵄩󵄩󵄩󵄩y𝑖 − ŷ𝑖󵄩󵄩󵄩󵄩22

design variable: p̂𝑖, x𝑖
constraints: c𝑖 (p̂𝑖, x𝑖, y𝑖) ≤ 0

residual: R𝑖 (p̂𝑖, x𝑖, y𝑖, ŷ𝑗 ̸=𝑖) = 0,

(12)

where p̂𝑖 is the copy of x0 in discipline 𝑖 and ŷ𝑗 ̸=𝑖 are the
nonlocal coupling variables which are passed from themaster
problem.

5. Performance Evaluation

The main work of this section is to evaluate how the per-
formance of MDO architectures in Section 4 changes when
the changeable parameters in Section 3 are varied. In order
to achieve this purpose, some implementation tools, which
are used to solve problems ((8)–(12)), are firstly introduced
to describe the test environment and then a comprehensive
performance analysis is carried out to give an indication of
each architecture’s performance.

5.1. Implementation Tools. Python [29–31] is selected as the
programming language to solve problems ((8)–(12)) because
it has the following advantages in the scientific computing
area. Firstly, Python is an interpreted language and can be
run in interactive mode, which makes it easy for learning
and debugging. Secondly, Python supports object-oriented
programming and the raising and catching of exceptions
defined by user, which make it convenient for scripting and
error handling. Thirdly, Python has many useful packages,
such as Numpy, Scipy, and pyMPI, which greatly reduce the
difficulty in realizing optimization, parallel computing, and
so on.

Python Optimization Framework (pyOpt) [32] is a
Python-based package for formulating and solving nonlinear
constrained optimization problems, which was inspired by a
Python wrapper script for the Sparse Nonlinear Optimizer
(SNOPT) created by Professor Joaquim Martins in 2000.
Different types of open-source and licensed optimizers that
solve the general nonlinear optimization problem have been
integrated into the package, such as SNOPT, SLSQP, and
ALPSO. Because pyOpt can solve the nonlinear constrained
optimization problems in an efficient, reusable, and portable
manner, it is introduced to provide all the required optimizers
for implementing different MDO architectures.

SciPy [33–35] is a collection of mathematical algorithms
and convenience functions built on the Numpy extension of
Python. It adds significant power to the interactive Python
session by providing the user with high-level commands and
classes for manipulating and visualizing data. Specifically, the
scipy.optimize package provides several commonly used root
finding algorithms, such as Broyden, Exicitingmixing, and
Krylov. In this paper, these root finding algorithms are used
to solve the MDA module in MDF architectures.

5.2. Performance Analysis. In order to evaluate how the per-
formance of MDO architectures changes with the complexity
of MDO problem varied, four investigations are performed
for the variable complexity problem. In the first one, the
number of disciplines is varied while keeping all the other
changeable parameters of the variable complexity problem
unchanged. In the second one, the number of global variables
is varied and similarly keeping the other changeable param-
eters constant. In the third investigation, only the number of
local variables included in each discipline is varied. In the
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Figure 3: The first investigation.

fourth one, the number of coupling variables included in each
discipline is varied. In order to specify the four investigations
above, an initial variable complexity problem is given by
setting (𝑁, 𝑛𝑥0 , 𝑛𝑥𝑖 , 𝑛𝑦𝑖 , 𝑛𝑐𝑖 , 𝑛𝑐0) at (2, 1, 2, 2, 2, 1) and all the
investigations are carried out on it. What is more, for every
specific variable complexity problem, the coefficient matrices
in Section 3.1, B𝑖𝑖, B𝑖𝑗, C𝑖, and D𝑖, are randomly generated
between −5 and 5 while keeping B𝑖𝑖 and the combinedmatrix
B nonsingular. The coefficient vectors in Section 3.2, E𝑖𝑗, F𝑖𝑗,
G𝑖𝑗, H𝑖, I𝑖𝑗, and J𝑖𝑗, are randomly generated between −5 and
5. The positive scalars in Section 3.2, 𝑟𝑖𝑗 and 𝑠𝑖, are randomly
generated between 1 and 5.

When implementing the four MDO architectures in
Section 4 for the four investigations above, the SLSQP in
pyOpt is selected as the optimizer wherever there is a need for
solving optimization problem and all of its parameters are left
at the default values resulting in the convergence tolerance on
the objective and constraints having to be satisfied with 10−6.
The Broyden method in scipy.optimize package is chosen
to solve the MDA module in MDF architecture and all
its parameters are similarly left at the default values. In
addition, the processor of the computer used to perform
the optimization is Intel(R)Core(TM) 2 Duo CPU E7500 @
2.93GHz × 2 and the memory is 1.9 GiB.

Due to the different structures of each MDO architecture
in Section 4, the total optimization time is the most mean-
ingful and effective quantity to compare their performances.
Figures 3–6 show the results of the four MDO architectures
associated with the four investigations, respectively. In the
first investigation, the number of disciplines is specifically
varied from 1 to 100. In the second investigation, the number
of global variables is varied from 1 to 100. In the third
investigation, the number of local variables included in each
discipline is varied from 1 to 100. In the fourth investigation,
the number of coupling variables outputted from each disci-
pline is similarly varied from 1 to 100.

From these figures, we can see that CO is always the most
expensive architecture and it spends significantly more time
than the other three architectures. SAND and IDF are the
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Figure 5: The third investigation.

second and third expensive architectures, respectively. MDF
is typically the most computationally efficient architecture.

In Figures 4 and 5, with the number of global variables
and the number of local variables included in each discipline
increasing, the gaps between SAND, IDF, and MDF archi-
tectures remain about the same, which means the number of
global variables and local variables almost has the same effect
on the SAND, IDF, and MDF architectures.

In Figures 3 and 6, with the number of disciplines
and the number of coupling variables included in each
discipline increasing, the gaps between SAND, IDF, andMDF
architectures are becoming gradually larger. It means SAND
architecture performs graduallyworse than the IDF andMDF
architectures and IDF architecture performs gradually worse
than MDF architecture with the number of disciplines and
coupling variables increasing, respectively. In addition, the
number of disciplines has less effect than the number of
coupling variables.

For CO architecture, the number of disciplines and
coupling variables has the same effect on it and SAND archi-
tectures based on Figures 3 and 6. However, its performance
becomes gradually worse than SAND architecture with the
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Figure 6: The fourth investigation.

number of global variables and local variables increasing
based on Figures 4 and 5.

6. Conclusions

In this paper, two works have mainly been done to evaluate
how the performance of MDO architectures changes with
the complexity of MDO varied. Firstly, we present a variable
complexity problemwhich is a nonseparable nonlinear prob-
lem that allows people to specify its complexity as needed.
Secondly, we evaluate the performance of different MDO
architectures through implementing fourMDO architectures
to solve the variable complexity problem under four investi-
gations.

For the first work, the presented variable complexity
problem is composed of the design variables, local con-
straints, global constraints, and nonseparable objective func-
tions and allows people to obtain the MDO problem with
arbitrary complexity by varying its complexity. It is more
general to represent the practical engineering problems and
make it possible to examine the effects of problem complexity
on different MDO architecture.

For the second work, the architectures of MDF, IDF,
SAND, and CO are implemented to solve the variable com-
plexity problem through programming in Python language
in the same computer environment and four investigations
are performed for the variable complexity problemby varying
its variable parameters which are, respectively, the number
of disciplines, the number of global variables, the number
of local variables, and the number of coupling variables. The
results supply a reference for the selection of MDO architec-
tures in solving practical engineering problems.Though only
four common MDO architectures and four investigations
are included, they can be regarded as templates for future
researchers to benchmark other MDO architectures under
other investigations.
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