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An improved theoretical model of the gas temperature profile in the cross-section of an ultraviolet
copper ion excited copper bromide laser is developed. The model is based on the solution of
the one-dimensional heat conduction equation subject to special nonlinear boundary conditions,
describing the heat interaction between the laser tube and its surroundings. It takes into account
the nonuniform distribution of the volume power density along with the radius of the laser tube.
The problem is reduced to the boundary value problem of the first kind. An explicit solution of
this model is obtained. The model is applied for the evaluation of the gas temperature profiles
of the laser in the conditions of free and forced air-cooling. Comparison with other simple models
assumed constant volume power density is made. In particular, a simple expression for calculating
the average gas temperature is found.
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1. Introduction

Deep ultraviolet (DUV) gas laser sources have been objects of great interest in the recent
years, because of a wide variety of applications, such as high-precision processing of
different materials, high-resolution laser lithography in microelectronics, high-density optical
recording of information, laser-induced modification in various materials newly developed,
as well as laser-induced fluorescence in plasma and wide-gap semiconductors [1–7]. These
applications require a DUV laser source in order to achieve the necessarily high resolution
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or to induce some phenomena in different materials, such as material and its surface
modification, image recording, and fluorescence. The photon energy is sufficient first, to
produce photochemical ablation rather than melting and subsequent vaporization, or second,
to initiate the induced processes. The DUV laser ablation produces clean precision cutting
and drilling with a minimum of thermal or mechanical damages on the target. DUV beams,
in addition to heatless etching, offer the advantage of focusing with less limitation due to
diffraction. The good spatial structure of the laser beam is generally important for the good-
quality image projected, while narrow linewidth would reduce the chromatic aberrations.
Chromatic aberrations are very difficult to correct because of the limited number of optical
materials that transmit in the DUV range. The excimer lasers, which are generally used as
light sources in the DUV range, can neither reach the spatial structure nor the linewidth
required. Their wide application is also impeded by their cost and considerable overheads.
Lately, there has been widespread interest in the ion metal vapor lasers, operating below
300 nm in the DUV spectral region. High beam quality and narrow-linewidth are inherent
for metal vapor lasers. For the first time laser oscillation on four DUV Cu+ lines: 248.6 nm,
252.9 nm, 260.0 nm, and 270.3 nm, in a nanosecond, pulsed longitudinal Ne-CuBr discharge
was obtained in [1]. In [2] an active zone diameter scanning of the DUV Cu+ Ne-CuBr
laser was carried out and the optimal discharge conditions were found for each active zone
diameter. A record average output power of 1.3 W was obtained at multiline operation. A
record specific average output power was 57 mW/cm3 at an active volume of 23 cm3. The
highest peak pulse power and average laser power on the 248.6 nm laser line for the DUV
Cu+ lasers were 3.25 W and 0.85 W, respectively.

For the metal and metal halide vapor lasers, the thermal mode, and in particular the
radial temperature distribution, is of great importance for the stability of the laser operation
and for the achievement of high output characteristics as well [8, 9]. In addition, cross-
sections and rate constants for heavy particle collisions, which thoroughly determine the
inverse population and laser output parameters, such as asymmetric charge transfer, Penning
ionization, depend strongly on the gas temperature. That is why the radial temperature
distribution in the active zone of the DUV Cu+ Ne-CuBr laser is object of a detailed
investigation. The gas temperature problem is also topical in radio-frequency discharges,
widely encountered in gas lasers, electron and ion technologies, nanotechnology, plasma-
chemical technology, and more [8].

It is well known that the experimental techniques for gas temperature measurement,
using spectral lines broadening and thermocouple are definitely imprecise. That is why
mathematical and computer models are applied to carry out the temperature distribution.
These models are used not only to evaluate the temperature but also for complex modeling
of plasma kinetics processes [9–14].

The determination of the gas temperature profile in metal vapor lasers has been firstly
considered in [9], where self-consistent mathematical models have been developed based on
an exact solution of the one-dimensional steady-state heat conduction equation subject to the
simple boundary conditions of the first and second kind. Till now, the same method has been
used in all other papers in this area, when the buffer gas temperature is calculated, see for
instance, [9–16]. In these studies, the expected average temperature and profile of the gas
are obtained using the following simplifying assumptions: (1) the average power input is
considered uniform in the discharge—no radial or longitudinal variations in power density
are considered (qv = constant); (2) the wall temperature is assumed to be constant.

However, in practice, and in computer modeling and simulations, these assumptions
are not fully applicable. That is so because the real values of the volume power density qv
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Figure 1: Construction of discharge tube.

are not uniformly distributed and vary strongly along the tube radius taking its maximum in
the central axis of the discharge. In addition, the temperature of the outer surface of the laser
tube under insulation is unknown and will change with variation of the laser geometry, input
electric power, and other laser parameters including temperature of the surroundings.

In [17, 18], the temperature profile in the case of a copper bromide vapor laser with
wavelength 510.6 nm and 578.2 nm was determined by using a new approach. It is based
on solving the heat conduction equation with qv = constant at nonlinear boundary value
conditions for a given temperature of the surroundings.

In this study, for the first time, the analytical investigation of the temperature profile in
the cross-section of the laser tube is performed with the assumption of a specified qualitative
distribution of qv, dependent on the tube radius, namely, qv = qv(r). Using the approach
similar to this in [17, 18], in the case of UV Cu+ CuBr lasers, a new improved analytical
model consisting of the one-dimensional heat conduction equation, subject to nonlinear
boundary conditions of the third and fourth kind is derived. At a given air temperature of
the surroundings, due to the heat convection and heat radiation, the proposed model allows
to take into account the heat exchange processes between the outer surface of the laser tube
and its surroundings. The gas temperature profile in the tube and the wall temperature are
expressed by an explicit solution of the obtained problem and are directly dependent on the
basic input laser parameters. The model is applied for evaluating the natural and forced air-
cooling of the laser tube.

2. Experimental Setup

The construction of the gas-discharge laser tube described by the model is presented in
Figure 1. The basic tube with an 18 mm inside diameter and 24.5 mm outside diameter is
made of fused quartz. The active length is 86 cm. The CuBr powder is placed in five quartz
side-arm reservoirs. A ceramic tube insert with an inside diameter of 5.2 mm is sleeved in
the basic tube. In the ceramic insert, five holes are made over each reservoir for the CuBr
vapor diffusion into the active zone. The optic cavity of the laser studied is formed by two
dielectric-coated mirrors. Mirror separation is 1.8 m.

The laser is excited by a pulsed electrical scheme with Interacting Circuits (IC). The
IC excitation of CuBr lasers, operating on self-terminating copper atom transitions, was
described in detail in [19].
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3. Description of the Mathematical Model

The aforementioned multiline copper-bromide laser operates in the UV-region [1–5]. The
total input electric power is 1300 W. Taking into account the losses in power supply, the
laser tube is fed with power Q1 = 1000 W. The output multiline laser power is 500 mW. The
geometric design of the cross-section of the laser tube in the active zone is shown in Figure 2.
The laser source is manufactured from quartz (3.2), in which a ceramic tube of Al2O3 (3.1) is
inserted along with the active laser volume, and the quartz tube is covered from the outside
active volume with extra heat-insulating wadding (3.3) made of felt—glass, mineral material,
or zircon oxide.

The model is developed with the following assumptions: (i) the temperature profile
is determined in a quasi-stationary regime; (ii) the gas temperature does not change
substantially in the interimpulse period; (iii) the total input electric power Q1 = 1000 W in
the active volume is transformed into heat, the power transferred to the walls as a result of
the discharge radiation and the deactivation of the excited and charged particles is not taken
into account; (iv) the thermal radiation of the heated gas in the active volume is ignored.

The temperature distribution Tg in the cross-section of the laser tube is governed by
the following quasi steady-state two-dimensional heat conduction equation:

div
(
λg grad Tg

)
+ qv = 0, (3.1)

where λg is the thermal conductivity of the gas (here neon) and qv is the volume density of
the discharge. Due to the radial symmetry, Tg depends only on the variable r along with the
radius of the tube. Consequently, in cylindrical configuration, (3.1) is reduced to the form

1
r

d

dr

(

rλg
dTg(r)
dr

)

+ qv = 0, 0 ≤ r < R1, R1 =
d1

2
. (3.2)

Usually, as it was mentioned earlier, equation (3.1) (resp., (3.2)) is solved in pub-
lications under the boundary conditions:

Tg(R1) = Tw,
dTg(r)
dr

∣∣∣∣∣
r=0

= 0, (3.3)

where Tw is the measured temperature of the outer wall of the tube (under insulation) [9–13].
Commonly, λg is in the form λg = λ0T

m
g .

In the case qv = constant, (3.2) possesses an exact solution [9], written in the form

Tg(r) =
[
Tm+1
w +

qv(m + 1)
4λ0

(
R2 − r2

)]1/(m+1)

. (3.4)
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Figure 2: Principle geometrical design of the cross-section of the laser source: (1) ceramic (Al2O3) tube;
(2) quartz tube; (3) thermal insulation. The diameters are, respectively: d1 = 5.2 mm, d2 = 18 mm, d3 =
24.5 mm, and d4 = 32.5 mm.

For solving (3.2), we need to obtain the correct boundary conditions corresponding to
(3.3) for r = R1 (see Figure 2):

Tg(R1) = T1,
dTg(r)
dr

∣∣∣∣∣
r=0

= 0. (3.5)

For that purpose, we will apply the distribution of the radial heat flow through the
composite laser tube. We consider the following mixed boundary conditions of the third and
fourth kind in cylindrical configuration [20–22]:

T1 = T2 +
ql ln(d2/d1)

2πλ 1
, T2 = T3 +

ql ln(d3/d2)
2πλ2

, T3 = T4 +
ql ln(d4/d3)

2πλ3
, (3.6)

Q1 = αF4(T4 − Tair) + F4εc

[(
T4

100

)4

−
(
Tair

100

)4
]

, (3.7)

where Tj denotes the temperatures at the boundaries of the tubes, j = 1, . . . , 4, respectively
(see Figure 2).

Boundary conditions (3.6) express the equation of the continuity of the heat flow at
the borders of the three mediums of the composed tube. Here ql is the power per unit length,
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Table 1: Related parameters of the theoretical calculation.

Parameter Value Description Condition Reference

Q1 1000 W Effective input electric
power

[5, 6]

la 0.86 m Length of the active zone [5, 6]
q0 54.6 Wcm−3 constant [5, 6]

ql 1162.8 W/m Electric power per unit
length

[5, 6]

λ0 0.0010029 Specific coefficient in λg ,
Equations (3.1), (3.2)

[20]

m 0.6817
Power coefficient for
neon in λg , Equations
(3.1), (3.2)

λ1 2.08 W/mK Thermal conductivity of
the ceramic tube

T = 800/1100 K [22]

λ2 1.96 W/mK Thermal conductivity of
the quartz tube

T = 800/1100 K [22]

λ3 1.78 W/mK Thermal conductivity of
the thermal insulation

T = 800/1100 K [22]

ε 0.72 Integral emissivity of the
Zr oxide insulation

[20, 22]

c 5.67 Wm−2K−4 Black body radiation
coefficient

[23]

Tair 300 K Temperature of the air

λair 0.0251 W/mK Thermal conductivity of
the air

Tair = 300 K [22, 23]

υair 15.7 × 10−6 m2/s Kinematical viscosity of
the air

Tair = 300 K [22, 23]

βair 3.14 × 10−3 K−1 Coefficient of cubical heat
expansion of the air

Tair = 300 K [22, 23]

g 9.80665 ms−2 Gravitational acceleration [23]

v 20 m/s Velocity of the moving
fluid

ql = Q1/la; la is the active length [2, 5, 6]; λj , j = 1, 2, 3 are the thermal conductivities of
the Al2O3 tube, quartz tube and the thermal insulation, respectively; dj , j = 1, . . . , 4 are the
diameters of the composite tubes (see Figure 2 and Table 1).

The boundary condition (3.7) shows the heat exchange between the outer surface of
the laser tube and the surroundings. The first term on the right-hand side of (3.7) evolves
from Newton-Riemann’s law for heat exchange by convection. The second term represents
the Stefan-Boltzmann law for heat exchange by radiation. The value of Q1 is equal to the
electric power of 1000 W, in accordance with assumption (iii), as it was stated earlier, α is the
heat transfer coefficient, F4 is the outside area of the insulation, ε is the integral emissivity of
the material, c is the black body radiation coefficient, and Tair is the temperature of the air.

The two unknown values α and T4 in boundary condition (3.7) have to be determined.
The values of the constants used in this study are given in Table 1.
In this way we obtain the temperature model described by (3.2) and boundary

conditions (3.6)-(3.7), equivalent to (3.2), (3.5). Our aim is to find an analytical formula for
the solution of this model at qv = qv(r).
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4. Determination of the Gas Temperature Tg(r) at Radial
Distribution of the Volume Power Density qv(r)

In this section, we will obtain an explicit solution for the gas temperature Tg(r) satisfying the
proposed theoretical model (3.2), (3.6), (3.7) and will discuss its application.

4.1. Determining the Variable Radial Distribution qv = qv(r)

Due to the lack of experimental data for qv = qv(r), we will derive it as a qualitative theoretical
dependency. From qv = jE and j ≈ σE, we have qv ≈ σE2, where E = E(r) is the electric
field intensity and σ is the electrical conductivity of the medium. In [24] the distribution of
the field intensity in the cross-section of the tube is represented by the expression E(r) =
E0J0((2.4/R1)r), where J0((2.4/R1)r) is a Bessel function of the first kind, 0 ≤ r ≤ R1. In this
way, we have qv(r) = Q0[J0((2.4/R1)r)]

2, where Q0 is a constant, which is found below. The
Bessel function J0 is well known and usually represented in [23, a table] in what follows. In
this form, it is not suitable for direct engineering-physics calculations. For this reason, we
will approximate the term [J0((2.4/R1)r)]

2 by a polynomial of the third-degree [J0(x)]
2 ≈

a1 + a2x + a3x
2 + a4x

3, where x = (2.4/R1)r. Based on tabular data from [23] and using the
least squares method, we find

a1 = 1.0044, a2 = −0.01768, a3 = −0.5657, a4 = 0.1668. (4.1)

For qv(r), we obtain:

qv(r) = Q0

[

a1 + a2
2.4
R1

r + a3

(
2.4
R1

)2

r2 + a4

(
2.4
R1

)3

r3

]

= Q0

(
a1 + Br + Cr2 +Dr3

)
,

(4.2)

where

B = a2
2.4
R1

, C = a3

(
2.4
R1

)2

, D = a4

(
2.4
R1

)3

. (4.3)

The constant Q0 can be found by using the equality of areas, bounded between the graphics
of each of the functions q0 = constant and qv = qv(r), and the abscissa r (see Figure 3):

2q0R1 = 2Q0

∫R1

0

(
a1 + Br + Cr2 +Dr3

)
dr. (4.4)

After integrating in (4.4) and substituting the values of the constants, we find

Q0 ≈ 2.131q0. (4.5)

In Figure 3, the distribution of the volume power densities q0 = constant and qv =
qv(r), according to (4.2) and (4.5), are illustrated in relative units, assuming here, in order to
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simplify that q0 = constant = 1. From Figure 3 and (4.5), it can be observed that in the center
of the discharge the local electrical volume power density for (4.2) is over two times larger
than qv = constant. This suggests a difference in the distribution of Tg(r) in the two cases
being examined: qv = constant and qv = qv(r).

4.2. Determining the Gas Temperature Tg(r)

The solution to (3.2) at mixed boundary conditions (3.6)-(3.7) and radial distribution qv(r) of
type (4.2) has the following form:

Tg(r)=
{
Tm+1

1 +
(m+1)Q0

λ0

[
a1

4

(
R2

1−r2
)
+
B

9

(
R3

1−r3
)
+
C

16

(
R4

1−r4
)
+
D

25

(
R5

1−r5
)]}1/(m+1)

,

(4.6)

where the constants B,C,D were introduced in (4.3).
Detailed determination of (4.6) is given in the appendix.

4.3. Application of the Mathematical Model

The obtained explicit solution (4.6) can be used when the value T1 of the temperature of the
internal tube is known. There are two cases as follows.

(1) The temperature T3 of the outside surface of the laser tube (i.e., quartz tube)
under the insulation is known (see Figure 2). For existing laser devices, it can be
measured, for instance, by a thermocouple. Then T2 and T1 can be calculated by
means of the corresponding boundary conditions from (3.6).

(2) The temperature T3 is unknown. This problem can arise in the development of new
laser sources or implementation of different computer simulations. In this case, the
temperature of the surroundings Tair must be specified, usually Tair = 300 K. To use
boundary condition (3.7) we need to find α and T4. In the following section, we
discuss the procedure for determining the heat transfer coefficient α and obtaining
a nonlinear algebraic equation for the temperature T4. Then, applying (3.6), we
calculate T3, T2, and T1.

5. Evaluation of Cooling and Discussion

We will apply the derived temperature model (3.2), (3.6)-(3.7) for determining the gas
temperature in the cases of free and forced convection.

5.1. Cooling of the Laser Tube by Free Convection

In [18], a simplified temperature model in the case of free convection at qv = constant has
been used. Here we will compare the results obtained by our new model for the general case
qv = qv(r) with those in [18].



Mathematical Problems in Engineering 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

q 0
,q
ν
(r
)
(r

el
at

iv
e

un
it

s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

r (mm)

Figure 3: Distribution of volume power density along the half cross-section of the internal tube, in relative
units: �: qv = q0 = 1, •: qv = qv(r).

In the case of free convection, the heat transfer coefficient α in (3.7) was calculated in
[18] as

α = 0.46λair

[
gβaird

3
4(T4 − Tair)

υ2
air

]0.25

/d4. (5.1)

The substitution of (5.1) in boundary condition (3.7) with consequent representation
in relation to the power per unit length ql results in [18]

ql = 0.46πλair

[
gβaird

3
4(T4 − Tair)

υ2
air

]0.25

(T4 − Tair) + πd4εc

[(
T4

100

)4

−
(
Tair

100

)4
]

. (5.2)

In the previous expressions (5.1)-(5.2), the numerical values of g, βair, υair, and λair are
given in Table 1. The data is correct for air temperature Tair = 300 K [22].

However (5.2) is a nonlinear equation with respect to the outside temperature of the
laser device insulation—T4. Also (5.2) can be easily solved by any computer algebra system,
for instance by Mathematica [25]. Once the temperature T4 is calculated, the values of T3,
T2, and T1 can be evaluated from (3.6), and the gas temperature Tg(r) in the internal tube is
determined by (4.6).

In Figure 4, on the same coordinate system, the distributions of the gas temperature
Tg(r) in the cross-section along with the radius of the laser tube for qv = constant and
qv = qv(r) are presented. In Table 2, special characteristic temperatures T4, T3, T2, T1, and
the maximum temperature T0 in the center of the laser tube are given (see also Figure 1).

Table 2 shows that temperatures T4, T3, T2, and T1 are equal. Their values are
determined by the total electrical power emitted within the active volume and are
independent from its radial distribution. In both cases, this power is the same—1000 W.
Table 2 and Figure 4 show that T0 = Tg(0) = Tmax when qv = qv(r) is 90◦C higher than the



10 Mathematical Problems in Engineering

Table 2: Gas temperature at special characteristic points in the case of free convection.

T4 (K) T3 (K) T2 (K) T1 (K) T0 (K)
qv = q0 = constant 672.6 688.3 717.4 838.3 1573.9
qv = qv(r) 672.6 688.3 717.4 838.3 1663.9
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Figure 4: Gas temperature distribution along the half cross-section of the internal tube with free convection:
�: qv = q0 = 54.6 W cm−3, •: qv = qv(r) from (4.2).

corresponding value when qv = constant. The results for the gas temperature in the case of
qv = constant have the same behavior as the calculated values in [9, 11].

5.2. Cooling of the Laser Tube by Forced Convection

For all types of convection, the Nusselt criterion, Nu = αH/λ, holds [20–22], from which for
H = d4 and λ = λair, we find

α =
Nuλair

d4
. (5.3)

In the case of forced convection, the Reynolds criterion is represented by [20, 21]

Re =
v. la
υair

, (5.4)

where v is the velocity of the moving fluid, la is the length of the laser tube and υair is the
kinematical viscosity of the air. However (5.4) is valid for 40 < Re < 4000 [22].

For horizontal tubes with forced air cooling the following equality holds [22]:

Nu = 0.615Re0.466. (5.5)
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Table 3: Gas temperature at special characteristic points in the case of forced convection.

T4 (K) T3 (K) T2 (K) T1 (K) T0 (K)
qv = q0 = constant 459.3 475.0 504.1 625.0 1443.6
qv = qv(r) 459.3 475.0 504.1 625.0 1539.0
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Figure 5: Gas temperature distribution along the half cross-section of the internal tube in the case of forced
convection, v = 20 m/s: �: qv = q0 = 54.6 W cm−3, •: qv = qv(r) from (4.2).

From (5.3), (5.4), and (5.5), the heat transfer coefficient α is

α = 0.615
λair

d4

(
vd4

υair

)0.466

. (5.6)

Substituting (5.6) in boundary condition (3.7) and representing it with respect to the power
per unit length ql, we obtain a nonlinear algebraic equation for T4 in the form

ql = 0.615πλair

(
vd4

υair

)0.466

· (T4 − Tair) + πd4εc

[(
T4

100

)4

−
(
Tair

100

)4
]

. (5.7)

In this way by solving (5.7), we determine T4. Then using (3.6) and (4.6), we find the required
gas temperature profile in the cross-section of the laser tube.

The obtained values of some characteristic temperatures are given in Table 3, including
the maximum value T0 along the center of the tube. The results of the calculated values of
Tg(r) in the two cases qv = q0 = constant and qv = qv(r) are shown in Figure 5 for air flow
v = 20 m/s.

As it is expected the cooling process causes a decrease of the buffer gas temperature in
relation with the case of free convection (compare Tables 2 and 3, and Figures 4 and 5).
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It can be noted that although the maximum local electric power at the center of the
tube is twice higher for qv = qv(r) (see Figure 3), the difference between the corresponding
maximum temperatures is only 95◦C. This result is almost the same as in the case of free
convection. The deviation is on average around 6%. We can conclude that in principle,
solution (3.4) can successfully be used to analyze temperature conditions of existing laser
sources, when the temperature T1 is known.

As an absolute quantity, the difference of 90/95◦C at the center of the discharge should
not be overlooked. The model discussed in this paper can better explain and predict the
occurrence of a number of negative phenomena connected with the overheating of the laser
medium. The increase of 90/95◦C in the temperature at the center of the discharge can lead
to a contraction of the gas discharge, thermal ionizing instability, and thermochemical gas
degradation, additional thermal population of lower laser levels. In the end, this leads to
decreased laser power and deterioration in mode composition. In some cases, the overheating
of the discharge at the center of the tube may lead to a cessation of laser generation along its
axis and the appearance of dark spots at the center of laser beam. For this reason, regardless
the complexity of the new model, its use is fully advisable.

6. Average Temperature in the Active Volume

During the analysis of the temperature condition of existing or new laser devices, the average
gas temperature in the active volume is a characteristic of great importance. It is defined as

Tg =
1
R1

∫R 1

0
Tg(r)dr, (6.1)

where Tg(r) is the radial distribution of temperature in the active volume.
The average value of temperature Tg for equal configurations depends only on the

electric power, supplied to the active volume, and is independent of the radial distribution of
Tg(r). In our case, the electrical power is Q1 = 1000 W. The average temperature should not
change for the temperature distribution of the type in (3.4) and (4.6).

All subsequent calculations have been made using the Mathematica software system
[25].

For the radial distribution of Tg(r) given by formula (3.4), the result is

Tg,Eq.(3.4) =T1

(

1+
(m+1)qvR2

1

4λ0T
m+1
1

)1/(m+1)

×
⎡

⎣ 2F1

⎛

⎝1
2
,− 1
m+1

;
3
2

;

(

1+
4Tm+1

1 λ0

(m+1)qv Tm+1
1

)−1
⎞

⎠

⎤

⎦.

(6.2)

The numerical value of (6.2) is Tg,Eq.(3.4) = 1347 K.
For the radial distribution of Tg(r) from (4.6) the quantity (6.1) does not have an exact

algebraic solution and the integral in (6.1) is solved numerically. The numerical value is
Tg,Eq.(4.5) = 1339 K. The approximate calculation leads to an insignificant deviation of values
for Tg,Eq.(3.4) and Tg,Eq.(4.5), estimated by a relative error of 0.6%.

The presence of a hypergeometric function of type 2F1(a, b; c; z) in the solution of (6.2)
makes it practically difficult to use. For this reason, we represent the function 2F1(a, b; c; z)
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by its Gauss series [25, 26], limited only to the first two terms of the expansion

2F1(a, b; c; z) ≈ 1 +
abz

c
. (6.3)

The result is

2F1

⎛

⎝1
2
,− 1
m + 1

;
3
2

;

(

1 +
4Tm+1

1 λ0

(m + 1)qv Tm+1
1

)−1
⎞

⎠ ≈ 1 − qvR
2
1

3
[
(m + 1)qvR2

1 + 4λ0T
m+1
1

] . (6.4)

In this way by using (6.2), we obtain

Tg ≈ T1

(

1 +
(m + 1)qvR2

1

4λ0T
m+1
1

)1/(m+1)(

1 − qvR
2
1

3
[
(m + 1)qvR2

1 + 4λ0T
m+1
1

]

)

. (6.5)

The average value of the temperature from (6.5) is Tg = 1358 K, with a relative error
of 1%. This shows that (6.5) can be used with sufficient accuracy to determine the average
temperature in the active volume: Tg ≈ Tg,Eq.(3.4).

7. Conclusion

A theoretical mathematical model for evaluating the buffer gas temperature Tg(r) in UV
Cu+ Ne-CuBr laser is developed. It takes into account the nonuniformly distributed electrical
power along the cross-section of the laser tube. Based on common theoretical dependencies,
a suggestion is made for the qualitative distribution of volume power density qv = qv(r).
The model includes a heat conduction equation subject to nonlinear boundary conditions.
An explicit solution with these conditions is obtained. The model is applied in the cases of
free and forced convection. A simple expression is established for calculating the average gas
temperature in the active volume.

An evaluation of the previous existing solution has been presented, describing the
distribution of the gas temperature Tg(r) under the assumption qv = constant. It has been
established that, for such an assumption, the error when determining Tg(r) at the center of
the tube is about 6%.

The obtained results at qv = constant have been compared with similar calculated
results by using simple mathematical gas temperature models [9, 11].

A comparison has been made between the obtained temperature profiles of Tg(r) at
qv = constant and qv = qv(r). It has been established that at the center of the tube the
temperature when qv = qv(r) is about 90–95◦C higher, both for free and forced convection.

It has to be noted that the simple model when qv = constant cannot be used to evaluate
radial buffer gas temperature when the temperature of the wall is unknown. The advantage
of the model presented here is that when specific geometric dimensions have been chosen,
the temperature of the surroundings and other parameters, the temperature T3 of the outer
wall of the laser tube is calculated, after which the values for the gas temperature within the
tube are calculated. Therefore, the new model can be applied not only to precise the existing
models but to design new laser devices as well.
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The proposed theoretical model and methodology could be useful for solving similar
engineering problems where the calculation of the radial heat flow with an internal heat
source is required. It gives the opportunity to carry out further computer simulations in
order to optimize laser generation, while changing the geometrical design, tube materials,
heat insulation, input electric power, and laser operating conditions.

Appendix

Let us consider the problem (3.2), (3.5), assuming that the temperature T1 is determined. For
λg = λ0T

m
g , 0 ≤ r < R1 and qv = qv(r), (3.2) becomes

1
r

d

dr

(
rλ0T

m
g

dT

dr

)
+ qv = 0. (A.1)

By the change of variable

U(r) = Tm+1
g , (A.2)

we have Tmg (dTg/dr) = (1/m + 1)(dU/dr). After some simplification in (A.1) and (3.3), we
obtain the problem

d2U

dr2
+

1
r

dU

dr
+
qv(m + 1)

λ0
= 0, (A.3)

U(R1) = Tm+1
1 ,

dU

dr

∣∣∣∣
r=0

= 0. (A.4)

By introducing a new variable

τ =
dU

dr
. (A.5)

However (A.3) can be rearranged in the form

d(rτ) +
m + 1
λ0

qvrdr = 0. (A.6)

The integration of (A.6) and substitution of qv by the expression (4.2) yields τr +((m+
1)Q0/λ0)

∫
(a1r + Br2 + Cr3 +Dr4)dr = C1, where C1 is a constant of integration. We find

τ +
(m + 1)Q0

λ 0

(

a1
r

2
+ B

r2

3
+ C

r3

4
+D

r4

5

)

=
C1

r
. (A.7)
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Coming back to the variable U according to (A.5), we obtain

dU

dr
+
(m + 1)Q0

λ0

(

a
r

2
+ B

r2

3
+ C

r3

4
+D

r4

5

)

=
C1

r
. (A.8)

The second boundary condition in (A.4) requires that C1 = 0, so

dU +
(m + 1)Q0

λ0

(

a1
r

2
+ B

r2

3
+ C

r3

4
+D

r4

5

)

dr = 0. (A.9)

The integration of (A.9) yields

U +
(m + 1)Q0

λ0

(

a1
r2

4
+ B

r3

9
+ C

r4

16
+D

r5

25

)

= C2, (A.10)

where C2 is a constant. Using the boundary condition (A.4), we find C2

C2 = U(R1) +
(m + 1)Q0

λ0

(

a1
R2

1

4
+ B

R3
1

9
+ C

R4
1

16
+D

R5
1

25

)

. (A.11)

The substitution of C2 into (A.10) gives

U(r) = U(R1) +
(m + 1)Q0

λ0

[
a1

4

(
R2

1 − r2
)
+
B

9

(
R3

1 − r3
)
+
C

16

(
R4

1 − r4
)
+
D

25

(
R5

1 − r5
)]
.

(A.12)

Finally, by using (A.2), we obtain the required solution of (3.2) in the form (4.6):

Tg(r)=
{
Tm+1

1 +
(m+1)Q0

λ0

[
a1

4

(
R2

1−r2
)
+
B

9

(
R3

1−r3
)
+
C

16

(
R4

1−r4
)
+
D

25

(
R5

1−r5
)]}1/(m+1)

.

(A.13)
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