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The synchronization of chaotic systems, described by discrete-time T-S fuzzymodels, is treated bymeans of fuzzy output regulation
theory. The conditions for designing a discrete-time output regulator are given in this paper. Besides, when the system does not
fulfill the conditions for exact tracking, a new regulator based on genetic algorithms is considered. The genetic algorithms are
used to approximate the adequate membership functions, which allow the adequate combination of local regulators. As a result,
the tracking error is significantly reduced. Both the Complete Synchronization and the Generalized Synchronization problem are
studied. Some numerical examples are used to illustrate the effectiveness of the proposed approach.

1. Introduction

A special nonlinear dynamical phenomenon, known as
chaos, emerged in mid-1960s and reached applicable tech-
nology in the late 1990s and was considered as one of
the three monumental discoveries of the twentieth century.
On the other hand, fuzzy logic, a set theory and then
an infinite-valued logic, gets a wide applicability in many
industrial, commercial, and technical fields, ranging from
control, automation, and artificial intelligence, just to name
a few. Fuzzy logic and chaos had been considered by many
researches and engineers as fundamental concepts and the-
ories and their broad applicability in technology as well. The
interaction between fuzzy logic and chaos has been developed
for the last 20 years leading to research topics as fuzzy
modeling of chaotic systems using Takagi-Sugeno models,
linguistic descriptions of chaotic systems, fuzzy control of
chaos, synchronization, and a combination of fuzzy chaos for
engineering applications [1, 2].

In the 1960s, Rechenberg [3] introduced “evolution
strategies,” a method to optimize real-valued parameters for

devices such as airfoils. This idea was further developed
by Schwefel in [4]. Genetic algorithms (GAs) were initially
developed by Bremermann [5] in 1958 but popularized and
developed byHolland in the 1960s. In contrast with evolution
strategies and evolutionary programming, Holland’s idea
was not to design algorithms to solve specific problems but
rather to formally study the phenomenon of adaptation, as it
occurs in nature, and develop ways in which the mechanisms
of natural adaptation might be transferred into computer
systems [6].The genetic algorithm is presented as abstraction
of biological evolution and theoretical framework for adapta-
tion formoving from one population of “chromosomes” (e.g.,
strings of ones and zeros, or “bits”) to a new population by
using a kind of “natural selection” together with the genetics-
inspired operators of crossover, mutation, and inversion.
Each chromosome consists of “genes” (e.g., bits); each gene
is being an instance of a particular “allele” (e.g., 0 or 1).
The operator selection chooses those chromosomes in the
population that will be allowed to reproduce and those
adjusted chromosomes produce more offspring than the less
ones [7].
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According to Fogel and Aderson [8], Bremermann was
the first to implement real-coded genetic algorithms as well
as providing a mathematic model of GA known as the one-
max function. In contrast to genetic algorithms, Evolutionary
Strategies were initially developed for the purpose of param-
eter optimization. The idea was to imitate the principles of
organic evolution in experimental parameter optimization
for applications such as pipe bending or PID control for a
nonlinear system [9].

Synchronization of chaotic systems is one of the more
exiting problems in control science and can be referred at
least to Huygen’s observations [10]; it is understood as one of
the trajectories of two autonomous chaotic systems, starting
from nearly initial conditions and converging to the other,
and remains as 𝑡 → ∞; in [11] it was reported that some kind
of chaotic systems possesses a self-synchronization property.
However, not all chaotic systems can be decomposed in
two separate responses subsystems and be able to synchro-
nize the drive system. The ideas of these works have led
to improvement in many fields, such as communications
[12], encrypted systems, the complex information processing
within the human brain, coupled biochemical reactors, and
earthquake engineering [13].

Synchronization can be classified as follows: Complete
Synchronization: it is when two identical chaos oscillators are
mutually coupled and one drives to the other; Generalized
Synchronization: it differs from the previous case by the fact
that there are different chaos oscillators and the states of one
are completely defined by the other; Phase Synchronization: it
occurswhen the coupled oscillators are not identical and have
different amplitude that is still unsynchronized, while the
phases of oscillators evolve to be synchronized [14]. It is worth
mentioning that studies in synchronization of nonlinear
systems have been reformulated based on the previous results
from classical control theory such as [15–18].

In this paper, the fuzzy output regulation theory and
Takagi-Sugeno (T-S) fuzzy models are used to solve the
Complete and Generalized Synchronization by using linear
local regulators. Isidori and Byrnes [19] showed that the
output regulation established by Francis could be extended
for a nonlinear sector as a general case, resulting in a set of
nonlinear partial differential equations called Francis-Isidori-
Byrnes (FIB). Unfortunately these equations in many cases
are too difficult to solve in a practical manner. For this reason
in [20] the approach based on the weighted summation
of local linear regulators is presented and in [21] the new
membership functions in the regulator are approximated by
soft computing techniques.

So, the main contribution of the present work is to find
a control law for synchronizing of chaotic systems described
by discrete-time Takagi-Sugeno fuzzy models, first when the
system fulfills the following: (1) the input matrix for all
subsystems is the same and (2) the local regulators share
the same zero error manifold 𝜋(𝑤𝑘). In this way, the results
given in [20] are extended to the discrete-time domain. On
the other hand, when the systemmaster-slave does not fulfill
the aforementioned conditions, new membership functions
are computed in order to enhance the performance of the
fuzzy regulator. Such proposed membership functions are

different from those given in the plant or exosystem and are
tuned by using the GA. The tuning of the new membership
functions, which is as generalized bell-shaped function, is
given by optimization of the form parameter.

The rest of the paper is organized as follows. In Section 2
the discrete-time output regulation problem formulation
is given with a brief review of the Takagi-Sugeno models
and the discrete-time fuzzy regulation problem. In Section 3
the tuning of membership functions by means of GAs is
thoroughly discussed. In Section 4 Complete and General-
ized Synchronization with some examples are presented and
finally, in Section 5, some conclusions are drawn.

2. The Discrete-Time Fuzzy Output
Regulation Problem

Consider a nonlinear discrete-time system defined by

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝜔𝑘, 𝑢𝑘) , (1)

𝑦𝑘 = 𝑐 (𝑥𝑘) , (2)

𝜔𝑘+1 = 𝑠 (𝜔𝑘) , (3)

𝑦ref,𝑘 = 𝑞 (𝜔𝑘) , (4)

𝑒𝑘 = ℎ (𝑥𝑘, 𝜔𝑘) , (5)

where 𝑥𝑘 ∈ R𝑛 is the state vector of the plant, 𝑤𝑘 ∈ 𝑊 ⊂

R𝑠 is the state vector of the exosystem, which generates the
reference and/or the perturbation signals, and 𝑢𝑘 ∈ R𝑚 is
the input signal. Equation (5) refers to difference between
output system of the plant (𝑦𝑘 ∈ R𝑚) and the reference signal
(𝑦ref ,𝑘 ∈ R𝑚); that is, ℎ(𝑥𝑘, 𝜔𝑘) = 𝑦𝑘 − 𝑦ref ,𝑘 = 𝑐(𝑥𝑘) − 𝑞(𝑤𝑘)

and take into account that 𝑚 ≤ 𝑛. Besides, it is assumed that
𝑓(𝑥𝑘, 𝑢𝑘, 𝑤𝑘), ℎ(𝑥𝑘, 𝑤𝑘), and 𝑠(𝑤𝑘) are analytical functions
and also that 𝑓(0, 0, 0) = 0, 𝑠(0) = 0, and ℎ(0, 0) = 0 [22].

Clearly, by linearizing (1)–(5) around 𝑥𝑘 = 0, one gets

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑃𝑤𝑘,

𝑦𝑘 = 𝐶𝑥𝑘,

𝑤𝑘+1 = 𝑆𝑤𝑘,

𝑦ref,𝑘 = 𝑄𝑤𝑘,

𝑒𝑘 = 𝐶𝑥𝑘 − 𝑄𝑤𝑘.

(6)

Thus, the Nonlinear Regulator Problem [19, 23] consists of
finding a controller 𝑢𝑘 = 𝛼(𝑥𝑘, 𝑤𝑘), such that the closed-loop
system 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝛼(𝑥𝑘, 0) has an asymptotically stable
equilibrium point, and the solution of system (6) satisfies
lim𝑘→∞𝑒𝑘 = 0.

So, by defining 𝜋(𝑤𝑘) as the steady-state zero error
manifold and 𝛾(𝑤𝑘) as the steady-state input, the following
theorem gives the conditions for the solution of nonlinear
regulation problem.

Theorem 1. Suppose that 𝑤𝑘+1 = 𝑠(𝑤𝑘) is Poisson stable and
there exists a gain𝐾 such that the matrix 𝐴+𝐵𝐾 is stable and
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there exist mappings 𝑥𝑠𝑠(𝑡) = 𝜋(𝑤𝑘) and 𝑢𝑠𝑠 = 𝛾(𝑤𝑘) with
𝜋(0) = 0 and 𝛾(0) = 0 satisfying

𝜋 (𝑠 (𝑤𝑘)) = 𝑓 (𝜋 (𝑤𝑘) , 𝑤𝑘, 𝛾 (𝑤𝑘)) ,

0 = ℎ (𝜋 (𝑤𝑘) , 𝑤𝑘) .

(7)

Then the control signal for the nonlinear regulation is given by

𝑢𝑘 = 𝐾 (𝑥𝑘 − 𝜋 (𝑤𝑘)) + 𝛾 (𝑤𝑘) . (8)

Proof. See [22–24].

The equation set (7) is known as Discrete-Time Francis-
Isidori-Byrnes (DTFIB) equations and linear counterpart is
obtained when the mappings 𝑥𝑠𝑠,𝑘 = 𝜋(𝑤𝑘) and 𝑢𝑠𝑠,𝑘 = 𝛾(𝑤𝑘)

transform into 𝑥𝑠𝑠,𝑘 = Π𝑤𝑘 and 𝑢𝑠𝑠,𝑘 = Γ𝑤𝑘, respectively.
Thus, the problem is reduced to solve linear matrix equations
[25] given by

Π𝑆 = 𝐴Π + 𝐵Γ + 𝑃,

0 = 𝐶Π − 𝑄.

(9)

2.1. The Discrete-Time Output Fuzzy Regulation Problem.
Takagi and Sugeno proposed a fuzzy model composed of
a set of linear subsystems with IF-THEN rules capable of
relating physical knowledge, linguistic characteristics, and
properties of the system. Such amodel successfully represents
a nonlinear system at least in a predefined region of phase
space [15]. The T-S model for the plant and exosystem can be
described as follows [26]:

Plant Model

Rule 𝑖:
IF 𝑧1,1,𝑘 is𝑀

𝑖

1,1
and . . . and 𝑧1,𝑝

1
,𝑘 is𝑀

𝑖

1,𝑝
1

,

THEN
{

{

{

𝑥𝑘+1 = 𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘,

𝑦𝑘 = 𝐶𝑖𝑥𝑘,

𝑖 = 1, 2, . . . , 𝑟1,

(10)

where 𝑟1 is the number of rules in the model of the
plant and the sets𝑀𝑖

1,𝑗
are the fuzzy sets defined based

on the previous dynamic knowledge of the system.

Exosystem Model

Rule 𝑖:
IF 𝑧2,1,𝑘 is𝑀

𝑖

2,1
and . . . and 𝑧2,𝑝

2
,𝑘 is𝑀

𝑖

2,𝑝
2

,

THEN
{

{

{

𝑤𝑘+1 = 𝑆𝑖𝑤𝑘,

𝑦ref ,𝑘 = Q𝑖𝑤𝑘,
𝑖 = 1, 2, . . . , 𝑟2, (11)

where 𝑟2 is the number of rules in the model of the
exosystem and𝑀

𝑖

2,𝑗
are the fuzzy sets.

Then, the regulation problem defined by (1)–(5) can be
represented through the T-S discrete-time fuzzy model; that
is, [20]

𝑥𝑘+1 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) 𝐶𝑖𝑥𝑘 −

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑄𝑖𝑤𝑘,

(12)

where 𝑥𝑘 ∈ R𝑛 is the state vector of the plant, 𝑤𝑘 ∈ R𝑠 is
the state vector of the exosystem, 𝑢𝑘 ∈ R𝑚 is the input signal,
𝑒𝑘 ∈ R𝑚, and ℎ∗,𝑖(𝑧) is the normalized weight of each rule, 1
for the plant and 2 for the exosystem, which depends on the
membership function for the premise variable 𝑧∗,𝑘 in 𝑀

𝑖

∗,𝑗
;

that is,

𝜔∗,𝑖 (𝑧∗,𝑘) =

𝑝
∗

∏

𝑗=1

𝑀
𝑖

∗,𝑗
(𝑧∗,𝑗,𝑘) ,

ℎ∗,𝑖 (𝑧∗,𝑘) =

𝜔∗,𝑖 (𝑧∗,𝑘)

∑
𝑟
∗

𝑖=1
𝜔∗,𝑖 (𝑧∗,𝑘)

,

𝑟
∗

∑

𝑖=1

ℎ∗,𝑖 (𝑧∗,𝑘) = 1,

ℎ∗,𝑖 (𝑧∗,𝑘) ≥ 0

(13)

with 𝑧∗,𝑘 = [𝑧∗,1,𝑘 𝑧∗,2,𝑘 ⋅ ⋅ ⋅ 𝑧∗,𝑝
∗
,𝑘] as a function of 𝑥𝑘

and/or 𝑤𝑘, 𝑖 = 1, . . . , 𝑟∗ and 𝑗 = 1, . . . , 𝑝.
The discrete-time fuzzy output regulation problem consists

of finding a controller 𝑢𝑘 = 𝛼(𝑥𝑘, 𝑤𝑘), such that the closed-
loop system with no external signal

𝑥𝑘+1 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝛼 (𝑥𝑘, 0)} (14)

has an asymptotically stable equilibrium point.
The solution of system (12) satisfies

lim
𝑘→∞

𝑒𝑘 = 0. (15)

In order to achieve the synchronization of chaotic systems
described by a T-S discrete-time fuzzy model it is necessary
to fulfill (7) [27, 28]. Then

𝜋 (𝑠 (𝑤𝑘))

=

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) {𝐴 𝑖𝜋 (𝑤𝑘) + 𝐵𝑖𝛾 (𝑤𝑘) + 𝑃𝑖𝑤𝑘} ,

(16)

0 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘) 𝐶𝑖𝜋 (𝑤𝑘) −

𝑟
2

∑

𝑖=1

ℎ2,𝑖 (𝑧2,𝑘) 𝑄𝑖𝑤𝑘, (17)
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where 𝜋(𝑤𝑘) is the zero error steady-state manifold which
becomes invariant by the effect of the steady-state input
𝛾(𝑤𝑘).

Assuming the mappings 𝜋(𝑤𝑘) and 𝛾(𝑤𝑘) as

𝜋̃ (𝑤𝑘) =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑖 (𝑧2,𝑘)Π𝑖,𝑗𝑤𝑘, (18)

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑖 (𝑧2,𝑘) Γ𝑖,𝑗𝑤𝑘, (19)

respectively, withΠ𝑖,𝑗 and Γ𝑖,𝑗 as a solution of 𝑟1 ⋅ 𝑟2 lineal local
problems,

Π𝑖𝑗𝑆𝑗 = 𝐴 𝑖Π𝑖𝑗 + 𝐵𝑖Γ𝑖𝑗 + 𝑃𝑖, (20)

0 = 𝐶𝑖Π𝑖,𝑗 − 𝑄𝑖, (21)

for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2, the following control law
can be obtained [20, 22, 23]:

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)

⋅ 𝐾𝑖
[

[

𝑥𝑘 −

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘)Π𝑖𝑗𝑤𝑘
]

]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(22)

However, by substitution of 𝜋(𝑤𝑘) and 𝛾(𝑤𝑘) in (16) and (17)
and considering

(1) the steady-state zero error manifold 𝜋(𝑤𝑘) = Π𝑤𝑘,
that is, Π𝑖𝑗 = Π,

(2) the input matrices 𝐵𝑖 = 𝐵 and/or Γ𝑖𝑗 = Γ,

for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2, the following control
signal 𝑢𝑘 emerges:

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)𝐾𝑖 [𝑥𝑘 − Π𝑤𝑘]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(23)

On the other hand, the existence of a fuzzy stabilizer of the
form 𝑢 = ∑

𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘)𝐾𝑖𝑥𝑘, ensuring that the tracking error

converges asymptotically to zero, can be obtained from the
Parallel Distributed Compensator (PDC) [29, 30] or another
stability analysis for T-S fuzzy models such as [31].

Remark 2. The control signal in (22) is given by the substitu-
tion of (18) and (19) in (16) and (17); the proposed controller
provides the following advantages:

(1) All parameters included in the controller are known;
this includes the membership functions of the plant
and exosystem,which arewell defined in theT-S fuzzy
model.

On the other hand, Π𝑖𝑗 and Γ𝑖𝑗 come directly from
solving of 𝑟1 ∗ 𝑟2 local linear problems equivalent
to solving the Francis equations; such problems can
be easily solved by using programs like Matlab or
Mathematica.

(2) In the case when the 𝑟1 ∗ 𝑟2 local linear problems lead
to Π𝑖𝑗 ̸= Π, then at least a bounded error is ensured.

(3) It is clear that when Π𝑖𝑗 = Π, the term
∑
𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘) ∑

𝑟
2

𝑗=1
ℎ2,𝑗(𝑧2,𝑘)Π𝑖𝑗𝑤𝑘 changes to Π𝑤𝑘

leading to controller defined in (23).
(4) The following condition: the input matrices 𝐵𝑖 =

𝐵 and/or Γ𝑖𝑗 = Γ avoids the crossed terms in the
solutions of (16) and (17), allowing the exact fuzzy
output regulation.

(5) The proposed controller can be seen as a simple
substitution of the aforementioned elements.

On the other hand, the following disadvantages can
appear:

(1) If the condition is that the steady-state zero error
manifold 𝜋(𝑤𝑘) ̸= Π𝑤𝑘, that is, Π𝑖𝑗 ̸= Π, then, it will
be necessary to adjust the local regulator by means of
new membership functions. Please refer to Section 3.

(2) As expected, the complexity of the controller
increases according to the number of local
subsystems.

The following theorem provides the conditions for the
existence of the exact fuzzy output regulator for a discrete-
time T-S fuzzy models.

Theorem 3. The exact fuzzy output regulation with full
information of systems defined as (12) is solvable if (a) there
exists the same zero error steady-state manifold 𝜋(𝑤𝑘) = Π;
(b) there exist 𝑢𝑘 = ∑

𝑟
1

𝑖=1
ℎ𝑖,𝑘(𝑧1,𝑘)𝐾𝑖𝑥𝑘 for the fuzzy system;

(c) the exosystem 𝜔𝑘+1 = 𝑠(𝜔𝑘) is Poisson stable, and the input
matrices for all subsystems 𝐵𝑖 are equal. Moreover, the Exact
Output Fuzzy Regulation Problem is solvable by the controller

𝑢𝑘 =

𝑟
1

∑

ℎ=1

ℎ1,𝑖 (𝑧1,𝑘)𝐾𝑖 [𝑥𝑘 − Π𝑤𝑘]

+

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

ℎ2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘.

(24)

Proof. From the previous analysis, the existence of mappings
𝜋(𝑤𝑘) = Π𝑤𝑘 and 𝛾(𝑤𝑘) = ∑

𝑟
1

𝑖=1
ℎ1,𝑖(𝑧1,𝑘) ∑

𝑟
2

𝑗=1
ℎ2,𝑗(𝑧2,𝑘)Γ𝑖𝑗𝑤𝑘

is guaranteed when the input matrices for all subsystems 𝐵𝑖
are equal, and the solution of 𝑟1 ⋅ 𝑟2 lineal local problems is

Π𝑖𝑗𝑆𝑗 = 𝐴 𝑖Π𝑖𝑗 + 𝐵𝑖Γ𝑖𝑗 + 𝑃𝑖,

0 = 𝐶𝑖Π𝑖,𝑗 − 𝑄𝑖,

(25)

leading to Π𝑖𝑗 = Π for all 𝑖 = 1, . . . , 𝑟1 and 𝑗 = 1, . . . , 𝑟2.
On the other hand, the inclusion of condition (b) has been

thoroughly discussed in [22, 23, 27, 28, 31–33], and it implies
the existence of a fuzzy stabilizer.
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Condition (c) ensures the nonexistence of crossed terms
in the local Francis equations. Finally, condition (d) is intro-
duced to avoid the fact that the reference signal converges to
zero, which would turn the regulation problem into a simple
stability problem. The rest of the proof follows directly from
the previous analysis.

3. The Output Regulator by means of
Local Regulators and Tuning of New
Membership Functions

In this section, a discrete-time T-S fuzzy model is considered
to solve the exact output regulation on the basis of linear
local controllers. So, the main goal is to find a complete
regulator based on the fuzzy summation of local regulators
using adequate membership functions, such that the result
given in Theorem 3 can be relaxed [34]. These membership
functions are not necessarily the same included in the fuzzy
plant, as is described in (19). Thus, the steady-state input
𝛾(𝑤𝑘) can be defined as

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑧1,𝑘)

𝑟
2

∑

𝑗=1

𝜇2,𝑗 (𝑧2,𝑘) Γ𝑖𝑗𝑤𝑘, (26)

where 𝜇1,𝑖(𝑧1,𝑘) and 𝜇2,𝑗(𝑧2,𝑘) are new membership func-
tions, such that the fuzzy output regulator obtained from
local regulators provides the exact fuzzy output regulation.
This approach requires the computation of the linear local
controllers and the computation of the new membership
functions. In this work, such functions are represented by the
following expression:

𝜇1,𝑖 (𝑥𝑘) =
1

1 +
󵄨󵄨󵄨󵄨
(𝑥𝑘 − 𝑐𝑖) /𝑎𝑖

󵄨󵄨󵄨󵄨

2𝑏
𝑖

, ∀𝑖 = 1, . . . , 𝑟1, (27)

𝜇2,𝑗 (𝑤𝑘) =
1

1 +
󵄨󵄨󵄨󵄨󵄨
(𝑤𝑘 − 𝑐𝑗) /𝑎𝑗

󵄨󵄨󵄨󵄨󵄨

2𝑏
𝑗

, ∀𝑗 = 1, . . . , 𝑟2. (28)

𝜇1,𝑖 and 𝜇2,𝑗 are well known as generalized bell-shaped mem-
bership functions and the parameters 𝑎𝑖, 𝑎𝑗, 𝑏𝑖, 𝑏𝑗, 𝑐𝑖, and
𝑐𝑗 determine the form, center, and amplitude, respectively.
Therefore, from (22), the input can be defined by

𝑢𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑥𝑘) 𝑘𝑖 {𝑥𝑘 − 𝜋 (𝑤𝑘)}

+

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑤𝑘)

𝑟
2

∑

𝑗=1

𝜇2,𝑗 (𝑤𝑘) Γ𝑖𝑗𝑤𝑘,

(29)

because 𝑧∗,𝑘 is a function of𝑥𝑘 and in steady-state𝑥𝑘 = 𝜋(𝑤𝑘).
Then, for tuning themembership functions (27) and (28),

the parameters 𝑎𝑖 and 𝑎𝑗will be optimized bymeans of genetic
algorithms, ensuring the correct interpolation between the
local linear regulators. The foregoing can be summarized in
the control scheme depicted in Figure 1.

To this end, the following algorithm should be carried out.

Algorithm 4. Main steps to take into account to solve the
tuning membership functions problem are as follows [35]:

(1) Start with a randomly generated population of nl-bit
chromosomes (candidate solutions to a problem).The
traditional representation is binary as in Figure 2.
A binary string is called “chromosome.” Each position
therein is called “gene” and the value in this position
is named “allele.”

(2) Calculate the fitness 𝑓(𝑥) of each chromosome 𝑥 in
the population.

(3) Repeat the following steps until n offspring have been
created:

(i) Select a pair of parent chromosomes from the
current population, the probability of selection
being an increasing function of fitness. Selection
is done “with replacement,” meaning that the
same chromosome can be selected more than
once to become a parent.

(ii) With probability 𝑝𝑐 (the “crossover probabil-
ity” or “crossover rate”), crossover the pair at
a randomly chosen point (chosen with uni-
form probability) to form two offspring. If no
crossover takes place, form two offspring that
are exact copies of their respective parents.
(Note that here the crossover rate is defined to be
the probability that two parents will cross over
in a single point.)

(iii) Mutate the two offspring at each locus with
probability 𝑝𝑚 (the mutation probability or
mutation rate), and place the resulting chromo-
somes in the new population.

(4) Replace the current population with the new popula-
tion.

(5) Go to step (2).

This process ends when the fitness function reaches a
value less than or equal to a predefined bound, or when the
maximum number of iterations is reached. Each iteration of
this process is called a generation.

In order to apply a genetic algorithm it requires the
following five basic components:

(i) A representation of the potential solutions to the
problem.

(ii) One way to create an initial population of possible
solutions (typically a random process).

(iii) An evaluation function to play the role of the environ-
ment, classifying the solutions in terms of its “fitness.”

(iv) Genetic operators that alter the composition of the
chromosomes that will be produced for generations.

(v) Values for the various parameters used by the genetic
algorithm (population size, crossover probability,
mutation probability, maximum number of genera-
tions, etc.).
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Figure 1: Control scheme for fuzzy output regulation and genetic algorithms.
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String 1 String 2 String 3 String 4

Figure 2: Binary string commonly used in genetic algorithms.

The aforementioned can be summarized by the flowchart
depicted in Figure 3.

4. Synchronization of T-S Discrete-Time
Fuzzy Systems

The stabilization and synchronization of chaotic systems are
two of the most challenging and stimulating problems due
to their capabilities of describing a great variety of very
interesting phenomena in physics, biology, chemistry, and
engineering, to name a few. In this section, the regulation
theory is used to synchronize chaotic systems described by T-
S discrete-time fuzzy models. Both the drive system and the
response system are modeled by the same attractor (Rössler’s
equation) with the difference that response system can be
influenced by an input signal. This type of synchronization
is known as Complete Synchronization (CS) [36].

Considering two Rössler chaotic oscillators as 𝑤̇ = 𝑓(𝑤)

(drive system) and 𝑥̇ = 𝑓(𝑥, 𝑤, 𝑢) (response system), the
ordinary differential equations of these systems are

𝑤̇1 = − (𝑤2 + 𝑤3) ,

𝑤̇2 = 𝑤1 + 𝑎𝑤2,

𝑤̇3 = 𝑏𝑤1 − (𝑐 − 𝑤1) 𝑤3,

Rössler attractor

Drive system,

𝑥̇1 = − (𝑥2 + 𝑥3) ,

𝑥̇2 = 𝑥1 + 𝑎𝑥2,

𝑥̇3 = 𝑏𝑥1 − (𝑐 − 𝑥1) 𝑥3 + 𝑢,

Rössler attractor

Response system.

(30)

According to [15], these systems can be exactly repre-
sented by means of the following two-rule T-S fuzzy models
when 𝑎, 𝑏 and 𝑐 are constants and 𝑥1 ∈ [𝑐 − 𝑑, 𝑐 + 𝑑] with
𝑑 > 0. Thus

𝑥̇ (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) {𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡)} ,

𝑤̇ (𝑡) =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑆𝑖𝑤 (𝑡) ,

𝑒 (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) 𝐶𝑖𝑥 (𝑡)

−

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑄𝑖𝑤 (𝑡) ,

(31)
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Figure 3: Flowchart of genetic algorithms.

where

𝐴1 =
[
[

[

0 −1 −1

1 𝑎 0

𝑏 0 −𝑑

]
]

]

,

𝑆1 =
[
[

[

0 −1 −1

1 𝑎𝑤 0

𝑏𝑤 0 −𝑑𝑤

]
]

]

,

𝐴2 =
[
[

[

0 −1 −1

1 𝑎 0

𝑏 0 𝑑

]
]

]

,

𝑆2 =
[
[

[

0 −1 −1

1 𝑎𝑤 0

𝑏𝑤 0 𝑑𝑤

]
]

]

,

𝐵1 = 𝐵2 = [0 0 1]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(32)

Besides, the membership functions for such systems are

ℎ1,1 (𝑥1) =
1

2
(1 +

𝑐 − 𝑥1

𝑑
) ,

ℎ1,2 (𝑥1) =
1

2
(1 −

𝑐 − 𝑥1

𝑑
) ,

ℎ2,1 (𝑤1) =
1

2
(1 +

𝑐 − 𝑤1

𝑑
) ,

ℎ2,2 (𝑤1) =
1

2
(1 −

𝑐 − 𝑤1

𝑑
) .

(33)

Now, the continuous-time T-S fuzzy model can be converted
to the following discrete counterpart by using [1]

𝐺𝑖 = exp (𝐴 𝑖𝑇𝑠) = 𝐼 + 𝐴 𝑖𝑇𝑠 + 𝐴
2

𝑖

𝑇
2

𝑠

2!
+ ⋅ ⋅ ⋅ ,

𝐻𝑖 = ∫

𝑇
𝑠

0

exp (𝐴 𝑖𝜏) 𝐵i𝑑𝜏 = (𝐺𝑖 − 𝐼)𝐴
−1

𝑖
𝐵𝑖.

(34)

Therefore, the discrete-time T-S fuzzy model is given by

𝑥𝑘+1 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) 𝐶𝑖𝑥𝑘 −

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑄𝑖𝑤𝑘,

(35)

where

𝐴1 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑇𝑠 + 1 0

𝑏𝑇𝑠 0 1 − 𝑑𝑇𝑠

]
]

]

,

𝑆1 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑤𝑇𝑠 + 1 0

𝑏𝑤𝑇𝑠 0 1 − 𝑑𝑤𝑇𝑠

]
]

]

,

𝐴2 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑇𝑠 + 1 0

𝑏𝑇𝑠 0 𝑇𝑠𝑑 + 1

]
]

]

,

𝑆2 =
[
[

[

1 −𝑇𝑠 −𝑇𝑠

𝑇𝑠 𝑎𝑤𝑇𝑠 + 1 0

𝑏𝑤𝑇𝑠 0 𝑑𝑤𝑇𝑠 + 1

]
]

]

,

𝐵1 = 𝐵2 = [0 0 𝑇𝑠]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(36)
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Figure 4: (a) Continuous T-S fuzzy model for a Rössler attractor and (b) discrete T-S fuzzy model for a Rössler attractor.

Besides, the membership functions for the T-S discrete-time
fuzzy model are

ℎ1,1 (𝑥1,𝑘) =
1

2
(1 +

𝑐 − 𝑥1,𝑘

𝑑
) ,

ℎ1,2 (𝑥1,𝑘) =
1

2
(1 +

𝑐 − 𝑥1,𝑘

𝑑
) ,

ℎ1,2 (𝑤1,𝑘) =
1

2
(1 +

𝑐𝑤 − 𝑤1,𝑘

𝑑𝑤

) ,

ℎ2,2 (𝑤1,𝑘) =
1

2
(1 +

𝑐𝑤 − 𝑤1,𝑘

𝑑𝑤

) ,

(37)

with 𝑎 = 0.34, 𝑏 = 0.4, 𝑐 = 4.5, 𝑑 = 10, 𝑎𝑤 = 0.34, 𝑏𝑤 = 0.4,
𝑐𝑤 = 4.5, 𝑑𝑤 = 10, and 𝑇𝑠 as the sampling time.

Figure 4(b) shows the trajectory of the discrete-time
version of the continuous-time T-S fuzzy Rössler model, with
𝑇𝑠 = 0.00357. It can be seen that the overall shape of the
trajectory is similar to that in Figure 4(a).

Then, by using the approach derived in this work and
from (20) and (17), the zero error steady-state manifold
𝜋(𝑤𝑘) = Π is

Π =
[
[

[

1 0 0

0 1 0

0 0 1

]
]

]

. (38)

Γ𝑖𝑗 are

Γ1,1 = [0 0 0] ,

Γ1,2 = [0 0 20] ,

Γ2,1 = [0 0 −20] ,

Γ2,2 = [0 0 0] .

(39)

On the other hand, the fuzzy stabilizer for this system is
computed by means of Ackermann’s formula, and by locating
the eigenvalues at

(1) subsystem [0.9980+0.0062𝑖 0.9980−0.0062𝑖 0.9982],

(2) subsystem [0.9980+0.0062𝑖 0.9980−0.0062𝑖 0.9982],

the following gains are obtained:

𝐾1 = [3.1629 0.9257 8.0354] ,

𝐾2 = [3.1629 0.9257 −11.9646] .

(40)

Remark 5. It is important to verify that the fuzzy feedback
stabilizer is valid for the overall T-S fuzzy model, by checking
that the eigenvalues of the interpolation regions are inside the
unit circle also [31].

Then, by setting the initial conditions as 𝑥1,𝑘 = 5, 𝑥2,𝑘 = 0,
𝑥3,𝑘 = 6, 𝑤1,𝑘 = 1, 𝑤2,𝑘 = 0, and 𝑤1,𝑘 = 0 and by applying
the controller (23), the results depicted in Figures 5 and 6 are
obtained.

The tracking for the drive states and response states is
drawn in Figure 7.

4.1. Generalized Synchronization. The discrete-time fuzzy
synchronization problem is solvable when the conditions of
Theorem 3 are fulfilled. However, when two chaotic systems
are different, fulfilling these conditions is not so common.
This is because the local regulators have different zero error
steady-state manifolds, in general [20]. From the regulation
point of view, the problem can be seen as finding, if it is
possible, a transformation 𝜋 : 𝑤𝑘 → 𝑥𝑘 regarding mapping
the trajectories of the drive system into the ones of the
response systems; that is, 𝑥𝑘 = 𝜋(𝑤𝑘); this is known as
Generalized Synchronization [37, 38] and satisfies

lim
𝑘→∞

󵄩󵄩󵄩󵄩
𝑥𝑘 (𝑥 (0)) − 𝑤𝑘 (𝑤 (0))

󵄩󵄩󵄩󵄩
= 0, (41)

with 𝑥(0) and 𝑤(0) as initial conditions.
Now, consider the chaotic drive system as 𝑤̇ = 𝑓(𝑤) and

𝑥̇ = 𝑓(𝑥, 𝑤, 𝑢) as the response system.
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The equations for the aforementioned systems are
described as follows:

𝑤̇1 = 𝛼 (𝑤2 − 𝑤1) ,

𝑤̇2 = 𝑟𝑤1 − 𝑤2 − 𝑤1𝑤3,

𝑤̇3 = 𝑤1𝑤2 − 𝛽𝑤3,

Lorenz Attractor

Drive system
𝑥̇1 = 𝑎 (𝑥2 − 𝑥1) ,

𝑥̇2 = (𝑐 − 𝑎) 𝑥1 − 𝑥1𝑥3 + 𝑐𝑥2 + 𝑢,

𝑥̇3 = 𝑥1𝑥2 − 𝑏𝑥3,

Chen’s attractor

Response system

(42)

As before these systems can be exactly represented by
means of the following two-rule continuous-time T-S fuzzy
models when 𝑥1 ∈ [𝑋min , 𝑋max ] and 𝑤1 ∈ [𝑀1,𝑀2].
Therefore,

𝑥̇ (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) {𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡)} ,

𝑤̇ (𝑡) =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑆𝑖𝑤 (𝑡) ,

𝑒 (𝑡) =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1 (𝑡)) 𝐶𝑖𝑥 (𝑡)

−

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1 (𝑡)) 𝑄𝑖𝑤 (𝑡) ,

(43)

where

𝐴1 =
[
[

[

−𝑎 𝑎 0

𝑐 − 𝑎 𝑐 −𝑋min

0 𝑋min −𝑏

]
]

]

,

𝑆1 =
[
[

[

−𝛼 𝛼 0

𝑟 −1 −𝑀1

0 𝑀1 −𝛽

]
]

]

,

𝐴2 =
[
[

[

−𝑎 𝑎 0

𝑐 − 𝑎 𝑐 −𝑋max

0 𝑋max −𝑏

]
]

]

,

𝑆2 =
[
[

[

−𝛼 𝛼 0

𝑟 −1 −𝑀2

0 𝑀2 −𝛽

]
]

]

,

𝐵1 = 𝐵2 = [0 1 0]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] .

(44)

Then, by using (34), the discrete counterpart is obtained:

𝑥𝑘+1 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) {𝐴 𝑖𝑥𝑘 + 𝐵𝑖𝑢𝑘 + 𝑃𝑖𝑤𝑘} ,

𝑤𝑘+1 =

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑆𝑖𝑤𝑘,

𝑒𝑘 =

2

∑

𝑖=1

ℎ1,𝑖 (𝑥1,𝑘) 𝐶𝑖𝑥𝑘 −

2

∑

𝑖=1

ℎ2,𝑖 (𝑤1,𝑘) 𝑄𝑖𝑤𝑘,

(45)

where

𝐴1 =
[
[

[

1 − 𝑎𝑇𝑠 𝑎𝑇𝑠 0

− (𝑎 − 𝑐) 𝑇𝑠 𝑐𝑇𝑠 + 1 −𝑋min𝑇𝑠

0 𝑇𝑠𝑋min 1 − 𝑏𝑇𝑠

]
]

]

,

𝑆1 =
[
[

[

1 − 𝑎𝑤𝑇𝑠 𝑎𝑤𝑇𝑠 0

𝑐𝑤𝑇𝑠 1 − 𝑇𝑠 −𝑀1𝑇𝑠

0 𝑀1𝑇𝑠 1 − 𝑏𝑤𝑇𝑠

]
]

]

,

𝐴2 =
[
[

[

1 − 𝑎𝑇𝑠 𝑎𝑇𝑠 0

− (𝑎 − 𝑐) 𝑇𝑠 𝑐𝑇𝑠 + 1 −𝑋max𝑇𝑠

0 𝑇𝑠𝑋max 1 + 𝑏𝑇𝑠

]
]

]

,

𝑆2 =
[
[

[

1 − 𝑎𝑤𝑇𝑠 𝑎𝑤𝑇𝑠 0

𝑐𝑤𝑇𝑠 1 − 𝑇𝑠 −𝑀2𝑇𝑠

0 𝑀2𝑇𝑠 1 − 𝑏𝑤𝑇𝑠

]
]

]

,
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Figure 7: States of drive and response tracking for a Complete Synchronization.

𝐵1 = 𝐵2 = [0 𝑇𝑠 0]
𝑇
,

𝐶𝑖 = 𝑄𝑖 = [1 0 0] ,

(46)

with 𝑎 = 35, 𝑏 = 3, 𝑐 = 28, 𝑎𝑤 = 10, 𝑏𝑤 = 8/3, and
𝑐𝑤 = 28 and 𝑇𝑠 as the sampling time. Notice that, in this
case, the Generalized Synchronization problem consists of
the tracking of 𝑤1 by 𝑥1. This can be inferred by the form
of 𝐶𝑖 and 𝑄𝑖. The membership functions for this system are
defined as follows:

Plant Membership Functions

ℎ1,1 (𝑥1,𝑘) =

−𝑥1,𝑘 + 𝑋max

𝑋max − 𝑋min
,

ℎ1,2 (𝑥1,𝑘) =

𝑥1,𝑘 − 𝑋min

𝑋max − 𝑋min
.

(47)

Exosystem Membership Functions

ℎ2,1 (𝑤1,𝑘) =

−𝑤1,𝑘 +𝑀1

𝑀2 −𝑀1

,

ℎ2,2 (𝑤1,𝑘) =

𝑤1,𝑘 −𝑀2

𝑀2 −𝑀1

.

(48)

They are depicted in Figure 8.
Figures 9(a) and 9(b) show the behavior of the two

discrete-time T-S fuzzy models, with 𝑥(0) = [1 1 1]
𝑇 and

𝑤(0) = [1 0 0]
𝑇. Then, by using the approach derived in

this work and from (20) and (17), the zero error steady-state
manifold for each subsystem is

Π1,1 =
[
[

[

1 0 0

0.7143 0.2857 0

3.0041 −0.0143 1.2861

]
]

]

,

Π1,2 =
[
[

[

1 0 0

0.7143 0.2857 0

3.0041 −0.0143 −1.2861

]
]

]

,

Π2,1 =
[
[

[

1 0 0

0.7143 0.2857 0

−3.0041 0.0143 −1.2861

]
]

]

,

Π2,2 =
[
[

[

1 0 0

0.7143 0.2857 0

−3.0041 0.0143 1.2861

]
]

]

.

(49)

Γ𝑖𝑗 are

Γ1,1 = [−102.2648 −0.7142 −30.0121] ,

Γ1,2 = [−102.2648 −0.7142 30.0121] ,

Γ2,1 = [−102.2648 −0.7142 −30.0121] ,

Γ2,2 = [−102.2648 −0.7142 30.0121] .

(50)
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Figure 8: Membership functions for Generalized Synchronization.
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Figure 9: (a) Discrete-time T-S fuzzy model for a Chen attractor and (b) discrete T-S fuzzy model for a Lorenz attractor.
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Figure 10: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

On the other hand, the fuzzy stabilizer for this system is
computed by means of Ackermann’s formula, and by locating
the eigenvalues at

(1) subsystem [0.9596 0.9955 0.82],
(2) subsystem [0.9596 0.9955 0.82],

the following gains are obtained:

𝐾1 = [−14.3228 −214.9000 −19.6566] ,

𝐾2 = [−14.3228 −214.9000 19.6566] .

(51)

Notice that the stability is ensured in the fuzzy interpolation
region by these gains, for all 𝑡 ≥ 0.
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Figure 11: Tracking error 𝑒1,𝑘 signal for the Generalized Synchro-
nization of Chen-Lorenz discrete-time T-S fuzzy systems.

As can be readily observed, conditions of Theorem 3 are
not fulfilled because the zero error steady-state manifold is
not the same for the local regulators. However, the tracking
error can be bounded by using the controller defined in (22).
Figures 10–12 depicted the behavior of the controller (22)
with 𝑥(0) = [1 1 1]

𝑇 and 𝑤(0) = [1 0 0]
𝑇 as the initial

conditions.

4.2. Generalized Synchronization by Using Genetic Algorithms.
The main objective of integrating genetic algorithms is to
obtain values of the parameters (𝑎, 𝑏, and 𝑐) of the new
membership functions of the regulator and reducing, in this
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Figure 12: States of drive and response system for a Generalized Synchronization.

way, the tracking error. To this end, it is important to consider
the following:

(i) Consider the representation of the potential solutions
of the problem; the common representation is binary.

(ii) An initial population of possible solutions, in a
random process, is selected (population size affects
the efficiency and performance of GA). For this case,
a population size equal to 20 chromosomes is chosen.

(iii) A fitness function, which indicates how good or bad
a certain solution is, is defined. In this case the fitness
function is the mean square tracking error, given by
the following expression:

𝑒𝑠 =
1

2
(𝑥1,𝑘 − 𝑤1,𝑘)

2
. (52)

For the representation of possible solutions it is necessary
to know the variables to optimize; for this case it has 𝑎𝑖 and 𝑎𝑗
parameters for 𝑖 = 1, 2 and 𝑗 = 1, 2 defined in (27) and (28);
besides, 𝑏𝑖, 𝑏𝑗, 𝑐𝑖, and 𝑐𝑗 will be fixed with a constant value;
that is, 𝑏1 = 3, 𝑐1 = 30 for (27) considering 𝜇1,2 = 1 − 𝜇1,1;
𝑏1 = 3, 𝑐1 = 20 for (28) also considering 𝜇2,2 = 1 − 𝜇2,1. The
abovementioned are represented in Figure 13.

It is also important to know the interval value in which
the variable 𝑎 will be operating; for this case, such interval
is 𝑥1,𝑘 ∈ [−30 30]. Thus, the size of each variable, in bits,

and the chromosome length can be computed by using the
following expression [39]:

𝑆var = (int ↑) log
2
(limupper − limlower) 10

accurate
, (53)

where 𝑆var is the size of each variable in bits, the term (int ↑)
is the decimal integer value, and limupper = 30 and limlower =
−30with an accuracy in 3.Therefore, the variable size is equal
to 16 bits, but there are two variables, 𝑎1 and 𝑎2; thus the
chromosomes length is 32 bits. Therefore, the chromosomes
are represented in Figure 14.

The initial population is random binary. To assess each
individual in the objective function is needed to decode, in
this case, a real number. To this end, the following expression
is used:

Var = [Decval (
limupper − limlower

2
length(bit)

− 1
) + limlower] . (54)

Var is a decimal value (phenotype) for each binary chromo-
some (genotype), Decval is the decimal value for each binary
string, and length(bit) is equal to 16 bits.

In order to compute the individual aptitude is necessary
to introduce the value of each parameter in the bell-shaped
membership functions 𝜇1 and 𝜇2.The tracking error function
(52) disregards the nonoptimal solution and allows the
optimal performance by considering that 𝑥1,𝑘 tracks 𝑤1,𝑘. In
Table 1 the individual aptitude is depicted.
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Table 1: Individual aptitude.

Chromosome Binary string Decoded integer Fitness function
1 01011010001000100010111010101101 𝑓(−7.691493, −16.518837) 0.971109
2 11001011101111111110101000000111 𝑓(15.386557, 21.537530) 6.840302
3 10100011000010001110111101010111 𝑓(7.116228, 22.616648) 9.404465
4 01101110111100100011110001011000 𝑓(−3.463890, −13.742489) 0.096779
5 01111110110010001000111010000000 𝑓(−0.247166, 2.945754) 0.017387
6 01111110110010001000111010000000 𝑓(−2.282414, −24.456703) 12.438373
7 01110100110000110000011110011001 𝑓(−13.451286, 16.387121) 0.761323
8 00111101110001111101000010101100 𝑓(4.320043, −25.338247) 13.686271
9 10010101010001000000001101000010 𝑓(19.709377, 4.057404) 0.209690
10 10000010001011110001000101110111 𝑓(0.443946, −22.452399) 9.159322
11 00111100101000111011110011100001 𝑓(−13.682979, 12.366613) 0.000746
12 00001100011111011100101000101100 𝑓(−23.463279, 15.066789) 0.000895
13 10010110000010001001010001111101 𝑓(4.475563, 4.162142) 0.017576
14 10110011010110110100100101111010 𝑓(10.432136, −11.074846) 0.001021
15 01010011101010101111101011001101 𝑓(−9.005478, 24.944686) 13.030471
16 00100011011001100011000000001011 𝑓(−18.809583, −16.241123) 0.399280
17 10010001100100001111110100111101 𝑓(3.567834, 25.439811) 13.825474
18 10001011001010110100111011110001 𝑓(2.268925, −9.964782) 0.003840
19 01100000011011101100000001001011 𝑓(−6.412421, 13.060105) 0.039420
20 00001011110001010001010011000101 𝑓(−23.609277, −21.781125) 5.130460
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Figure 13: Initial membership functions for the proposed fuzzy regulator tuned by GAs.
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Figure 14: Individual binary representation.
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Each fitness function value is converted into a set point or
fitness value. To this end, the following expression is used:

fitnessval = 𝐹 (⋆) − 𝐹min, (55)

where 𝐹(⋆) is the fitness function value and 𝐹min is the
minimum fitness function value.

The two chromosomes with better fitness (elite chromo-
somes) can live and produce offspring in the next generation.
There are manymethods to select a pair of chromosomes; the
most popular one is named proportional selection method:

(a) Calculate the total fitness value

fitness𝑇 =
20

∑

𝑖=1

fitness (𝑖) . (56)

(b) Compute the probability 𝑃𝑖 for each chromosome

𝑃𝑖 =
fitness (𝑖)
fitness𝑇

. (57)

(c) Calculate the cumulative probability for each chro-
mosome

𝑄𝑘 =

𝑖

∑

𝑘=0

𝑃𝑘. (58)

The total fitness value fitness𝑇 is equal to 86.03420.
The probabilities 𝑃𝑖 and 𝑄𝑘 are shown in Table 2.

(d) Generate a random number 𝑟 in the range [0, 1].
(e) If 𝑄𝑖 − 1 < 𝑟 ≤ 𝑄𝑖, then select the chromosome to be

the one of the parents.
(f) Repeat (d) and (e) to obtain the other parent.

Apply crossover operation on the selected pair, if they
have been chosen for crossover (based on probability of
crossover 𝑝𝑐 = 1.0). The most applied crossover operation
is single point crossover. Based on the probability of bit
mutation 𝑝𝑚 = 0.01, flip the correspondent bit if selected
for mutation. At this point, the process of producing a pair
of offspring from two selected parents is finished.

The elite chromosomes of the previous population are not
subject to mutation.

In the following simulations the states 𝑥1,𝑘, control
signal 𝑢𝑘, and tracking error 𝑒1,𝑘 depicted in Figures 16–18,
respectively, are obtained after applying (29) and by replacing
the new membership functions adjusted by GAs. The final
membership functions after tuning the form parameter by
means of GA are depicted in Figure 15. It can be readily
observed that these new membership functions are different
from the original ones (see Figure 13). Notice that, in this
example, the tracking error (Figure 18) is less than the error
obtained by using the approach discussed in Section 4.
This is due to the new membership functions which allow
reducing considerably the tracking error. This suggests that
the approach presented in this work may be improved by
tuning the parameters of center and amplitude in the new
membership functions; however this study is not completed
yet.

Table 2: Individual aptitude.

Chromosome 𝑃𝑖 𝑄𝑘

1 0.011 0.011
2 0.080 0.091
3 0.109 0.200
4 0.001 0.201
5 0.000 0.201
6 0.145 0.346
7 0.009 0.355
8 0.159 0.514
9 0.002 0.516
10 0.106 0.623
11 0.000 0.623
12 0.000 0.623
13 0.000 0.623
14 0.000 0.623
15 0.151 0.775
16 0.005 0.779
17 0.161 0.940
18 0.000 0.940
19 0.000 0.940
20 0.060 1.000

4.3. Pseudofuzzy Generalized Synchronization by Using GAs.
In this section theGeneralized Synchronization by usingGAs
and linear local regulator design will be addressed. However,
the crossed terms within the local regulators are arbitrarily
removed from the design process.Thus, the steady-state input
𝛾(𝑤𝑘) can be defined as

𝛾 (𝑤𝑘) =

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑧1,𝑘) Γ𝑖𝑖𝑤𝑘, (59)

where 𝜇1,𝑖(𝑧1,𝑘) are new membership functions, such that
the fuzzy output regulator obtained from local regulators
provides the exact fuzzy output regulation. This approach
requires the computation of the linear local controllers and
the computation of the new membership functions; such
functions are represented by (27) and (28).Therefore the final
control system is defined by

𝑢𝑘 =

𝑟
1

∑

𝑖=1

ℎ1,𝑖 (𝑥𝑘) 𝑘𝑖 {𝑥𝑘 − 𝜋 (𝑤𝑘)} +

𝑟
1

∑

𝑖=1

𝜇1,𝑖 (𝑤𝑘) Γ𝑖𝑖𝑤𝑘, (60)

because 𝑧∗,𝑘 is a function of𝑥𝑘 and in steady-state𝑥𝑘 = 𝜋(𝑤𝑘).
For this case the initial membership functions proposed

are shown in Figure 19. As it can be seen, these membership
functions are not properly fuzzy because they do not fulfill the
convex sum; that is,∑𝑟1

𝑖=1
𝜇𝑖(𝑤𝑘) ̸= 0. Even so, these functions

will be adjusted by GAs in order to ensure the output
regulation by using input (60). The following simulation
provides a better behavior in the Lorenz-Chen discrete-time
fuzzy system by using different membership function and
tuning by GAs. Such results are depicted in Figures 20–22.
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Figure 15: Final membership functions for the proposed fuzzy regulator tuned by GAs.
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Figure 16: States 𝑥1,𝑘 and 𝑤1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.

0 5 10 15 20 25 30 35 40
Time

A
m

pl
itu

de

0
50

100
150
200

−50
−100
−150
−200

Control uk

uk

Figure 17: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

Notice that the final membership function depicted in
Figure 23 is different from the initial proposed in Figure 19
and also notice that the sum of these new interpolation
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Figure 18: Tracking error 𝑒1,𝑘 signal for the Generalized Synchro-
nization of Chen-Lorenz discrete-time T-S fuzzy systems.

functions is not equal to one. For that reason this approach
is called Pseudofuzzy Generalized Synchronization.

5. Conclusions

A fuzzy output regulator for discrete-time systems, based on
the combination of linear regulators combined by different
membership functions, has been presented. Synchronization
of discrete-time chaos attractors can be possible; by means
of fuzzy output regulation, sufficient conditions for the
controller are given. However, when the conditions can not
be fulfilled, new membership functions in the regulator are
included; these ones are optimized by genetic algorithms.
The main advantage is that membership functions, which
allow the proper combination of the local regulators, can
be easily obtained by means of GAs. As a consequence, the
presented result allows a very precise synchronization of
chaotic systems described by T-S discrete-time fuzzy models
on the basis of local regulators.
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Figure 19: Initial membership functions for the pseudofuzzy regu-
lator tuned by GAs.
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Figure 20: States 𝑥1,𝑘 and 𝑤1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.
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Figure 21: Control signal for the Generalized Synchronization of
Chen-Lorenz discrete-time T-S fuzzy systems.

Complete and Generalized Synchronization are used to
illustrate the applicability of the proposed approach. Besides,
the method proposed in this work avoids the disadvantage
of constructing an exact fuzzy regulator based on overall T-S
fuzzy system which may result to be very large. Instead, the
given approach offers a simple way to design the complete
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Figure 22: Tracking error 𝑒1,𝑘 for the Generalized Synchronization
of Chen-Lorenz discrete-time T-S fuzzy systems.
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Figure 23: Final interpolation functions for the pseudofuzzy regu-
lator tuned by GAs.

regulator based on local regulators but with membership
functions optimized by soft computing.
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