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We give a necessary and sufficient mean condition for the quotient of two Jensen functionals and define a new class Λ 𝑓,𝑔(𝑎, 𝑏) of
mean values where 𝑓, 𝑔 are continuously differentiable convex functions satisfying the relation 𝑓(𝑡) = 𝑡𝑔(𝑡), 𝑡 ∈ R+. Then we
asked for a characterization of 𝑓, 𝑔 such that the inequalities𝐻(𝑎, 𝑏) ≤ Λ 𝑓,𝑔(𝑎, 𝑏) ≤ 𝐴(𝑎, 𝑏) or 𝐿(𝑎, 𝑏) ≤ Λ 𝑓,𝑔(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) hold for
each positive 𝑎, 𝑏, where𝐻,𝐴, 𝐿, 𝐼 are the harmonic, arithmetic, logarithmic, and identric means, respectively. For a subclass of Λ
with 𝑔(𝑡) = 𝑡𝑠, 𝑠 ∈ R, this problem is thoroughly solved.

1. Introduction

It is said that themean𝑃 is intermediate relating to themeans
𝑀 and𝑁,𝑀 ≤ 𝑁 if the relation

𝑀(𝑎, 𝑏) ≤ 𝑃 (𝑎, 𝑏) ≤ 𝑁 (𝑎, 𝑏) (1)

holds for each two positive numbers 𝑎, 𝑏.
It is also well known that

min {𝑎, 𝑏} ≤ 𝐻 (𝑎, 𝑏) ≤ 𝐺 (𝑎, 𝑏)

≤ 𝐿 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏) ≤ 𝑆 (𝑎, 𝑏)

≤ max {𝑎, 𝑏} ,

(2)

where

𝐻 = 𝐻(𝑎, 𝑏) := 2(
1

𝑎
+
1

𝑏
)

−1

;

𝐺 = 𝐺 (𝑎, 𝑏) := √𝑎𝑏; 𝐿 = 𝐿 (𝑎, 𝑏) :=
𝑏 − 𝑎

log 𝑏 − log 𝑎
;

𝐼 = 𝐼 (𝑎, 𝑏) :=

(𝑏
𝑏
/𝑎
𝑎
)
1/(𝑏−𝑎)

𝑒
;

𝐴 = 𝐴 (𝑎, 𝑏) :=
𝑎 + 𝑏

2
; 𝑆 = 𝑆 (𝑎, 𝑏) := 𝑎

𝑎/(𝑎+𝑏)
𝑏
𝑏/(𝑎+𝑏)

(3)

are the harmonic, geometric, logarithmic, identric, arith-
metic, and Gini mean, respectively.

An easy task is to construct intermediate means related to
two given means𝑀 and𝑁 with𝑀 ≤ 𝑁. For instance, for an
arbitrary mean 𝑃, we have that

𝑀(𝑎, 𝑏) ≤ 𝑃 (𝑀 (𝑎, 𝑏) ,𝑁 (𝑎, 𝑏)) ≤ 𝑁 (𝑎, 𝑏). (4)

The problem ismore difficult if we have to decide whether
the given mean is intermediate or not. For example, the
relation

𝐿 (𝑎, 𝑏) ≤ 𝑆𝑠 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) (5)

holds for each positive 𝑎 and 𝑏 if and only if 0 ≤ 𝑠 ≤ 1, where
the Stolarsky mean 𝑆𝑠 is defined by (cf [1])

𝑆𝑠 (𝑎, 𝑏) := (
𝑏
𝑠
− 𝑎
𝑠

𝑠 (𝑏 − 𝑎)
)

1/(𝑠−1)

. (6)

Also,

𝐺 (𝑎, 𝑏) ≤ 𝐴 𝑠 (𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏) (7)

holds if and only if 0 ≤ 𝑠 ≤ 1, where theHöldermean of order
𝑠 is defined by

𝐴 𝑠 (𝑎, 𝑏) := (
𝑎
𝑠
+ 𝑏
𝑠

2
)

1/𝑠

. (8)
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An inverse problem is to find best possible approximation
of a given mean 𝑃 by elements of an ordered class of means
𝑆. A good example for this topic is comparison between the
logarithmic mean and the class 𝐴 𝑠 of Hölder means of order
𝑠. Namely, since 𝐴0 = lim𝑠→0 𝐴 𝑠 = 𝐺 and 𝐴1 = 𝐴, it follows
from (2) that

𝐴0 ≤ 𝐿 ≤ 𝐴1. (9)

Since𝐴 𝑠 is monotone increasing in 𝑠, an improving of the
above is given by Carlson [2]:

𝐴0 ≤ 𝐿 ≤ 𝐴1/2. (10)

Finally, Lin showed in [3] that

𝐴0 ≤ 𝐿 ≤ 𝐴1/3 (11)

is the best possible approximation of the logarithmicmean by
the means from the class 𝐴 𝑠.

Numerous similar results have been obtained recently.
For example, an approximation of Seiffert’s mean by the class
𝐴 𝑠 is given in [4, 5].

In this paper we will give best possible approximations
for a whole variety of elementary means (2) by the class 𝜆𝑠
defined below (see Theorem 5).

Let 𝑓, 𝑔 be twice continuously differentiable (strictly)
convex functions on R+. By definition (cf [6], page 5),

𝑓 (𝑎, 𝑏) := 𝑓 (𝑎) + 𝑓 (𝑏) − 2𝑓(
𝑎 + 𝑏

2
) > 0, 𝑎 ̸= 𝑏,

𝑓 (𝑎, 𝑏) = 0,

(12)

if and only if 𝑎 = 𝑏.
It turns out that the expression

Λ 𝑓,𝑔 (𝑎, 𝑏) :=
𝑓 (𝑎, 𝑏)

𝑔 (𝑎, 𝑏)
=
𝑓 (𝑎) + 𝑓 (𝑏) − 2𝑓 ((𝑎 + 𝑏) /2)

𝑔 (𝑎) + 𝑔 (𝑏) − 2𝑔 ((𝑎 + 𝑏) /2)

(13)

represents a mean of two positive numbers 𝑎, 𝑏; that is, the
relation

min {𝑎, 𝑏} ≤ Λ 𝑓,𝑔 (𝑎, 𝑏) ≤ max {𝑎, 𝑏} (14)

holds for each 𝑎, 𝑏 ∈ R+, if and only if the relation

𝑓

(𝑡) = 𝑡𝑔


(𝑡) (15)

holds for each 𝑡 ∈ R+.
Let 𝑓, 𝑔 ∈ 𝐶∞(0,∞) and denote by Λ the set {(𝑓, 𝑔)} of

convex functions satisfying the relation (15).There is a natural
question how to improve the bounds in (14); in this sense we
come upon the following intermediate mean problem.

Open Question. Under what additional conditions on 𝑓, 𝑔 ∈
Λ, the inequalities

𝐻(𝑎, 𝑏) ≤ Λ 𝑓,𝑔 (𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏), (16)

or, more tightly,

𝐿 (𝑎, 𝑏) ≤ Λ 𝑓,𝑔 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏), (17)

hold for each 𝑎, 𝑏 ∈ R+?
As an illustration, consider the function 𝑓𝑠(𝑡) defined to

be

𝑓𝑠 (𝑡) =

{{{

{{{

{

𝑡
𝑠
− 𝑠𝑡 + 𝑠 − 1

𝑠 (𝑠 − 1)
, 𝑠 (𝑠 − 1) ̸= 0;

𝑡 − log 𝑡 − 1, 𝑠 = 0;

𝑡 log 𝑡 − 𝑡 + 1, 𝑠 = 1.

(18)

Since

𝑓

𝑠 (𝑡) =

{{{{{{{

{{{{{{{

{

𝑡
𝑠−1
− 1

𝑠 − 1
, 𝑠 (𝑠 − 1) ̸= 0;

1 −
l
𝑡
, 𝑠 = 0;

log 𝑡, 𝑠 = 1,

𝑓

𝑠 (𝑡) = 𝑡

𝑠−2
, 𝑠 ∈ R, 𝑡 > 0,

(19)

it follows that 𝑓𝑠(𝑡) is a twice continuously differentiable
convex function for 𝑠 ∈ R, 𝑡 ∈ R+.

Moreover, it is evident that (𝑓𝑠+1, 𝑓𝑠) ∈ Λ.
We will give in the sequel a complete answer to the above

question concerning the means

𝑓𝑠+1 (𝑎, 𝑏)

𝑓𝑠 (𝑎, 𝑏)

:= 𝜆𝑠 (𝑎, 𝑏) (20)

defined by

𝜆𝑠 (𝑎, 𝑏)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑠 − 1

𝑠 + 1

𝑎
𝑠+1

+ 𝑏
𝑠+1

− 2((𝑎 + 𝑏) /2)
𝑠+1

𝑎𝑠 + 𝑏𝑠 − 2((𝑎 + 𝑏) /2)
𝑠

, 𝑠 ∈ R/ {−1, 0, 1} ;

2 log ((𝑎 + 𝑏) /2) − log 𝑎 − log 𝑏
1/2𝑎 + 1/2𝑏 − 2/ (𝑎 + 𝑏)

, 𝑠 = −1;

𝑎 log 𝑎 + 𝑏 log 𝑏 − (𝑎 + 𝑏) log ((𝑎 + 𝑏) /2)
2 log ((𝑎 + 𝑏) /2) − log 𝑎 − log 𝑏

, 𝑠 = 0;

(𝑏 − 𝑎)
2

4 (𝑎 log 𝑎 + 𝑏 log 𝑏 − (𝑎 + 𝑏) log ((𝑎 + 𝑏) /2))
, 𝑠 = 1.

(21)

Those means are obviously symmetric and homogeneous
of order one.

As a consequencewe obtain somenew intermediatemean
values; for instance, we show that the inequalities

𝐻(𝑎, 𝑏) ≤ 𝜆−1 (𝑎, 𝑏) ≤ 𝐺 (𝑎, 𝑏) ≤ 𝜆0 (𝑎, 𝑏) ≤ 𝐿 (𝑎, 𝑏)

≤ 𝜆1 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏)

(22)

hold for arbitrary 𝑎, 𝑏 ∈ R+. Note that

𝜆−1 =
2𝐺
2 log (𝐴/𝐺)
𝐴 − 𝐻

; 𝜆0 = 𝐴
log (𝑆/𝐴)
log (𝐴/𝐺)

;

𝜆1 =
1

2

𝐴 − 𝐻

log (𝑆/𝐴)
.

(23)
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2. Results

We prove firstly the following

Theorem 1. Let 𝑓, 𝑔 ∈ 𝐶2(𝐼) with 𝑔 > 0. The expression
Λ 𝑓,𝑔(𝑎, 𝑏) represents a mean of arbitrary numbers 𝑎, 𝑏 ∈ 𝐼 if
and only if the relation (15) holds for 𝑡 ∈ 𝐼.

Remark 2. In the same way, for arbitrary 𝑝, 𝑞 > 0, 𝑝 + 𝑞 = 1,
it can be deduced that the quotient

Λ 𝑓,𝑔 (𝑝, 𝑞; 𝑎, 𝑏) :=
𝑝𝑓 (𝑎) + 𝑞𝑓 (𝑏) − 𝑓 (𝑝𝑎 + 𝑞𝑏)

𝑝𝑔 (𝑎) + 𝑞𝑔 (𝑏) − 𝑔 (𝑝𝑎 + 𝑞𝑏)
(24)

represents a mean value of numbers 𝑎, 𝑏 if and only if (15)
holds.

A generalization of the above assertion is the next.

Theorem 3. Let 𝑓, 𝑔 : 𝐼 → R be twice continuously
differentiable functions with 𝑔 > 0 on 𝐼 and let 𝑝 = {𝑝𝑖},
𝑖 = 1, 2, . . . , ∑ 𝑝𝑖 = 1 be an arbitrary positive weight sequence.
Then the quotient of two Jensen functionals

Λ 𝑓,𝑔 (𝑝, 𝑥) :=
∑
𝑛
1 𝑝𝑖𝑓 (𝑥𝑖) − 𝑓 (∑

𝑛
1 𝑝𝑖𝑥𝑖)

∑
𝑛
1 𝑝𝑖𝑔 (𝑥𝑖) − 𝑔 (∑

𝑛
1 𝑝𝑖𝑥𝑖)

, 𝑛 ≥ 2, (25)

represents a mean of an arbitrary set of real numbers
𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝐼 if and only if the relation

𝑓

(𝑡) = 𝑡𝑔


(𝑡) (26)

holds for each 𝑡 ∈ 𝐼.

Remark 4. It should be noted that the relation 𝑓(𝑡) = 𝑡𝑔(𝑡)
determines 𝑓 in terms of 𝑔 in an easy way. Precisely,

𝑓 (𝑡) = 𝑡𝑔 (𝑡) − 2𝐺 (𝑡) + 𝑐𝑡 + 𝑑, (27)

where 𝐺(𝑡) := ∫𝑡
1
𝑔(𝑢)𝑑𝑢 and 𝑐 and 𝑑 are constants.

Our results concerning the means 𝜆𝑠(𝑎, 𝑏), 𝑠 ∈ R are
included in the following.

Theorem 5. For the class of means 𝜆𝑠(𝑎, 𝑏) defined above, the
following assertions hold for each 𝑎, 𝑏 ∈ R+.

(1) The means 𝜆𝑠(𝑎, 𝑏) are monotone increasing in 𝑠;
(2) 𝜆𝑠(𝑎, 𝑏) ≤ 𝐻(𝑎, 𝑏) for each 𝑠 ≤ −4;
(3) 𝐻(𝑎, 𝑏) ≤ 𝜆𝑠(𝑎, 𝑏) ≤ 𝐺(𝑎, 𝑏) for −3 ≤ 𝑠 ≤ −1;
(4) 𝐺(𝑎, 𝑏) ≤ 𝜆𝑠(𝑎, 𝑏) ≤ 𝐿(𝑎, 𝑏) for −1/2 ≤ 𝑠 ≤ 0;
(5) there is a number 𝑠0 ∈ (1/12, 1/11) such that 𝐿(𝑎, 𝑏) ≤
𝜆𝑠(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) for 𝑠0 ≤ 𝑠 ≤ 1;

(6) there is a number 𝑠1 ∈ (1.03, 1.04) such that 𝐼(𝑎, 𝑏) ≤
𝜆𝑠(𝑎, 𝑏) ≤ 𝐴(𝑎, 𝑏) for 𝑠1 ≤ 𝑠 ≤ 2;

(7) 𝐴(𝑎, 𝑏) ≤ 𝜆𝑠(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑏) for each 2 ≤ 𝑠 ≤ 5;
(8) there is no finite 𝑠 such that the inequality 𝑆(𝑎, 𝑏) ≤
𝜆𝑠(𝑎, 𝑏) holds for each 𝑎, 𝑏 ∈ R+.

The above estimations are best possible.

3. Proofs

3.1. Proof of Theorem 1. We prove firstly the necessity of the
condition (15).

Since Λ 𝑓,𝑔(𝑎, 𝑏) is a mean value for arbitrary 𝑎, 𝑏 ∈ 𝐼;
𝑎 ̸= 𝑏, we have

min {𝑎, 𝑏} ≤ Λ 𝑓,𝑔 (𝑎, 𝑏) ≤ max {𝑎, 𝑏} . (28)

Hence
lim
𝑏→𝑎
Λ 𝑓,𝑔 (𝑎, 𝑏) = 𝑎. (29)

From the other hand, due to l’Hospital’s rule we obtain

lim
𝑏→𝑎
Λ 𝑓,𝑔 (𝑎, 𝑏) = lim

𝑏→𝑎
(
𝑓

(𝑏) − 𝑓


((𝑎 + 𝑏) /2)

𝑔 (𝑏) − 𝑔 ((𝑎 + 𝑏) /2)
)

= lim
𝑏→𝑎

(
2𝑓

(𝑏) − 𝑓


((𝑎 + 𝑏) /2)

2𝑔 (𝑏) − 𝑔 ((𝑎 + 𝑏) /2)
)

=
𝑓

(𝑎)

𝑔 (𝑎)
.

(30)

Comparing (29) and (30) the desired result follows.
Suppose now that (15) holds and let 𝑎 < 𝑏. Since 𝑔(𝑡) >

0 𝑡 ∈ [𝑎, 𝑏] by the Cauchy mean value theorem there exists
𝜉 ∈ ((𝑎 + 𝑡)/2, 𝑡) such that

𝑓

(𝑡) − 𝑓


((𝑎 + 𝑡) /2)

𝑔 (𝑡) − 𝑔 ((𝑎 + 𝑡) /2)
=
𝑓

(𝜉)

𝑔 (𝜉)
= 𝜉. (31)

But,

𝑎 ≤
𝑎 + 𝑡

2
< 𝜉 < 𝑡 ≤ 𝑏, (32)

and, since𝑔 is strictly increasing,𝑔(𝑡)−𝑔((𝑎+𝑡)/2) > 0, 𝑡 ∈
[𝑎, 𝑏].

Therefore, by (31) we get

𝑎 (𝑔

(𝑡) − 𝑔


(
𝑎 + 𝑡

2
)) ≤ 𝑓


(𝑡) − 𝑓


(
𝑎 + 𝑡

2
)

≤ 𝑏 (𝑔

(𝑡) − 𝑔


(
𝑎 + 𝑡

2
)) .

(33)

Finally, integrating (33) over 𝑡 ∈ [𝑎, 𝑏]we obtain the assertion
fromTheorem 1.

3.2. Proof of Theorem 3. We will give a proof of this assertion
by induction on 𝑛.

By Remark 2, it holds for 𝑛 = 2.
Next, it is not difficult to check the identity
𝑛

∑

1

𝑝𝑖𝑓 (𝑥𝑖) − 𝑓(

𝑛

∑

1

𝑝𝑖𝑥𝑖)

= (1 − 𝑝𝑛)(

𝑛−1

∑

1

𝑝

𝑖𝑓 (𝑥𝑖) − 𝑓(

𝑛−1

∑

1

𝑝

𝑖𝑥𝑖))

+ [(1 − 𝑝𝑛) 𝑓 (𝑇) + 𝑝𝑛𝑓 (𝑥𝑛) − 𝑓 ((1 − 𝑝𝑛) 𝑇 + 𝑝𝑛𝑥𝑛)] ,

(34)
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where

𝑇 :=

𝑛−1

∑

1

𝑝

𝑖𝑥𝑖; 𝑝


𝑖 :=

𝑝𝑖

(1 − 𝑝𝑛)
, 𝑖 = 1, 2, . . . , 𝑛 − 1;

𝑛−1

∑

1

𝑝

𝑖 = 1.

(35)

Therefore, by induction hypothesis and Remark 2, we get
𝑛

∑

1

𝑝𝑖𝑓 (𝑥𝑖) − 𝑓(

𝑛

∑

1

𝑝𝑖𝑥𝑖)

≤ max {𝑥1, 𝑥2, . . . 𝑥𝑛−1} (1 − 𝑝𝑛)

× (

𝑛−1

∑

1

𝑝

𝑖𝑔 (𝑥𝑖) − 𝑔(

𝑛−1

∑

1

𝑝

𝑖𝑥𝑖))

+max {𝑇, 𝑥𝑛} [(1 − 𝑝𝑛) 𝑔 (𝑇) + 𝑝𝑛𝑔 (𝑥𝑛)

−𝑔 ((1 − 𝑝𝑛) 𝑇 + 𝑝𝑛𝑥𝑛)]

≤ max {𝑥1, 𝑥2, . . . , 𝑥𝑛}

× ((1 − 𝑝𝑛)(

𝑛−1

∑

1

𝑝

𝑖𝑔 (𝑥𝑖) − 𝑔(

𝑛−1

∑

1

𝑝

𝑖𝑥𝑖))

+ [(1 − 𝑝𝑛) 𝑔 (𝑇) + 𝑝𝑛𝑔 (𝑥𝑛) − 𝑔 ((1 − 𝑝𝑛) 𝑇 + 𝑝𝑛𝑥𝑛)] )

= max {𝑥1, 𝑥2, . . . , 𝑥𝑛} (
𝑛

∑

1

𝑝𝑖𝑔 (𝑥𝑖) − 𝑔(

𝑛

∑

1

𝑝𝑖𝑥𝑖)) .

(36)
The inequality

min {𝑥1, 𝑥2, . . . , 𝑥𝑛} ≤ Λ 𝑓,𝑔 (𝑝, 𝑥) (37)
can be proved analogously.

For the proof of necessity, put 𝑥2 = 𝑥3 = ⋅ ⋅ ⋅ = 𝑥𝑛 and
proceed as inTheorem 1.

Remark 6. It is evident from (15) that if 𝐼 ⊆ R+ then 𝑓 has to
be also convex on 𝐼. Otherwise, it shouldn’t be the case. For
example, the conditions ofTheorem 3 are satisfiedwith𝑓(𝑡) =
𝑡
3
/3, 𝑔(𝑡) = 𝑡2, 𝑡 ∈ R. Hence, for an arbitrary sequence {𝑥𝑖}

𝑛
1

of real numbers, we obtain

min {𝑥1, 𝑥2, . . . , 𝑥𝑛} ≤
∑
𝑛
1 𝑝𝑖𝑥
3
𝑖 − (∑

𝑛
1 𝑝𝑖𝑥𝑖)

3

3 (∑
𝑛
1 𝑝𝑖𝑥
2
𝑖 − (∑

𝑛
1 𝑝𝑖𝑥𝑖)

2
)

≤ max {𝑥1, 𝑥2, . . . , 𝑥𝑛} .

(38)

Because the above inequality does not depend on 𝑛, a
probabilistic interpretation of the above result is contained in
the following.

Theorem 7. For an arbitrary probability law 𝐹 of random
variable𝑋 with support on (−∞, +∞), one has

(𝐸𝑋)
3
+ 3 (min𝑋) 𝜎2𝑋 ≤ 𝐸𝑋

3
≤ (𝐸𝑋)

3
+ 3 (max𝑋)𝜎2𝑋.

(39)

3.3. Proof of Theorem 5, Part (1). We will prove a general
assertion of this type. Namely, for an arbitrary positive
sequence x = {𝑥𝑖} and an associated weight sequence p =
{𝑝𝑖}, 𝑖 = 1, 2, . . ., denote

𝜒𝑠 (p, x)

:=

{{{{{{

{{{{{{

{

∑𝑝𝑖𝑥
𝑠
𝑖 − (∑𝑝𝑖𝑥𝑖)

𝑠

𝑠 (𝑠 − 1)
, 𝑠 ∈ R/ {0, 1} ;

log (∑𝑝𝑖𝑥𝑖) − ∑𝑝𝑖 log 𝑥𝑖, 𝑠 = 0;

∑𝑝𝑖𝑥𝑖 log𝑥𝑖 − (∑𝑝𝑖𝑥𝑖) log (∑𝑝𝑖𝑥𝑖) , 𝑠 = 1.
(40)

For 𝑠 ∈ R, 𝑟 > 0 we have

𝜒𝑠 (p, x) 𝜒𝑠+𝑟+1 (p, x) ≥ 𝜒𝑠+1 (p, x) 𝜒𝑠+𝑟 (p, x) , (41)

which is equivalent to

Theorem 8. The sequence {𝜒𝑠+1(p, x)/𝜒𝑠(p, x)} is monotone
increasing in 𝑠, 𝑠 ∈ R.

This assertion follows applying the result from [7, Theo-
rem 2] which states the following.

Lemma 9. For −∞ < 𝑎 < 𝑏 < 𝑐 < +∞, the inequality

(𝜒𝑏 (p, x))
𝑐−𝑎
≤ (𝜒𝑎 (p, x))

𝑐−𝑏
(𝜒𝑐 (p, x))

𝑏−𝑎 (42)

holds for arbitrary sequences p, x.

Putting there 𝑎 = 𝑠, 𝑏 = 𝑠 + 1, 𝑐 = 𝑠 + 𝑟 + 1 and 𝑎 = 𝑠,
𝑏 = 𝑠 + 𝑟, 𝑐 = 𝑠 + 𝑟 + 1, we successively obtain

(𝜒𝑠+1 (p, x))
𝑟+1
≤ (𝜒𝑠 (p, x))

𝑟
𝜒𝑠+𝑟+1 (p, x),

(𝜒𝑠+𝑟 (p, x))
𝑟+1
≤ 𝜒𝑠 (p, x) (𝜒𝑠+𝑟+1 (p, x))

𝑟
.

(43)

Since 𝑟 > 0, multiplying those inequalities we get the
relation (41), that is, the proof of Theorem 8.

The part (1) of Theorem 5 follows for 𝑝1 = 𝑝2 = 1/2.
A general way to prove the rest of Theorem 5 is to use an

easy-checkable identity

𝜆𝑠 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= 𝜆𝑠 (1 + 𝑡, 1 − 𝑡) , (44)

with 𝑡 := (𝑏 − 𝑎)/(𝑏 + 𝑎).
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Since 0 < 𝑎 < 𝑏, we get 0 < 𝑡 < 1. Also,

𝐻(𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= 1 − 𝑡

2
;

𝐺 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= √1 − 𝑡2;

𝐿 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
=

2𝑡

log (1 + 𝑡) − log (1 − 𝑡)
;

𝐼 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

= exp((
1 + 𝑡) log (1 + 𝑡) − (1 − 𝑡) log (1 − 𝑡)

2𝑡
− 1) ;

𝑆 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

= exp(1
2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))) .

(45)

Therefore, we have to compare some one-variable
inequalities and to check their validness for each 𝑡 ∈ (0, 1).

For example, we will prove that the inequality

𝜆𝑠 (𝑎, 𝑏) ≤ 𝐿 (𝑎, 𝑏) (46)

holds for each positive 𝑎, 𝑏 if and only if 𝑠 ≤ 0.
Since 𝜆𝑠(𝑎, 𝑏) is monotone increasing in 𝑠, it is enough to

prove that

𝜆0 (𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
≤ 1. (47)

By the above formulae, this is equivalent to the assertion
that the inequality

𝜙 (𝑡) ≤ 0 (48)

holds for each 𝑡 ∈ (0, 1), with

𝜙 (𝑡) :=
log (1 + 𝑡) − log (1 − 𝑡)

2𝑡

× ((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))

+ log (1 + 𝑡) + log (1 − 𝑡).

(49)

We will prove that the power series expansion of 𝜙(𝑡)
have non-positive coefficients. Thus the relation (48) will be
proved.

Since

log (1 + 𝑡) − log (1 − 𝑡)
2𝑡

=

∞

∑

0

𝑡
2𝑘

2𝑘 + 1
;

log (1 + 𝑡) + log (1 − 𝑡) = −𝑡2
∞

∑

0

𝑡
2𝑘

𝑘 + 1
;

(1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)

= 𝑡
2
∞

∑

0

𝑡
2𝑘

(𝑘 + 1) (2𝑘 + 1)
,

(50)

we get

𝜙 (𝑡)

𝑡2

=

∞

∑

𝑛=0

(−
1

𝑛 + 1
+

𝑛

∑

𝑘=0

1

(2𝑛 − 2𝑘 + 1) (𝑘 + 1) (2𝑘 + 1)
) 𝑡
2𝑛

=

∞

∑

0

𝑐𝑛𝑡
2𝑛
.

(51)

Hence,

𝑐0 = 𝑐1 = 0; 𝑐2 = −
1

90
, (52)

and, after some calculation, we get

𝑐𝑛 =
2

(𝑛 + 1) (2𝑛 + 3)
((𝑛 + 2)

𝑛

∑

1

1

2𝑘 + 1
− (𝑛 + 1)

𝑛

∑

1

1

2𝑘
) ,

𝑛 > 1.

(53)

Now, one can easily prove (by induction, e.g.) that

𝑑𝑛 := (𝑛 + 2)

𝑛

∑

1

1

2𝑘 + 1
− (𝑛 + 1)

𝑛

∑

1

1

2𝑘
(54)

is a negative real number for 𝑛 ≥ 2. Therefore 𝑐𝑛 ≤ 0, and the
proof of the first part is done. For 0 < 𝑠 < 1 we have

𝜆𝑠 (𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
− 1

=

(1 − 𝑠) ((1 + 𝑡)
𝑠+1
+ (1 − 𝑡)

𝑠+1
− 2) log ((1 + 𝑡) / (1 − 𝑡))

2𝑡 (1 + 𝑠) (2 − (1 + 𝑡)
𝑠
− (1 − 𝑡)

𝑠
)

−1

=
1

6
𝑠𝑡
2
+ 𝑂 (𝑡

4
) (𝑡 → 0) .

(55)

Therefore, 𝜆𝑠(𝑎, 𝑏) > 𝐿(𝑎, 𝑏) for 𝑠 > 0 and sufficiently
small 𝑡 := (𝑏 − 𝑎)/(𝑏 + 𝑎).

Similarly, we will prove that the inequality

𝜆𝑠 (𝑎, 𝑏) ≤ 𝐼 (𝑎, 𝑏) (56)

holds for each 𝑎, 𝑏; 0 < 𝑎 < 𝑏 if and only if 𝑠 ≤ 1.
As before, it is enough to consider the expression

𝐼 (𝑎, 𝑏)

𝜆1 (𝑎, 𝑏)
= 𝑒
𝜇(𝑡)
𝜈 (𝑡) := 𝜓 (𝑡) , (57)

with

𝜇 (𝑡) =
(1 + 𝑡) log (1 + 𝑡) − (1 − 𝑡) log (1 − 𝑡)

2𝑡
− 1;

𝜈 (𝑡) =
(1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)

𝑡2
.

(58)
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It is not difficult to check the identity

𝜓

(𝑡) = −

𝑒
𝜇(𝑡)
𝜙 (𝑡)

𝑡3
. (59)

Hence by (48), we get 𝜓(𝑡) > 0, that is, 𝜓(𝑡) is monotone
increasing for 𝑡 ∈ (0, 1).

Therefore

𝐼 (𝑎, 𝑏)

𝜆1 (𝑎, 𝑏)
≥ lim
𝑡→0+

𝜓 (𝑡) = 1. (60)

Bymonotonicity it follows that 𝜆𝑠(𝑎, 𝑏) ≤ 𝐼(𝑎, 𝑏) for 𝑠 ≤ 1.
For 𝑠 > 1, (𝑏 − 𝑎)/(𝑏 + 𝑎) = 𝑡, we have

𝜆𝑠 (𝑎, 𝑏) − 𝐼 (𝑎, 𝑏) = (
1

6
(𝑠 − 1) 𝑡

2
+ 𝑂 (𝑡

4
))𝐴 (𝑎, 𝑏)

(𝑡 → 0
+
) .

(61)

Hence, 𝜆𝑠(𝑎, 𝑏) > 𝐼(𝑎, 𝑏) for 𝑠 > 1 and 𝑡 sufficiently small.
From the other hand,

lim
𝑡→1−

[
𝜆𝑠 (𝑎, 𝑏)

𝐼 (𝑎, 𝑏)
− 1] =

𝑒 (𝑠 − 1) (2
𝑠+1
− 2)

2 (𝑠 + 1) (2
𝑠 − 2)

− 1 := 𝜏 (𝑠) .

(62)

Examining the function 𝜏(𝑠), we find out that it has the
only real zero at 𝑠0 ≈ 1.0376 and is negative for 𝑠 ∈ (1, 𝑠0).

Remark 10. Since 𝜓(𝑡) is monotone increasing, we also get

𝐼 (𝑎, 𝑏)

𝜆1 (𝑎, 𝑏)
≤ lim
𝑡→1−

𝜓 (𝑡) =
4 log 2
𝑒
. (63)

Hence

1 ≤
𝐼 (𝑎, 𝑏)

𝜆1 (𝑎, 𝑏)
≤
4 log 2
𝑒
. (64)

A calculation gives 4 log 2/𝑒 ≈ 1.0200.

Note also that

𝜆2 (𝑎, 𝑏) ≡ 𝐴 (𝑎, 𝑏) . (65)

Therefore, applying the assertion from the part 1, we get

𝜆𝑠 (𝑎, 𝑏) ≤ 𝐴 (𝑎, 𝑏), 𝑠 ≤ 2;

𝜆𝑠 (𝑎, 𝑏) ≥ 𝐴 (𝑎, 𝑏), 𝑠 ≥ 2.

(66)

Finally, we give a detailed proof of the part 7.
We have to prove that 𝜆𝑠(𝑎, 𝑏) ≤ 𝑆(𝑎, 𝑏) for 𝑠 ≤ 5. Since

𝜆𝑠(𝑎, 𝑏) is monotone increasing in 𝑠, it is sufficient to prove
that the inequality

𝜆5 (𝑎, 𝑏) ≤ 𝑆 (𝑎, 𝑏) (67)

holds for each 𝑎, 𝑏 ∈ R+.

Therefore, by the transformation given above, we get

log
𝜆5

𝐴

= log[2
3

(1 + 𝑡)
6
+ (1 − 𝑡)

6
− 2

(1 + 𝑡)
5
+ (1 − 𝑡)

5
− 2
]

= log[ 2
15

15 + 15𝑡
2
+ 𝑡
4

2 + 𝑡2
]

≤ log[1 + 𝑡
2
+ 𝑡
4
/4

1 + 𝑡2/2
] = log(1 + 𝑡

2

2
)

=
𝑡
2

2
−
𝑡
4

8
+
𝑡
6

24
− ⋅ ⋅ ⋅

≤
𝑡
2

2
+
𝑡
4

12
+
𝑡
6

30
+ ⋅ ⋅ ⋅

=
1

2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))

= log 𝑆
𝐴
,

(68)

and the proof is done.
Further, we have to show that 𝜆𝑠(𝑎, 𝑏) > 𝑆(𝑎, 𝑏) for some

positive 𝑎, 𝑏 whenever 𝑠 > 5.
Indeed, since

(1 + 𝑡)
𝑠
+ (1 − 𝑡)

𝑠
− 2 = (

𝑠

2
) 𝑡
2
+ (
𝑠

4
) 𝑡
4
+ 𝑂 (𝑡

6
) , (69)

for 𝑠 > 5 and sufficiently small 𝑡, we get

𝜆𝑠

𝐴
=
𝑠 − 1

𝑠 + 1

(
𝑠+1
2 ) 𝑡
2
+ (
𝑠+1
4 ) 𝑡
4
+ 𝑂 (𝑡

6
)

(
𝑠
2 ) 𝑡
2 + (
𝑠
4 ) 𝑡
4 + 𝑂 (𝑡6)

=

1 + (𝑠 − 1) (𝑠 − 2) 𝑡
2
/12 + 𝑂 (𝑡

4
)

1 + (𝑠 − 2) (𝑠 − 3) 𝑡
2/12 + 𝑂 (𝑡4)

= 1 + (
𝑠

6
−
1

3
) 𝑡
2
+ 𝑂 (𝑡

4
) .

(70)

Similarly,

𝑆

𝐴
= exp(1

2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡)))

= exp(𝑡
2

2
+ 𝑂 (𝑡

4
)) = 1 +

𝑡
2

2
+ 𝑂 (𝑡

4
) .

(71)

Hence,

1

𝐴
(𝜆𝑠 − 𝑆) =

1

6
(𝑠 − 5) 𝑡

2
+ 𝑂 (𝑡

4
) , (72)

and this expression is positive for 𝑠 > 5 and 𝑡 sufficiently
small, that is, 𝑎 sufficiently close to 𝑏.
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As for the part 8, applying the above transformation we
obtain

𝜆𝑠 (𝑎, 𝑏)

𝑆 (𝑎, 𝑏)

=
𝑠 − 1

𝑠 + 1

(1 + 𝑡)
𝑠+1
+ (1 − 𝑡)

𝑠+1
− 2

(1 + 𝑡)
𝑠
+ (1 − 𝑡)

𝑠
− 2

× exp (−1
2
((1 + 𝑡) log (1 + 𝑡) + (1 − 𝑡) log (1 − 𝑡))) ,

(73)

where 0 < 𝑎 < 𝑏, 𝑡 = (𝑏 − 𝑎)/(𝑏 + 𝑎).
Since for 𝑠 > 5,

lim
𝑡→1−

𝜆𝑠

𝑆
=
𝑠 − 1

𝑠 + 1

2
𝑠
− 1

2𝑠 − 2
, (74)

and the last expression is less than one, it follows that the
inequality 𝑆(𝑎, 𝑏) < 𝜆𝑠(𝑎, 𝑏) cannot hold whenever 𝑏/𝑎 is
sufficiently large.

The rest of the proof is straightforward.
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