
Research Article
An Incremental High-Utility Mining Algorithm with
Transaction Insertion

Jerry Chun-Wei Lin,1 Wensheng Gan,1 Tzung-Pei Hong,2,3 and Binbin Zhang4

1School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, HIT Campus,
Shenzhen University Town, Xili, Shenzhen 518055, China
2Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
3Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
4Medical School, Shenzhen University, Shenzhen 518060, China

Correspondence should be addressed to Binbin Zhang; binbinsherry.zhang@gmail.com

Received 30 July 2014; Revised 21 August 2014; Accepted 14 September 2014

Academic Editor: Zheng Xu

Copyright © 2015 Jerry Chun-Wei Lin et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Association-rule mining is commonly used to discover useful andmeaningful patterns from a very large database. It only considers
the occurrence frequencies of items to reveal the relationships among itemsets. Traditional association-rule mining is, however, not
suitable in real-world applications since the purchased items from a customer may have various factors, such as profit or quantity.
High-utility mining was designed to solve the limitations of association-rule mining by considering both the quantity and profit
measures. Most algorithms of high-utility mining are designed to handle the static database. Fewer researches handle the dynamic
high-utility mining with transaction insertion, thus requiring the computations of database rescan and combination explosion
of pattern-growth mechanism. In this paper, an efficient incremental algorithm with transaction insertion is designed to reduce
computations without candidate generation based on the utility-list structures.The enumeration tree and the relationships between
2-itemsets are also adopted in the proposed algorithm to speed up the computations. Several experiments are conducted to show
the performance of the proposed algorithm in terms of runtime, memory consumption, and number of generated patterns.

1. Introduction

Association-rule mining (ARM) [1–3] from a transactional
database is a fundamental task for revealing the relationships
among items. The Apriori [4] was the first algorithm to mine
the association rules in a level-wise way. It uses generate-
and-test mechanism to find the candidate itemsets and then
derive the frequent itemsets based on the minimum support
threshold. The association rules are then revealed from the
discovered frequent itemsets based on minimum confidence
threshold. The FP-growth algorithm [5] was the first algo-
rithm to efficiently mine the frequent itemsets without candi-
date generation. It uses the FP-tree structure to compress the
original database into a tree structure. An indexHeader Table
with a designed FP-growthmining algorithm is also proposed
to find the corresponding paths of the items for deriving the
frequent itemsets. Many algorithms have been, respectively,

proposed to efficiently mine the association rules based on
either the level-wise or pattern-growth mechanisms [2, 3].
Both the level-wise or pattern-growth approaches can only
handle the static database in batch mode. When transactions
are changed in the database, new information may arise
and old ones may become invalid. The updated database is
required to be processed to mine the updated information in
batch mode, which is not suitable in practical applications.

To solve the above limitations of batch-mode algorithms
[6, 7], Cheung et al. proposed the Fast-UPdated (FUP) algo-
rithm [8] to maintain and update the discovered information
with transaction insertion. It divides the discovered frequent
itemsets from the original database and all itemsets in the
inserted transactions into four cases. The procedures for
four cases are, respectively, designed to maintain and update
the discovered frequent itemsets. When the itemsets are
small in the original database (support ratio is lower than

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 161564, 15 pages
http://dx.doi.org/10.1155/2015/161564

2 The Scientific World Journal

minimum support threshold) but large in the new database
(support ratio is larger than or equal to theminimum support
threshold), the original database is required to be rescanned
to find the actual occurrence frequencies of the small itemsets
in the original database.

For ARM, it only reveals the binary relationships among
items. The implicit factors such as profit or quantity are not
concerned in ARM. A pattern with highly frequency may
not be interested if it cannot bring highly profit for retailer.
For example, a sale of diamonds may occur less frequently
than that of clothing in a department store, but the former
gives a much higher profit per unit sold than the latter. Only
the occurrence frequency is insufficient to identify highly
profitable items in traditional ARM.

High-utility mining (HUM) [9, 10] was thus proposed to
partially solve the limitations of association-rule mining. It
may be thought of as an extension of frequent-itemsetmining
by considering the sold quantities and profits of the items.
The utility of an itemset can bemeasured in terms of quantity
and profit, which can be defined by user preference. For
example, someone may be interested in finding the itemsets
with good profits and another may focus on the itemsets with
low pollution while manufacturing. When the utility of an
itemset is larger than or equal to the minimum utility count,
an itemset is considered as a high-utility itemset (HUI).
Several algorithms have been proposed to mine HUIs in a
static database [11–14].

As previously mentioned in ARM, it is also an important
issue to design an algorithm to efficiently maintain and
update the HUIs when data or transactions are frequently
changed in the original database. Some HUM algorithms
have been proposed with transaction insertion [15–17]. The
original database is still, however, required to be rescanned
for maintaining and updating the HUIs in some cases.
The problem of combination explosion based on level-wise
approach is also a critical issue to be solved.

In this paper, a memory-based incremental approach for
maintaining and updating the discovered HUIs is proposed
with transaction insertion. The proposed algorithm inher-
its the HUI-Miner algorithm [18] to build the utility-list
structures for mining HUIs in incremental mining. Since the
utility-list structure is a condensed way to keep the related
information for high-utility mining, all itemsets whether
they are high transaction-weighted utilization itemsets
(HTWUIs) or small in the original database should be kept.
An estimated utility cooccurrence structure (EUCS) [19] is
also applied in the proposed algorithm to speed up the per-
formance of the proposed approach. Based on the designed
algorithm, it outperforms the two-phase algorithm [12] and
the state-of-the-art FHM algorithm [19] in batch mode and
other previous algorithms for incremental mining [16, 17].

The remaining of this paper is organized as follows.
Related works are reviewed in Section 2. The preliminaries
and problem statement are described in Section 3. The
proposed incremental algorithm with transaction insertion
is given in Section 4. An illustrated example to explain the
proposed algorithm step-by-step is described in Section 5.
Experiments are provided in Section 6. Conclusion is finally
given in Section 7.

2. Review of High-Utility Mining

Traditional ARM only concerns the binary values of the
itemsets in a transactional database. The frequent itemsets
only reveal the occurrence frequencies of the itemsets in the
transactions, which is not suitable in real-world applications.
Other factors such as price, quantity, or cost can also be
used as the important measurements to analyze and predict
purchased behaviors of the customers. Besides, highly prof-
itable products with lower frequencies may not be discovered
in traditional ARM. For example, in the basket analysis,
jewels and diamonds are high profitable items but may not
be frequent compared to food or drink products.

High-utility mining (HUM) [9, 10] is concerned as an
extension of the frequent itemsets mining by considering
both the quantities and profits of items to discover the
valuable itemsets than the frequent ones. An itemset is
concerned as a HUI if its utility value is larger than or equal
to the minimum utility count. Chan et al. first proposed the
top-𝑘 objective-directed datamining tomine the top-𝑘 closed
utility patterns based on business objective [9]. Not only the
frequent itemsets but also the HUIs can be thus discovered
by the designed approach. Yao and Hamilton proposed the
utility model to firstly consider both quantities and profits
of the items to mine the HUIs [10]. Several mathematical
properties of utility constraints and two pruning strategies are
also designed to efficientlymineHUIs. Liu et al. proposed the
two-phase model [12] to mine HUIs based on the developed
transaction-weighted downward closure (TWDC) property.
Based on two-phase model, the numerous candidates can be
greatly reduced and the high-utility itemsets can be precisely
obtained.

Many algorithms have been proposed to mine HUIs
based on two-phase model. Lin et al. designed a high-utility
pattern- (HUP-) tree algorithm [11] to compress the original
database into a tree structure. A pattern-growthHUP-growth
mining algorithm was also designed to mine HUIs. Tseng et
al. then proposed the UP-tree structure with UP-growth and
UP-growth+mining algorithms to efficiently mine HUIs [13].
Since the pattern-growth approach requires computations
to trace the tree nodes in the tree structure, Liu and Qu
then proposed a HUI-Miner algorithm [18] to compress the
database into the utility-list structures. Each entry in the
utility-list structure stores transaction IDs (TIDs), the utility
of itemset 𝑋 in the transaction (Iutility), and the rest utilities
of itemsets except 𝑋 in the transaction (Rutility). Based on
the HUI-Miner algorithm and the designed pruning strategy
of the enumeration tree, the HUIs can be easily discovered.
Fournier-Viger et al. thenmodified theHUI-Miner algorithm
and designed an estimated utility cooccurrence structure
(EUCS) to keep the relationships between 2-itemsets, thus
speeding up the computations compared to the HUI-Miner
algorithm [19].

Most algorithms process the static database to mine
HUIs. In real-world applications, transactions are dynam-
ically changed in the original database. Ahmed et al. pro-
posed an IHUP algorithm with three tree structures for
mining HUIs with transaction insertion [15]. The proposed
tree-based algorithm can be used to avoid the generate-
and-test mechanism for HUM. The IHUP-tree algorithm

The Scientific World Journal 3

still requires to generate numerous HTWUIs based on the
pattern-growth approach. Lin et al. proposed an incremental
(FUP-HUI-INS) algorithm [17] for updating the discovered
HUIs based on the FUP concept [8] and two-phase model
[12] with transaction insertion. Two parts with four cases
are then divided by the HTWUIs in the original databases
and all itemsets in the inserted transactions. Each case is
then processed by the designed procedure to maintain and
update the discovered HUIs. Although the FUP-HUI-INS
algorithm has good performance than the two-phase model,
the original database is still required to be rescannedwhen an
itemset is small in the original database but HTWUI in the
inserted transactions. To solve the limitations of FUP-HUI-
INS algorithm, Lin et al. then proposed an improved prelarge
concept for mining high-utility itemsets with transaction
insertion (PRE-HUI-INS) [16]. Based on the property of
prelarge concept [20], prelarge transaction-weighted utiliza-
tion itemsets (PTWUIs) are kept to avoid database rescan
until the cumulative total utility of the inserted transactions
achieves the safety bound. Since FUP-HUI-INS and PRE-
HUI-INS algorithms are processed by two-phase model, an
additional database rescan is still necessary to be performed
to find the actually HUIs. Besides, it requires computations to
find the HTWUIs based on the pattern-growth approach.

3. Preliminaries and Problem Statement

In this section, the preliminaries related to HUM are given
below.

3.1. Notations

𝐷: original quantitative database, 𝐷 = {𝑇
1
, 𝑇
2
, . . . ,

𝑇
𝑛
}, in which 𝑛 is the transactions number and each

transaction includes a subset of items with quantities;
𝑑: set of new transactions, 𝑑 = {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
}, in

which each transaction includes a subset of itemswith
quantities;
𝑈: entire updated database, that is,𝐷 ∪ 𝑑;
𝐼: set of 𝑚 items, 𝐼 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑚
}, each item 𝑖

𝑗
with

a profit value 𝑝
𝑗
;

TID: each transaction 𝑇
𝑛
∈ 𝐷 has a unique transac-

tion identification;
𝑢
𝑗𝑘
: utility value of each item 𝑖

𝑗
in each transaction;

𝑡𝑢
𝑘
: accumulated utility value of the items in each

transaction;
𝑞
𝑗𝑘
: quantity of item 𝑖

𝑗
in each transaction;

𝜎: predefined minimum high-utility threshold;
TWU𝐷(𝑖

𝑗
): transaction-weighted utility of an item 𝑖

𝑗

in the original database𝐷.

3.2. Preliminaries and Problem Statement. Assume an exam-
ple database consists of 10 transactions and 6 items, and each
item in the transaction has its purchased quantity. A used
example is shown in Table 1. The profit table for the items is
shown in Table 2.

Table 1: A used example.

TID 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

1 3 2 0 3 0 0
2 2 0 0 4 2 0
3 3 0 5 0 0 3
4 1 0 3 0 1 2
5 1 0 0 3 2 0
6 1 2 0 4 0 0
7 2 3 2 0 1 1
8 0 0 0 0 0 2
9 0 0 3 3 0 0
10 3 0 0 4 0 0

Table 2: Profit table.

Item Profit ($)
𝐴 3
𝐵 150
𝐶 1
𝐷 50
𝐸 100
𝐹 20

In this example, the minimum utility threshold is set at
35%. The definitions of HUM are given below.

Definition 1. An itemset 𝑋 is a set of 𝑘 distinct items
{𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
}, in which 𝑘 is the length of an itemset. An

itemset𝑋 is contained in a transaction 𝑇
𝑛
if𝑋 ⊆ 𝑇

𝑛
.

For example, an item (𝐴) is called a 1-itemset which
contained in 𝑇

1
, and an itemset (𝐴𝐵𝐷) is called 3-itemset in

𝑇
1
.

Definition 2. The utility of an item 𝑖
𝑗
in 𝑇
𝑞
is defined as

𝑢(𝑖
𝑗
, 𝑇
𝑞
) = 𝑞(𝑖

𝑗
, 𝑇
𝑞
) × 𝑝(𝑖

𝑗
), in which 𝑞(𝑖

𝑗
, 𝑇
𝑞
) is the quantity

of an item 𝑖
𝑗
in 𝑇
𝑞
, and 𝑝(𝑖

𝑗
) is the profit value of an item 𝑖

𝑗
.

For example, the utility of an item (𝐴) in 𝑇
1
is 𝑢(𝐴, 𝑇

1
) =

𝑞(𝐴, 𝑇
1
) × 𝑝(𝐴) (= 3 × 3) (= 9).

Definition 3. The utility of an itemset 𝑋 in transaction 𝑇
𝑞

is denoted by 𝑢(𝑋, 𝑇
𝑞
), which can be defined as 𝑢(𝑋, 𝑇

𝑞
) =

∑
𝑖𝑗∈𝑋∧𝑋⊆𝑇𝑞

𝑢(𝑖
𝑗
, 𝑇
𝑞
).

For example,𝑢(𝐴𝐷, 𝑇
1
) = 𝑢(𝐴, 𝑇

1
)+𝑢(𝐷, 𝑇

1
) = 𝑞(𝐴, 𝑇

1
)×

𝑝(𝐴) + 𝑞(𝐷, 𝑇
1
) × 𝑝(𝐷) (= 3 × 3 + 3 × 50) (= 159).

Definition 4. The utility of an itemset 𝑋 in 𝐷 is denoted by
𝑢(𝑋), which can be defined as 𝑢(𝑋) = ∑

𝑋⊆𝑇𝑞∧𝑇𝑞∈𝐷
𝑢(𝑋, 𝑇

𝑞
).

For example, 𝑢(𝐷) = 𝑢(𝐷, 𝑇
1
) + 𝑢(𝐷, 𝑇

2
) + 𝑢(𝐷, 𝑇

5
) +

𝑢(𝐷, 𝑇
6
) + 𝑢(𝐷, 𝑇

9
) + 𝑢(𝐷, 𝑇

10
) (= 150 + 200 + 150 + 200 +

150 + 200) (= 1050). Then 𝑢(𝐵𝐷) = 𝑢(𝐵𝐷, 𝑇
1
) + 𝑢(𝐵𝐷, 𝑇

6
)

(= 450 + 500) (= 950).

4 The Scientific World Journal

Definition 5. The transaction utility of transaction 𝑇
𝑞
is

denoted by 𝑡𝑢(𝑇
𝑞
), where 𝑚 is the number of items in 𝑇

𝑞
.

Thus, 𝑡𝑢(𝑇
𝑞
) can be defined as 𝑡𝑢(𝑇𝑞) = ∑𝑚

𝑗=1
𝑢(𝑖
𝑗
, 𝑇
𝑞
).

For example, 𝑡𝑢(𝑇
1
) = 𝑢(𝐴, 𝑇

1
) + 𝑢(𝐵, 𝑇

1
) + 𝑢(𝐷, 𝑇

1
)

(= 9 + 300 + 150) (= 459).

Definition 6. Total utility of𝐷 is denoted by TU𝐷, which can
be defined as TU𝐷 = ∑

𝑇𝑞∈𝐷
𝑡𝑢(𝑇
𝑞
).

For example, the transaction utilities for 𝑇
1
to 𝑇
10

are,
respectively, calculated as 𝑡𝑢(𝑇

1
) = 459, 𝑡𝑢(𝑇

2
) = 406,

𝑡𝑢(𝑇
3
) = 74, 𝑡𝑢(𝑇

4
) = 146, 𝑡𝑢(𝑇

5
) = 353, 𝑡𝑢(𝑇

6
) = 503,

𝑡𝑢(𝑇
7
) = 578, 𝑡𝑢(𝑇

8
) = 40, 𝑡𝑢(𝑇

9
) = 153, and 𝑡𝑢(𝑇

10
) = 209.

The total utility in 𝐷 is the sum of all transaction utilities in
𝐷, which is calculated as (459 + 406 + 74 + 146 + 353 + 503 +
578 + 40 + 153 + 209) (= 2921).

Definition 7. A high-utility itemset 𝑋 in database 𝐷 is
denoted by HUI𝐷(𝑋), which can be defined as HUI𝐷(𝑋) =
∑
𝑋⊆𝑇𝑞∧𝑇𝑞∈𝐷

𝑢(𝑋, 𝑇
𝑞
) ≥ 𝜎 × TU𝐷.

For example, suppose a minimum utility threshold 𝜎 is
set at 35%. An item (𝐷) is considered as a HUI since its
utility is 𝑢(𝐷) (= 1050), which is larger than or equal to the
minimum utility count as 1050 > (0.35 × 2921) (= 1022.35).
An itemset (𝐵𝐷) is not considered as a HUI in 𝐷 since its
utility is 𝑢(𝐵𝐷) (= 950), which is smaller than the minimum
utility count as (950 < 1022.35). After the above definitions,
the problem statement of HUM is described below.

Problem Statement.Given a transactional database𝐷, its total
utility is defined as TU𝐷 from𝐷, aminimumutility threshold
is set at 0 < 𝜎 ≤ 1, and the HUM is to find the complete 𝑘-
itemsets whose utilities are larger than or equal to minimum
utility count as (𝜎 × TU).

Since the downward-closure property of ARM is not
kept in HUM, the transaction-weighted downward closure
property (TWDC) was thus proposed by two-phase model
[12].

Definition 8. Thetransaction-weighted utility of an itemset𝑋
is the sum of all transaction utilities 𝑡𝑢(𝑇

𝑞
) containing an

itemset𝑋, which is defined as TWU(𝑋) = ∑
𝑋⊆𝑇𝑞∧𝑇𝑞∈𝐷

𝑡𝑢(𝑇
𝑞
).

Definition 9. An itemset 𝑋 is defined as a high transaction-
weighted utilization itemset (HTWUI) if TWU𝐷(𝑋) ≥ 𝜎 ×
TU𝐷.

For a 2-itemset (𝐴𝐵) in Table 1, (𝐴𝐵) is considered as a
HTWUI since TWU(𝐴𝐵) = 𝑡𝑢(𝑇

1
)+𝑡𝑢(𝑇

6
)+𝑡𝑢(𝑇

7
) = (459+

503 + 578) (= 1540 > 1022.35).

Property 1. The transaction-weighted downward closure
(TWDC) property of two-phase model is that if an itemset
𝑋 is a HTWUI, the subsets of𝑋 could be HTWUI.

Based on TWDC property of two-phase model, numer-
ous candidates and combinational computations can be
greatly reduced.

4. Proposed Incremental Algorithm for
Transaction Insertion

In this paper, the HUI-Miner algorithm [18] is adopted to
design the incremental algorithm for HUM. Before trans-
actions are inserted into the original database, the utility-
list structures are built in advance to keep not only the
HTWUIs but also those itemsets which are not the HTWUIs
from the original database to avoid the database rescan
with transaction insertion. Since the utility-list structure is a
condensed structure to keep the related information from the
original database, only fewer memories are required to keep
the related information of the proposed algorithm.

4.1. Utility-List Structure. Each entry in the utility-list struc-
ture of an itemset𝑋 keeps the TID numbers of𝑋 (TIDs), the
utility of 𝑋 in 𝑇

𝑞
(Iutility), and the remaining utility of 𝑋 in

𝑇
𝑞
(Rutility).

Definition 10. An entry of 𝑋 in the utility-list structure
consisted of the set TIDs for 𝑋 in of 𝑇

𝑞
(𝑋 ⊆ 𝑇

𝑞
∈ 𝐷), the

set of utility for 𝑋 in 𝑇
𝑞
(Iutility), and the set of remaining

utility for X in 𝑇
𝑞
(Rutility), in which Rutility is defined as

𝑋.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝑇
𝑞
) = ∑
𝑖𝑗∈𝑇𝑞∧𝑖𝑗∉𝑋

𝑢(𝑖
𝑗
, 𝑇
𝑞
).

The construction procedures of utility-list structures
are recursively processed for 𝑘-itemsets if it is necessary
to process the depth-first search in the search space. The
construction algorithm is then shown in Algorithm 1.

In the construction process, the itemsets are sorted in
ascending order of their transaction-weighted utility (TWU).
For the Rutility of an itemset 𝑋 in a transaction, it keeps the
rest utilities in the transaction except the processed itemset𝑋.
Since the TWU values of the itemsets are changed with trans-
action insertion, the sorted order of the utility-list structures
and the Rutility value should also be changed.The number of
inserted transactions is, however, very small compared to the
original database. In the proposed algorithm, the sorted order
of the itemsets in the inserted transactions follows the initially
TWU ascending order of itemsets in the original database.
An example to show the utility-list structures of 1-itemsets is
shown in Figure 1.

Definition 11. The 𝑋.𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦.𝑠𝑢𝑚 is to sum the utilities of an
itemset𝑋 in database𝐷 as

𝑋.𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦.𝑠𝑢𝑚 = ∑

𝑋⊆𝑇𝑞∧𝑇𝑞∈𝐷

𝑋.𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑇
𝑞
) . (1)

Definition 12. The 𝑋.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦.𝑠𝑢𝑚 is to sum the rest utilities
except an itemset𝑋 in database𝐷 as

𝑋.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦.𝑠𝑢𝑚 = ∑

𝑋⊆𝑇𝑞∧𝑇𝑞∈𝐷

𝑋.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦 (𝑇
𝑞
) . (2)

The Scientific World Journal 5

INPUT: An itemset𝑋;
𝑋.UL is the utility-list of𝑋;
𝑋
𝑎𝑏
.UL,𝑋

𝑎
.UL, 𝑋

𝑏
.UL,𝑋

𝑎
⊆ 𝑋, and𝑋

𝑏
⊆ 𝑋,𝑋

𝑎
̸= 𝑋
𝑏
.

OUTPUT:𝑋
𝑎𝑏
.UL.

BEGIN Procedure
(1) 𝑋

𝑎𝑏
.UL = null.

(2) FOR each element 𝐸
𝑎
∈ 𝑋
𝑎
DO

(3) IF ∃𝐸
𝑏
∈ 𝑋
𝑏
.UL and 𝐸

𝑎
.TID = 𝐸

𝑏
.TID THEN

(4) IF 𝑋.UL ̸= null THEN
(5) Search element 𝐸 ∈ 𝑋.UL that 𝐸.TID = 𝐸

𝑎
.TID;

(6) 𝐸
𝑎𝑏
←⟨𝐸

𝑎
.TID, 𝐸

𝑎
.Iutility + 𝐸

𝑏
.Iutility − E.Iutility, 𝐸

𝑏
.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦⟩.

(7) ELSE
(8) 𝐸

𝑎𝑏
← ⟨𝐸

𝑎
.TID, 𝐸

𝑎
.Iutility + 𝐸

𝑏
.Iutility, 𝐸

𝑏
.𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦⟩.

(9) END IF
(10) 𝑋

𝑎𝑏
.UL← 𝐸

𝑎𝑏
.

(11) END IF
(12) END FOR
(13) RETURN 𝑋

𝑎𝑏
.UL.

END Procedure

Algorithm 1: Pseudocode of utility-list structures construction algorithm.

{A}

1 9 0

2 6 0

3 9 0

4 3 0

5 3 0

6 3 0

7 6 0

10 9 0

{F}

3 60 9

4 40 103

7 20 556

8 40 0

{C}

3 5 69

4 3 143

7 2 576

9 3 150

{B}

1 300 159

6 300 203

7 450 6

{D}

1 150 9

2 200 6

5 150 3

6 200 3

9 150 0

10 200 9

{E}

2 200 459

4 100 3

5 200 153

7 100 456

TID
Iutility

Rutility

Figure 1: The constructed utility-list structures of 1-itemsets.

For example, an itemset (𝐸) appears in TID {2, 4, 5, 7},
and the summation of (𝐸) in the database 𝐷 is calculated
as 𝐸.𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦.𝑠𝑢𝑚(= 200 + 100 + 200 + 100) (= 600); the
summation of rest utilities except 𝐸 in the database 𝐷 is
calculated as (459 + 3 + 153 + 456) (= 1071). For more 𝑘-
itemsets, the utility-list structures are recursively constructed
until no candidates are generated for determination.

4.2. An Enumeration Tree. The search space to mine HUIs
is based on the enumeration tree to decide whether the
supersets of the processed node 𝐽 are required to be deter-
mined. If the summation of the Iutility and Rutility of the
current processed node 𝐽 is larger than or equal to the
minimum utility count, the supersets of the processed node
𝐽 will be generated and determined. This criterion is based
on the TWDC property of the two-phase model [12]. The
enumeration tree is shown in Figure 2.

Definition 13. Any extension of an itemset𝑋 is a combination
of 𝑋 with the itemset(s) after an itemset 𝑋, which is denoted
by𝑋󸀠.

Root

CF

C F E B D

CFD

CE CB CA

CFE

CFEB

CFB

CFED CFEA

A

CD

CFA

· · ·

· · ·

· · ·

C < F < E < B < D < A

Figure 2: The enumeration tree.

4.3. Pruning Strategy. Based on the HUI-Miner [18], a prun-
ing strategy can also be adopted to compress the border for
determination than the TWDC property.

6 The Scientific World Journal

Table 3: Constructed EUCS structure.

Item 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

𝐵 1540 — — — — —
𝐶 798 578 — — — —
𝐷 1930 962 153 — — —
𝐸 1483 578 166 759 — —
𝐹 798 578 798 0 724 —

Property 2. Given the utility-list structure of an itemset 𝑋, if
the summation of Iutility and Rutility of an itemset 𝑋 in 𝐷 is
less than the minimum utility count, any extension𝑋󸀠 of𝑋 is
not a HUI.

In addition, the estimated utility cooccurrence pruning
(EUCP) strategy [19] is also adopted in the proposed algo-
rithm to further keep the relationship of 2-itemsets, thus
eliminating the extension itemsets with lower utility without
reconstructing the utility-list structures. The constructed
EUCS is shown in Table 3.

Take the 2-itemsets (𝐴𝐵) and (𝐴𝐶) as an example to
illustrate the EUCS structure. From Table 3, it can be
observed that the TWU(𝐴𝐵) (= 1540), and TWU(𝐴𝐶)
(= 798).

4.4. Proposed Incremental Algorithm. Based on the above
properties inheriting from HUI-Miner and EUCS struc-
tures, the proposed incremental algorithm is described in
Algorithm 2.

For the designed incremental algorithm with transaction
insertion, the original database is firstly scanned to construct
the utility-list structures for all 1-itemsets and the EUCS
structure for each item (Lines 2–8). Similarly, the inserted
transactions are also scanned to construct the utility-list
structures for all 1-itemsets. Each related TWU values of
items in the built EUCS are also updated by the inserted
transactions (Lines 9–15). The designed merge-list algorithm
is used to combine the utility-list structures from the original
database and inserted transactions into an updated utility-list
structures (Line 16). After that, the 1-extensions of an itemset
𝑋 are recursively processed (Lines 17–28) by using a depth-
first procedure. Each itemset 𝑋 is then determined by the
designed condition to check whether it is a HUI (Lines 18–
20). If an itemset is not a HUI, its extension is then deter-
mined by the designed condition based on two-phase model
(Line 21) for depth-first search. Theupdated EUCS structure
is also used to prune the unpromising itemset, thus reducing
the search space for mining high-utility itemsets (Lines 24–
26).The construction of utility-list structure algorithm is then
performed to construct the extULs of𝑋. The proposed HUI-
list-INS algorithm is then recursively performed to mine
HUIs (Lines 21–29).The algorithm is then terminated until no
itemsets are generated. The merge-list algorithm to combine
original database and the incremental one are described in
Algorithm 3.

5. An Illustrated Example

In this section, an example is given to illustrate the proposed
incremental mining algorithm for mining HUIs with trans-
action insertion. Based on the TWU property, the utility-list

Table 4: Five inserted transactions.

TID 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹

11 3 0 4 8 0 0
12 3 0 3 7 0 0
13 3 0 2 6 0 0
14 1 0 0 0 1 1
15 4 3 0 0 0 0

Table 5: Final derived HUIs.

1-itemset 2-itemset
𝐷: 2100 𝐴𝐷: 2007

structures for all 1-itemsets are firstly built before transactions
are inserted. The inserted transactions are shown in Table 4.
The original database and the profit table were, respectively,
shown in Tables 1 and 2.

Assume the minimum high-utility threshold is also set at
35%; the updated minimum utility count for mining HUIs
is calculated as (2921 + 1671) × 0.35 (= 1607.2). First, the
utility-list structures for the incremental database are also
constructed for all 1-itemsets. After the construction process,
the results of utility-list structures in the incremental database
are shown in Figure 3.

After that, the utility-list structures from the original
database and the incremental ones are merged together.
For example, the utility-list structure of (𝐵) in the original
database is UL(𝐵) = {TID, 𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐵), 𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐵)} = {(1,
300, 159), (2, 300, 203), (3, 450, 6)}. The utility-list structure
of (𝐵) in the incremental database is UL(𝐵)󸀠 = {TID,
𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐵), 𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐵)} = {(15, 450, 12)}. The utility-list
structures for (𝐵) are then updated as {(1, 300, 159), (2, 300,
203), (3, 450, 6), (15, 450, 12)}. The other items {𝐴, 𝐶,𝐷, 𝐸, 𝐹}
are processed in the same way. After that, the final updated
utility-list structures are then updated and shown in Figure 4.

In this example, since the utility-list structures are sorted
in ascending order of their TWU values, the item (𝐶) is first
processed to mine the related HUIs of (𝐶). The total utility of
(𝐶) in the utility-list structure can be directly derived from
Iutility, which can be calculated as (5 + 3 + 2 + 3 + 4 + 3 +
2) (= 22). The Rutility of (𝐶) is calculated as (69 + 143 +
576 + 150 + 409 + 359 + 309) (= 2015). Since the summation
of 𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐶) is smaller than the updated minimum utility
count, the summation of 𝐼𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐶) and 𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦(𝐶) is larger
than minimum utility count as (22 + 2015 > 1607.2).
Thus, the depth-search mechanism is then performed to find
the supersets of the item (𝐶) in the enumeration tree. The
item (𝐶) is then combined with item (𝐹). Both of them are
appeared in transactions 3, 4, and 7, which can be observed
from Figure 3, to construct the utility-list structures for (𝐶𝐹).
The other items (𝐸, 𝐵,𝐷, 𝐴) are processed in the same way.
After that, the supersets of (𝐶) are shown in Figure 5.

This procedure is recursively processed for all itemsets
until no candidates are used to generate the utility-list
structures. After all steps, the final HUIs are produced and
shown in Table 5.

The Scientific World Journal 7

INPUT: 𝐷, the original database;
𝑑, the incremental database;
ptable, the profit table;
𝜎, the minimum utility threshold;
EUCS, the estimated utility co-occurrence structure;
𝐷𝐵.UL, the utility list of𝐷;
𝑑𝑏.UL, the utility list of 𝑑;
𝑈.UL, the utility list of 𝑈;
𝑋.UL, the utility list of itemset𝑋;
ULs, the set of utility list of all𝑋’s 1-extensions;
𝑋
󸀠, the extension of𝑋.

OUTPUT: High-utility itemsets.
BEGIN Procedure
(1)𝐷𝐵.UL = null, 𝑑𝑏.UL = null, 𝑈.UL = null,𝑋.UL = null.
(2) FOR each 𝑇

𝑞
in𝐷 DO

(3) FOR each𝑋 in 𝑇
𝑞
DO

(4) 𝑋.UL← {𝑇
𝑞
, Iutility, 𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦};

(5) EUCS← {𝑋,𝑋󸀠}.
(6) END FOR
(7) END FOR
(8) DB.UL← ∪𝑋.UL.
(9) FOR each 𝑇

𝑞
in d DO

(10) FOR each𝑋 in 𝑇
𝑞
DO

(11) 𝑋.UL← {𝑇
𝑞
, Iutility, 𝑅𝑢𝑡𝑖𝑙𝑖𝑡𝑦};

(12) update the TWU(𝑋) in EUCS.
(13) END FOR
(14) END FOR
(15) 𝑑𝑏.UL← ∪𝑋.UL.
(16) callmerge-list(DB.UL, db.UL, U.UL).
(17) FOR each𝑋 in 𝑈.UL DO
(18) IF 𝑋.Iutility.sum ≥ 𝑇𝑈𝑈 × 𝜎THEN
(19) HUIs← 𝑋.
(20) END IF
(21) IF 𝑋.Iutility.sum +𝑋.Rutility.sum ≥ 𝑇𝑈𝑈 × 𝜎THEN
(22) extULs← null.
(23) FOR each 𝑌 after𝑋 in 𝑈.UL DO
(24) IF ∃TWU(𝑋,𝑌) ∈ EUCS and TWU(𝑋,𝑌) ≥ 𝑇𝑈𝑈 × 𝜎 THEN
(25) extULs← 𝑒𝑥𝑡𝑈𝐿𝑠 + Construct(𝑋.UL, 𝑌, TWU(𝑋,𝑌)).
(26) END IF
(27) END FOR
(28) callHUI-list-INS(X, extULs,𝜎).
(29) END IF
(30) END FOR
END Procedure

Algorithm 2: Pseudocode of the proposed HUI-list-INS algorithm.

6. Experimental Evaluation

Several experiments in terms of execution time, memory
consumption, and the number of patterns are conducted to
show the performance of the proposed algorithm in four
databases including both three real-life databases [21] and a
synthetic database [22]. The two-phase algorithm [12], the
state-of-the-art FHM algorithm [19], and two incremental
FUP-HUI-INS [17] and PRE-HUI-INS [16] algorithms are
used to evaluate the proposed algorithm. The experiments
were performed in Java on an Intel Core2 Due with a 2.8GHz
processor and 4GB main memory, running the Microsoft
Windows 7 operating platform. The values of quantities and

profits were assigned to the purchased items in all databases
except Foodmart database. The two-phase simulation model
[12] is adopted to set the quantity range from 1 to 5 and the
profit range from 1 to 200 by log operation. Parameters and
characteristics for four databases are, respectively, described
in Tables 6 and 7.

6.1. Runtime. Experiments were made to show the runtime
of the proposed algorithm compared to the two-phase and
FHM algorithms in batch mode and the other two incre-
mental algorithms. The runtime includes the construction
and mining phases. Experiments are then conducted to show
the comparisons under various minimum utility thresholds

8 The Scientific World Journal

INPUT: DB.UL is the utility-list of𝐷;
db.UL is the utility-list of 𝑑;
𝑈.UL is the utility-list of 𝑈;

OUTPUT: 𝑈.UL.
BEGIN Procedure

/∗𝑋.UL is the utility-list of𝑋,𝑋 ∈ 𝐷𝐵.UL∗/
/∗𝐸
𝑖
is the element of𝑋.UL∗/

(1) 𝑈.UL = null,𝑋.UL = null.
(2) FOR each itemset𝑋 and𝑋.UL ∈ 𝐷𝐵.UL DO
(3) IF 𝑋.UL ̸= null THEN
(4) search itemset𝑋 ∈ 𝐷𝐵.UL in db.UL
(5) IF ∃ (𝑋 ∈ 𝐷𝐵.UL and𝑋 ∈ 𝑑𝑏.UL) THEN
(6) FOR each element 𝐸

𝑖
∈ 𝑋.UL and𝑋.UL ∈ 𝑑𝑏.UL DO

(7) 𝑋.Iutility.sum← 𝑋.Iutility.sum + 𝐸
𝑖
.Iutility;

(8) 𝑋.Rutility.sum← 𝑋.Rutility.sum + 𝐸
𝑖
.Rutility;

(9) 𝑋.UL← 𝐸
𝑖
.

(10) END FOR
(11) END IF
(12) 𝑈.UL← 𝑋.UL.
(13) END IF
(14) END FOR
(15) RETURN 𝑈.UL.
END Procedure

Algorithm 3: Pseudocode of merge-list function.

{C}
11 4 409
12 3 359
13 2 309

{A}
11 9 0
12 9 0
13 9 0
14 3 0
15 12 0

{F}
14 20 103

{B}
15 450 12

{D}
11 400 9
12 350 9
13 300 9

{E}
14 100 3

TID Iutility Rutility

Figure 3: The constructed utility-list structures for the inserted transactions.

1 9 0

2 6 0

3 9 0

4 3 0

5 3 0

6 3 0

7 6 0

10 9 0

11 9 0

12 9 0

13 9 0

14 3 0

15 12 0

3 60 9

4 40 103

7 20 556

8 40 0

14 20 103

{C}

3 5 69

4 3 143

7 2 576

9 3 150

11 4 409

12 3 359

13 2 309

1 300 159

6 300 203

7 450 6

15 450 12

1 150 9

2 200 6

5 150 3

6 200 3

9 150 0

10 200 9

11 400 9

12 350 9

13 300 9

2 200 459

4 100 3

5 200 153

7 100 456

14 100 3

TID
Iutility

Rutility

{A}{F} {B} {D}{E}

Figure 4: The final merged utility-list structures for the updated database.

The Scientific World Journal 9

{CF}
3 65 9
4 43 103
7 22 556

{CE}
4 103 3
7 24 456

{CB}
7 452 6

{CD}
9 153 0

11 404 9
12 353 9
13 302 9

{CA}
3 14 0
4 6 0
7 8 0

11 13 0
12 12 0
13 11 0

Figure 5: The utility-list structures for the supersets of 𝐶.

0.006 0.008 0.01 0.012 0.014
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

×10

10

1

0.1

0.01

0.001

0.0001

4

(a) Foodmart (IR: 1%)

0.05 0.1 0.15 0.2 0.25
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

×10

1

100

0.01

0.0001

4

(b) Retail (IR: 10%)

20 22 24 26 28
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

1

0.1

0.01

0.001

0.0001

10

×10
4

(c) Chess (IR: 0.5%)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

0.1 0.2 0.3 0.4 0.5
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

×10

1

0.01

0.0001

0.000001

100

4

(d) T10I4D100K (IR: 1%)

Figure 6: Runtime under various minimum utility thresholds.

(MUs) with a fixed insertion ratio (IR).The results are shown
in Figure 6.

From Figure 6, it can be observed that the proposed
algorithm has better performance than the two-phase and

FHM algorithms in batch mode and the incremental FUP-
HUI-INS and PRE-HUI-INS algorithms. The runtime is
decreasing along with the increasing of MU.The observation
is reasonable since fewer candidates of HUIs are generated

10 The Scientific World Journal

1 2 3 4 5
Insertion ratio (%)

Ru
nt

im
e (

s/
lo

g)

1

0.1

0.01

0.001

0.0001

10

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

×10
4

(a) Foodmart (MU: 0.01%)

2 4 6 8 10
Insertion ratio (%)

Ru
nt

im
e (

s/
lo

g)

1

0.01

0.0001

100

10000

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

×10
4

(b) Retail (MU: 0.15%)

0.5 0.75 1.0 1.25 1.5
Insertion ratio (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

10

1

0.1

0.01

0.001

0.0001

×10
4

(c) Chess (MU: 24%)

1 2 3 4 5
Insertion ratio (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

×10

100

1

0.01

0.0001

0.000001

4

(d) T10I4D100K (MU: 0.2%)

Figure 7: Runtime under various insertion ratios.

Table 6: Parameter descriptions.

#|𝐷| Total number of transactions
#|𝐼| Number of distinct items
AvgLen Average length of transactions
MaxLen Maximal length of transactions

when MU is set higher. When MU is set lower, the gap
between the proposed algorithm and other three algorithms
becomes large except the FHM algorithm, which indicates
that the other three algorithms required more runtime than

the proposed algorithm. Since the FHM algorithm uses
the similar pruning strategies as the proposed approach,
there is no great difference between them. The FHM is,
however, performed in batch mode, thus requiring database
rescan each time when the transactions are inserted into the
original database. Experiments are then conducted to show
the comparisons under different IRs with a fixed MU. The
results are shown in Figure 7.

From Figure 7, it also can be observed that the proposed
algorithm outperforms the other algorithms under various
IRs. Take an example of Figure 7(b), the MU is set at 0.15%,
and the IRs are, respectively, set from 2% to 10%, with 2%

The Scientific World Journal 11

0.006 0.008 0.01 0.012 0.014
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

10
0

10
1

10
2

10
3

(a) Foodmart (IR: 1%)

0.05 0.1 0.15 0.2 0.25
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

10
0

10
2

10
4

10
6

(b) Retail (IR: 10%)

20 22 24 26 28
Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

10
0

10
1

10
2

10
3

(c) Chess (IR: 0.5%)

0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

Minimum utility threshold (%)

Ru
nt

im
e (

s/
lo

g)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

(d) T10I4D100K (IR: 1%)

Figure 8: Memory consumption under various minimum utility thresholds.

increments each time. Two incremental FUP-HUI-INS and
PRE-HUI-INS algorithms have worse performance than the
other algorithms. When the IR is set lower than 8%, the
average runtime of two-phase algorithm is 420 seconds,
the FHM is 28 seconds, and the proposed algorithm is 16
seconds. The runtime of FUP-HUI-INS and PRE-HUI-INS
algorithms exceeds 104 seconds.The reason is that FUP-HUI-
INS and PRE-HUI-INS algorithms could have “combination
explosion” problem when MU or IR is set lower. This
situation may frequently occur depending on the database
characteristics.

From the above results, the other algorithms have worse
performance in chess database except the FHM and the pro-
posed algorithm, which can be easily observed from Figures

6(c) and 7(c). Since the chess belongs to dense database with
long patterns in the transactions, a great amount of HTWUIs
are generated than those of the two-phase, FUP-HUI-INS,
and PRE-HUI-INS algorithms. The FHM and the proposed
algorithms apply similar pruning strategies to early reduce
the unpromising itemsets, thus speeding up the computations
than the other approaches.

6.2. Memory Consumption. Memory consumption of the
propose algorithm compared to the other algorithms is then
evaluated. Experiments are then conducted to show the
comparisons under various MUs with a fixed IR. The results
are shown in Figure 8.

12 The Scientific World Journal

1 2 3 4 5
Insertion ratio (%)

M
em

or
y

(M
B)

10
0

10
1

10
2

10
3

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

(a) Foodmart (MU: 0.01%)

2 4 6 8 10
Insertion ratio (%)

M
em

or
y

(M
B)

10
0

10
2

10
4

10
6

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

(b) Retail (MU: 0.15%)

0.5 0.75 1.0 1.25 1.5
Insertion ratio (%)

M
em

or
y

(M
B)

10
0

10
1

10
2

10
3

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

(c) Chess (MU: 24%)

1 2 3 4 5
0

50

100

150

200

Insertion ratio (%)

M
em

or
y

(M
B)

Two-phase
FUP-HUI-INS
PRE-HUI-INS

FHM
Proposed algorithm

(d) T10I4D100K (MU: 0.2%)

Figure 9: Memory consumption under various insertion ratios.

From Figure 8, it can be observed that the FHM and
the proposed algorithms require steady memory along with
the increasing of MUs compared to the other algorithms.
This is because the fact that the FHM and the proposed
algorithms are necessary to build the utility-list structures for
keeping the itemsets. When MU is set lower, the proposed
algorithm requires fewer memory than the other algorithms,
which can be observed from Figure 8(a). Experiments are
then conducted to show the comparisons under various IRs
with a fixed MU.The results are shown in Figure 9.

From Figure 9(a), it can be observed that the proposed
algorithm requires less memory than the other incremen-
tal algorithms along with the increasing of IRs. From

Table 7: Characteristics of used databases.

Databases #|𝐷| #|𝐼| AvgLen MaxLen
Foodmart 21,556 1,559 4 11
Retail 88,162 16,470 10.3 76
Chess 3,196 75 37 37
T10I4D100K 100,000 870 10.1 29

Figures 9(b) and 9(d), it can be observed that the proposed
algorithm requires more memory than the other algorithms.
This is reasonable since more itemsets are kept in the
proposed algorithm for later incremental database. Besides,

The Scientific World Journal 13

Table 8: Number of candidates and HUIs under various minimum utility thresholds.

Foodmart (IR: 1%) 0.006 0.008 0.010 0.012 0.014
Two-phase 399549 210788 87584 40562 22376
FUP-HUI-INS 399549 210788 87584 40562 22376
PRE-HUI-INS 3749 4490 2255 396 298
FHM/proposed algorithm 92514 25739 8240 3819 2447
Retail (IR: 10%) 0.05 0.10 0.15 0.20 0.25
Two-phase 69302 21257 11750 7641 5409
FUP-HUI-INS — — 11750 7641 5409
PRE-HUI-INS — — 765 354 212
FHM/proposed algorithm 2178 672 329 203 129
Chess (IR: 0.5%) 20 22 24 26 28
Two-phase — — — — —
FUP-HUI-INS — — — — —
PRE-HUI-INS — — — — —
FHM/proposed algorithm 17370 3062 405 23 0
T10I4D100K (IR: 1%) 0.1 0.2 0.3 0.4 0.5
Two-phase 33573 16039 7526 3951 2014
FUP-HUI-INS — 16039 7526 3951 2014
PRE-HUI-INS — 1065 421 209 88
FHM/proposed algorithm 5576 1258 323 63 37

the two-phase, FUP-HUI-INS, and PRE-HUI-INS algo-
rithms cannot handle the chess database, which can be
observed from Figures 8(c) and 9(c).

6.3. Number of Candidates and HUIs. The number of gen-
erated candidates (HTWUIs or PTWUIs) and HUIs is
then evaluated to show the performance of the proposed
algorithm. The two-phase and FUP-HUI-INS algorithms
generate the HTWUIs. The PRE-HUI-INS generates not
only the HTWUIs but also the prelarge transaction-weighted
utilization itemsets (PTWUIs), and its HTWUIs is the same
as the ones which are generated by two-phase and FUP-
HUI-INS algorithms, so we only record the number of
PTWUIs. For the FHM and the proposed algorithms, they
only generateHUIs. Experiments are then conducted to show
the comparisons under various MUs with a fixed IR. The
results are shown in Table 8.

FromTable 8, it can be observed that the two-phase, FUP-
HUI-INS, and PRE-HUI-INS algorithms are performed in a
level-wise approach to necessary generate the huge number
of candidates for deriving the actual HUIs. Besides, the
prelarge concept is adopted in the PRE-HUI-INS algorithm,
thus keeping more candidates to reduce the computations of
database rescan. Although the TWDC property is adopted
in the two-phase mode to prune the unpromising candidate
itemsets, it still requires computations to generate the amount
of candidates in a level-wise way. Experiments are then
conducted to show the comparisons under various IRs with a
fixed MU.The results are shown in Table 9.

From Table 9, it can be observed that the number of
candidates or HUIs is not dramatically increased along with

the increasing of IRs. It can be concluded that different IRs
would not seriously influence the number of patterns. From
the observation of experiments, it can also be found that
rare candidates or HUIs are generated in the incremental
database. Thus, it is inefficient to rescan the original database
and remine the HUIs based on the batch-mode mechanism
of two-phase and FHM algorithms. The designed algorithm
in real-world applications can thus be acceptable.

7. Conclusion

In the past,many algorithmshave been proposed to efficiently
mine HUIs from a static database. When some transactions
are inserted into the original database, the original database
is required to be rescanned to re-mine HUIs in batch mode.
Fewer studies have been proposed to handle the dynamic
database with transaction insertion in incremental mining.
Most of them are also performed based on Apriori-like
approach to generate and test HTWUIs in a level-wise way.
In this paper, a novel incremental algorithm is proposed
to maintain and update the built utility-list structures for
miningHUIs with transaction insertion. Based on the utility-
list structures, related information in the original database
can thus be compressed.The proposed algorithm also applies
the estimated utility cooccurrence structure (EUCS) to keep
the information between 2-itemsets, thus speeding up the
computations. Without the level-wise approach for generate-
and-test candidates, HUIs can be easily discovered based on
the designed algorithm for the incremental database. Exper-
imental results show that the performance of the proposed
algorithm outperforms that of other algorithms.

14 The Scientific World Journal

Table 9: Number of candidate itemsets and HUIs under various insertion ratios.

Foodmart (MU: 0.01%) 1 2 3 4 5
Two-phase 87584 88105 89151 90497 90757
FUP-HUI-INS 87584 88105 89151 90497 90757
PRE-HUI-INS 2255 3635 2709 2941 3219
FHM/proposed algorithm 8240 8541 9541 11030 12145
Retail (MU: 0.15%) 2 4 6 8 10
Two-phase 11673 11797 11771 11806 11750
FUP-HUI-INS — — — 11806 11750
PRE-HUI-INS — — — 760 765
FHM/proposed algorithm 336 333 329 330 329
Chess (MU: 24%) 0.50 0.75 1.00 1.25 1.50
Two-phase — — — — —
FUP-HUI-INS — — — — —
PRE-HUI-INS — — — — —
FHM/proposed algorithm 405 426 440 455 458
T10I4D100K (MU: 0.2%) 1 2 3 4 5
Two-phase 16039 16002 15924 15996 15975
FUP-HUI-INS 16039 16002 15924 15996 15975
PRE-HUI-INS 1065 977 1032 934 899
FHM/proposed algorithm 1258 1257 1262 1263 1268

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was partially supported by the Shenzhen Pea-
cock Project, China, underGrantKQC201109020055A, by the
Natural Scientific Research Innovation Foundation inHarbin
Institute of Technology under Grant HIT.NSRIF.2014100, and
by the Shenzhen Strategic Emerging Industries Program
under Grant ZDSY20120613125016389.

References

[1] Z. Abdullah, T. Herawan, and M. Deris, “Mining significant
least association rules using fast slp-growth algorithm,” in
Advances in Computer Science and Information Technology,
vol. 6059 of Lecture Notes in Computer Science, pp. 324–336,
Springer, 2010.

[2] R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a
performance perspective,” IEEE Transactions on Knowledge and
Data Engineering, vol. 5, no. 6, pp. 914–925, 1993.

[3] M.-S. Chen, J. Han, and P. S. Yu, “Data mining: an overview
from a database perspective,” IEEE Transactions on Knowledge
and Data Engineering, vol. 8, no. 6, pp. 866–883, 1996.

[4] R. Agrawal and R. Srikant, “Fast algorithms for mining asso-
ciation rules in large databases,” in Proceedings of the 20th
International Conference on Very Large Data Bases (VLDB ’94),
pp. 487–499, 1994.

[5] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent pat-
terns without candidate generation: a frequent-pattern tree

approach,” Data Mining and Knowledge Discovery, vol. 8, no. 1,
pp. 53–87, 2004.

[6] T. P. Hong, C.W. Lin, and Y. L.Wu, “Incrementally fast updated
frequent pattern trees,”Expert SystemswithApplications, vol. 34,
no. 4, pp. 2424–2435, 2008.

[7] B. Nath, D. K. Bhattacharyya, andA. Ghosh, “Incremental asso-
ciation rule mining: a survey,” Wiley Interdisciplinary Reviews:
DataMining and Knowledge Discovery, vol. 3, no. 3, pp. 157–169,
2013.

[8] D. W. L. Cheung, J. Han, V. T. Ng, and C. Y. Wong, “Main-
tenance of discovered association rules in large databases: an
incremental updating technique,” in Proceedings of the IEEE
12th International Conference on Data Engineering, pp. 106–114,
March 1996.

[9] R. Chan,Q. Yang, andY.-D. Shen, “Mining high utility itemsets,”
in Proceedings of the 3rd IEEE International Conference on Data
Mining (ICDM ’03), pp. 19–26, IEEE, November 2003.

[10] H. Yao and H. J. Hamilton, “Mining itemset utilities from
transaction databases,” Data and Knowledge Engineering, vol.
59, no. 3, pp. 603–626, 2006.

[11] C.-W. Lin, T.-P. Hong, andW.-H. Lu, “An effective tree structure
for mining high utility itemsets,” Expert Systems with Applica-
tions, vol. 38, no. 6, pp. 7419–7424, 2011.

[12] Y. Liu, W.-K. Liao, and A. Choudhary, “A two-phase algorithm
for fast discovery of high utility itemsets,” in Advances in
KnowledgeDiscovery andDataMining, vol. 3518 of LectureNotes
in Computer Science, pp. 689–695, Springer, Berlin, Germany,
2005.

[13] V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient
algorithms for mining high utility itemsets from transactional
databases,” IEEE Transactions on Knowledge andData Engineer-
ing, vol. 25, no. 8, pp. 1772–1786, 2013.

[14] C. W. Wu, B.-E. Shie, V. S. Tseng, and P. S. Yu, “Mining top-K
high utility itemsets,” in Proceedings of the 18th ACM SIGKDD

The Scientific World Journal 15

International Conference on Knowledge Discovery and Data
Mining (KDD ’12), pp. 78–86, August 2012.

[15] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient
tree structures for high utility pattern mining in incremental
databases,” IEEE Transactions on Knowledge andData Engineer-
ing, vol. 21, no. 12, pp. 1708–1721, 2009.

[16] C. W. Lin, T. P. Hong, G. C. Lan, J. W. Wong, and W.-Y. Lin,
“Incrementally mining high utility patterns based on pre-large
concept,” Applied Intelligence, vol. 40, no. 2, pp. 343–357, 2014.

[17] C. W. Lin, G. C. Lan, and T. P. Hong, “An incremental
mining algorithm for high utility itemsets,” Expert Systems with
Applications, vol. 39, no. 8, pp. 7173–7180, 2012.

[18] M. Liu and J. Qu, “Mining high utility itemsets without candi-
date generation,” in Proceedings of the 21st ACM International
Conference on Information and Knowledge Management (CIKM
’12), pp. 55–64, November 2012.

[19] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “Fhm:
Faster high-utility itemset mining using estimated utility co-
occurrence pruning,” in Foundations of Intelligent Systems, T.
Andreasen, H. Christiansen, J.-C. Cubero, and Z. Raś, Eds., pp.
83–92, Springer, Berlin, Germany, 2014.

[20] T. P. Hong, C. Y. Wang, and Y. H. Tao, “A new incremental
datamining algorithmusing pre-large itemsets,” IntelligentData
Analysis, vol. 5, no. 2, pp. 111–129, 2001.

[21] Frequent Itemset Mining Dataset Repository, 2012, http://fimi.ua
.ac.be/data/.

[22] R. Agrawal and R. Srikant, Quest Synthetic Data Generator,
1994, http://www.Almaden.ibm.com/cs/quest/syndata.html.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

