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Modelling the saturation major loop of a ferrous metal produces the intrinsic magnetization parameters; fitting the measured
commutation curve, however, can yield different results. The relation of the intrinsic loci of the vertices of the minor loops (ND = 0)
to the experimental curve (ND /= 0) is investigated. The two-way transformation between the two curves is formulated in closed
mathematical form with the help of the internal demagnetization factor, ND . The method is applied to four ferrous metals, with
widely different intrinsic properties (soft nonoriented Fe-Si steel, normalized low carbon steel, and Finemet in nanocrystalline and
amorphous state) supporting the predictions of the proposal. The developed relationship is model independent and it is shown
that the ND factor depends linearly on coercivity based on experimental evidence.

1. Introduction

A large number of the measurements of ferrous substances
are aimed at finding the intrinsic material properties [1] of
the tested ferrous sample (as defined by Fiorillo). Due to the
ever-presence of demagnetization field, various measuring
methods have been developed to minimize its effect. The
most commonly accepted way is to make the sample turn
into a closed magnetic circuit, such as a toroid or an Epstein
square [1–3]. Although these two methods are not com-
pletely free from the ever-present internal demagnetization,
they suffer the least from it [1]. Researchers went into great
length to include the internal demagnetization force into
current models like Preisach, Jiles, Stoner-Wohlfarth [2, 4, 5],
and so forth, leading to complicated, so called, dynamic
versions.

The saturated major hysteresis loop of the sample carries
all the intrinsic magnetic parameters directly recoverable
from the measured data. Within this loop lie the un-
hysteretic loci of the vertices of the symmetrical minor loops,
the only curve, which belongs to both the ascending and
descending branches of the hysteresis loops [5, 6].

A proposal is put forward in this paper to show the
relationship between the intrinsic curve and the loci of ver-
tices of the measured minor loops. This relationship between

the two curves, independent of models, is formulated in
closed mathematical form and its prediction is verified by
the experimental data obtained from four different ferrous
samples.

Once the intrinsic locus (M01 for Nd = 0) is modelled
from saturation or minor loop data, by using any of the static
models, the measured curve (Nd /= 0) can be calculated from
the proposed formulation below with optimization of the Nd

parameter value as specified by Jiles [2] and used by Fiorillo
[1].

2. The Intrinsic Loci of Vertices

The intrinsic commutation curve (ND = 0) is the locus of the
return points or the maxima of the set of symmetrical minor
loops. It is a single-valued function and in spite of having no
hysteresis, it carries all the hysteretic properties of the ferrous
material obtained from the saturation data [7].

M0 is the arithmetic mean of the ascending and
descending magnetization functions, Mu and Md, with equal
application to ND = 0 case as well.

M0 = (Mu + Md)
2

. (1)
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Due to the difference between M0 and the measured
commutation curve, hysteresis loop modelling based solely
on the measured commutation curve can produce different
parameters, when no molecular interaction is assumed [6, 8,
9].

3. The Effective Field and Its Implications

For the description of the effect of the internal demagnetizing
field we will use the concept of the effective field, which
is analogous to the Weiss mean field as defined and used
by other authors [2, 10, 11]. Although in simple cases,
proportionality is assumed between HD interaction field and
M magnetization vector, this can only be regarded as a linear
approximation [12, 13] expressed as HD = NDM in scalar
form, leading to

Heff = H + NDM, (2)

where ND is the internal demagnetization factor.
For simplicity we will use normalised quantities in

further calculations, where the lower case letters will repre-
sent the normalised quantities of the physical equivalents,
denoted by the same capital letters.

m0 denote the normalised M0 function in (1). With the
normalized effective field, heff, m0 can be expressed as:

m0 = f (heff) = f (h + nDm0), (3)

where nD is also normalized. (1 Tesla = 8.105 A/m. The
internal demagnetization factor has unity dimension only
when the magnetization is measured in A/m.).

The first derivative of m0 by h in (3) leads to an
expression, which shows a character similar to the feedback
in an electrical circuit [14].

This expression describes a well-known relationship
between the inherent (μi) and the effective (μeff) permeabili-
ties [1, 2].

For most magnetic substances the value of ND is small in
the order of ∼ −10−5 with unity dimension [1]. Consider

dm0

dh
= dm0/dheff

1− nD(dm0/dheff)
. (4)

By using the hysteretic model [6] (see also the appendix), the
integral of (4) by h leads us to the following expression for
m0, when

dm0

dh
=

n∑

k=1

ak
2

[
sech2(hkueff)

1− nDaksech2(hkueff)

+
sech2(hkdeff)

1− nDaksech2(hkdeff)

]
.

(5)

After integration:

m0 =
n∑

k=1

ak
2

{
−√ak Arc tanh

[(√
aknD tanh[αk(h− hck)]/

√−1 + aknD
)]

√
nD(−1 + aknD)

−√ak Arc tanh
[(√

aknD tanh[αk(h + hck)]/
√−1 + aknD

)]
√
nD(−1 + aknD)

}
.

(6)

When the integration constants are appropriately chosen,
this form of m0 is equivalent to the one given in (A.5).

The intrinsic locus is entirely a theoretical concept. It was
introduced for the free (Gibbs) energy calculations [2]. It
assumes zero internal demagnetization in a system, where a
m moment can freely move around under the influence of
H external excitation field without any hindrance from the
interaction between the magnetic moments.

We must remind the reader that, for various ferro-
magnetic substances, this internal demagnetization constant
ND is given traditionally in a numerical value with unity
dimension (i.e., when both the H and B measured in A/m).
When different unitary system is used, ND has a different
physical dimension and must be normalised (see nD as
normalised ND).

4. Experimental Verification

To verify the predictions of the proposed method, it was
applied initially to two ferrous materials with very different

characters. The first was a soft steel NO Fe-Si with 67.5 A/m
coercivity [15], shown in Figure 1. The second material was
a normalized low carbon steel (AISI 1040) with coercivity
of 450 A/m (see Figure 5). Following the excellent results,
the same experiment was also repeated later on two other
samples; Finemet in nanocrystalline and amorphous (as cast)
state. The detailed data of those samples are not included
in this paper due to its limited size. All measurements were
carried out under identical conditions by using triangular
excitation of f = 0.001 Hz on toroid samples with geomet-
rical details as follows: De = 25 mm, Dint = 15 mm and
thickness d = 0.5 mm [1]. In making the identical toroid
samples, extreme care was taken to avoid any changes in
magnetic properties due to mechanical handling of the
materials.

For numerical calculations we used the hyperbolic model
for its simplicity and speed and the Mathematica program
interactively. A brief summary of the model is given in
the appendix. For further details we refer the reader to the
literature [6, 16, 17].
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Figure 1: The measured and the modelled major loop of NO Fe-Si
soft steel.

4.1. NO Fe-Si. Starting with conveniently chosen parameter
values at the beginning with subsequent changes of the
parameters, new curves are calculated and compared with the
measured one.

When the iteration produced the best fit to the measured
curve, the normalized and the equivalent physical values can
be easily read from the two coordinate systems (normaliza-
tion) as shown in Figures 1, 2, and 3.

The first sample (see Figure 1) was modelled with the
following normalized and physical parameters:

a1 = 3.18, a2 = 1.45, a3 = 1.09,

α1 = 2.75, α2 = 0.56, α3 = 0.134,

hc1 = 0.675, h2c = 0.57, hc3 = 2.2,

hm = 7.35 equivalent to:

A1 = 0.842 T, A2 = 0.384 T, A3 = 0.288 T.

Hc1 = 67.5 A/m, Hc2 = 57 A/m, Hc3 = 220 A/m, Hm =
735 A/m.

with normalization of 1 h = H 100 A/m and 1 m =
M 0.2647 T.

The measured and the modelled m0 curves for nD =
−0.151 (ND = −57 A/Tm, or −7.10−5). nD = 0 are depicted
in Figure 2. For the symbols see the appendix.

In order to check the accuracy of the transformation,
between the two curves, 25 of the minor loops were measured
with maximum field excitation values between hm = 5.01,
Hm = 501 A/m and hm = 0.152, Hm = 15.2 A/m. For all
the minor loops measured, the corresponding loops were
calculated for the reduced maximum magnetization at nD =
0 and nD= −0.151.

For clarity, only one of the minor loops is shown in
Figure 3 for the peek excitation field value of 111.3 A/m.

All the calculated loops had an excellent fit to the
equivalent measured loops for the same ND value. The
proposed method is applicable to all measured hysteretic
data, where the external demagnetization field is eliminated
or reduced to a negligible level.
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Figure 2: Measured (broken line), modelled (dotted line), and
intrinsic (solid line) commutation curves.
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Figure 3: Calculated NO Fe-Si minor hysteresis loops for nD = 0
(solid line) and nD = −0.151 (dotted line), fitted to the measured
loop (broken line) with internal demagnetization.

4.2. Low Carbon Steel Toroid (AISI 1040). For the second
sample, we selected a toroid from low carbon steel with
coercivity of 450 A/m. The use of the same experimental
setup has yielded the following parameters in normalized
and physical units:

a1 = 2.68, a2 = 2.08, a3 = 1.6,

α1 = 3.52, α2 = 0.47, α3 = 0.09,

hc1 = 0.45, hc2 = 0.44, hc3 = 0.9 and hm = 7.35,

equivalent to:

A1 = 0.64 T, A2 = 0.5 T, A3 = 0.38 T,

Hc1 = 450 A/m, Hc2 = 440 A/m, Hc3 = 900 A/m, and
Hm = 7350 A/m,

with normalization of 1 h = H 1000 A/m and 1 m =
M 0.24 T.

The measured and the modelled hysteresis loops are
depicted in Figure 4 with the intrinsic and the measured
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Figure 4: Measured (broken line) and modelled (solid line)
hysteresis and the commutation curves for nD = 0 and nD = −0.08
(dotted line) in the first quadrant for the low carbon steel (AISI
1040).

commutation curves. The curves are shown in the first
quadrant only for better visual resolution.

Following the calculation of the intrinsic parameters,
the measured commutation curve was modelled with nD =
−0.08 (ND = −333.3 A/Tm or −4.1.10−4), which yielded the
best result, giving an excellent fit to the measured curve.

5. Nd as a Function of Coercivity

The experimental results have indicated that ND is greatly
dependent on the coercivity of the sample. To verify this
dependency, four samples, listed under Section 4, were tested
for this purpose, with coercivity Hc ranging between 1.6 A/m
and 450 A/m. Figure 5 depicts the relationship between ND

and Hc.
The graph, in Figure 5, was constructed by using the

parameters of the samples listed below, whose coercivity val-
ues change in steps approximately by an order of magnitude:

Finemet: Hc = 1.6 A/m, ND = −0.729 A/Tm or
−0.9·10−6,

Finemet in amorphous state: Hc = 12.6 A/m, ND =
−4.96 A/Tm or −6.2·10−6,

NO Fe-Si: Hc = 67.5 A/m, ND = −57 A/Tm or
−7·10−5,

Low carbon steel (AISI 1040): Hc = 450 A/m, ND =
−333 A/Tm or −4·16. 10−4.

The graph shows ND linear dependency on Hc coercivity
and based on experimental evidence, it can be approximated
as

ND ≈ μ0
Hc

Bm
, (7)

where Bm represents the saturation magnetization.
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Figure 5: ND as the function of coercivity Hc.

6. Conclusions

The relation between the intrinsic (ND = 0) and the
measured (ND /= 0) loci of the vertices of the minor loops
was investigated. By using the effective field, this relationship
was formulated. The method was subjected to tests on
four magnetic materials with widely ranging magnetic
properties. The test results show that the mathematical
approach, presented here, describes the relation well. The ND

factor linear dependence on coercivity, based on empirical
evidence, was also demonstrated. The paper shows that
magnetic parameters (Hc and Bm) ND can be estimated very
close to the real value.

The proposal’s aim is to recover the intrinsic magnetiza-
tion properties from the measured commutation curves.

Appendix

The characteristic equations of the hyperbolic model in
canonic form:

mu =
n∑

k=1

[
ak fuk + f0k(hm)

]
, (A.1)

md =
n∑

k=1

[
ak fdk − f0k(hm)

]
, (A.2)

fuk,dk = tanh[αk(h∓ hck)], (A.3)

f0k =
∑

k

(
fdk − fuk

)

2
, (A.4)

m0k =
∑

k

(
fdk + fuk

)

2
. (A.5)

Here mu and md signify the ascending and descending mag-
netization, respectively, h represents the field excitation, hck
is the coercivity of the kth process. ak is the amplitude of the
magnetization, αk is a scaling factor, and fok is the integration
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constant, while hm is the maximum field excitation, common
to all. The index k refers to the individual processes and n is
the number of total processes involved (for most substances
n = 3).

The parameters are calculated by changing the model
parameters until the best fit to the measured curve is
achieved. When the iteration gives the best fit, the normal-
ized and the equivalent physical values can be read from
the two coordinate systems (normalized and measured), as
shown in Figures 1, 2, and 3.
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