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An essential task in a genomic analysis of a human disease is limiting the number of strongly associated genes when studying
susceptibility to the disease. e goal of this study was to compare computational tools with and without feature selection for
predicting osteoporosis outcome in Taiwanese women based on genetic factors such as single nucleotide polymorphisms (SNPs).
To elucidate relationships between osteoporosis and SNPs in this population, three classi�cation algorithmswere applied:multilayer
feedforward neural network (MFNN), naive Bayes, and logistic regression. Awrapper-based feature selectionmethodwas also used
to identify a subset of major SNPs. Experimental results showed that the MFNN model with the wrapper-based approach was the
best predictive model for inferring disease susceptibility based on the complex relationship between osteoporosis and SNPs in
Taiwanese women. e �ndings suggest that patients and doctors can use the proposed tool to enhance decision making based on
clinical factors such as SNP genotyping data.

1. Introduction

e World Health Organization (WHO) has de�ned osteo-
porosis as a skeletal disorder characterized by diminished
bone strength resulting in increased fracture risk [1]. Bone
strength is determined by interacting somatic and genetic
factors [2]. Reported somatic factors include aging [2–5],
menopause [5, 6], and body mass index (BMI) [4, 5, 7, 8]. To
identify the genetic determinants of osteoporosis, an earlier
study by the �rst author of this paper [9] investigated how
the incidence of low bone mineral density (BMD) in Tai-
wanesewomen is affected by interactions among eleven single
nucleotide polymorphisms (SNPs) in nine genes known
to be involved in osteoporosis [10–16], including tumor
necrosis factor-alpha (TNF𝛼𝛼), transforming growth factor-
beta 1 (TGFB1; TGF𝛽𝛽1), Osteocalcin, parathyroid hormone
(PTH), interleukin 1 receptor antagonist (IL1_ra), heat shock

70 kDa protein 1-like (HSPA1L; HSP70 hom), heat shock
70 kDa protein 1B (HSPA1B; HSP70-2), calcitonin receptor
(CTR), and bone morphogenetic protein-4 (BMP-4). Gener-
ally, several hormones, cytokines, and cell signaling-related
proteins were chosen. For example, CTR, which is a receptor
for the linear polypeptide hormone calcitonin, reduces blood
calciumand suppresses the effects of PTH [17].ehormonal
function of osteocalcin is to release insulin from the pancreas
[18]. e cytokine family includes TNF𝛼𝛼, TGF-𝛽𝛽, BMP4
(protein of TGF-𝛽𝛽 superfamily), and IL-1RA (protein of
interleukin 1 cytokine family) whereas cell-signaling proteins
include HSP70 hom andHSP70-2. Studies of the interactions
among these hormones (e.g., [9] and references therein)
indicate that osteoporosis is an endocrinological problem.

Several gene polymorphisms may cooperatively con-
tribute to the development of osteoporosis in Taiwanese
women. Accumulating evidence reveals that SNPs are
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T 1: Panel of 11 SNPs [9].

SNP Gene rs number Genotype
1 2 3

1 TNF𝛼𝛼-857 rs1799724 TT TC CC
2 TGF𝛽𝛽1-509 rs1800469 TT TC CC
3 Osteocalcin rs1800247 CC CT TT
4 TNF𝛼𝛼-308 rs1800629 AA AG GG
5 PTH (BstB I) rs6254 GG AG AA
6 PTH (Dra II) rs6256 AA AC CC
7 IL1_rab VNTRa A1A1b A1A2 A1A4
8 HSP70 hom rs2227956 CC CT TT
9 HSP 70-2 rs1061581 GG AG AA
10 CTR rs1801197 CC CT TT
11 BMP-4 rs17563 CC CT TT
aVNTR: various number of tandem repeat.
bIL1_ra genotype: A1: 410 bp; A2: 240 bp; A4: 325 bp.

potential genetic markers for predicting osteoporosis out-
come in Taiwanese women [9]. Chang et al. [19] also pro-
posed a novel odds ratio-based genetic algorithm (OR-GA)
method of using odds ratios for quantitatively measuring
the disease risk associated with various SNP combinations
to determine the susceptibility to osteoporosis in Taiwanese
women. Taiwanese women who are carriers of risk alleles in
two or more of these SNPs are likely to be at increased risk
of osteoporosis because several partial de�ciencies in these
pathways may severely diminish bone density. erefore,
SNPs may indicate risk of osteoporosis in Taiwanese women
andmay be useful in clinical association studies to determine
the genetic basis of disease susceptibility.

e risk of osteoporosis is likely to be higher than normal
in carriers of risk alleles in two or more of these SNPs
because several partial de�ciencies in these pathways may
substantially decrease bone density. erefore, interacting
polymorphisms may affect osteoporosis risk. In [9], the
effects of age, BMI, and genetic factors on BMD were
evaluated in pre- and postmenopausal Taiwanese women
were evaluated. Eleven interacting polymorphisms in nine
genes were studied in terms of their effects on the incidence
of low BMD (Table 1). Combinations of SNPs were evaluated
for genotype associations in women with osteoporosis. e
�ndings showed that speci�c SNP combinations may be
risk factors for postmenopausal osteoporosis in Taiwanese
women. In addition to these speci�c SNP combinations, BMI
and age also showed independent associations with BMD in
postmenopausal Taiwanese women.

Although an apparent association between SNPs and
osteoporosis has been identi�ed in Taiwanese women, a con-
tinuing challenge in genomics studies of Taiwanese women
populations lies in identifying signi�cant genes. Exhaustive
computation over the model space is infeasible if the model
space is very large, as there are 2p modelswith p SNPs [20, 21].
Feature selection techniques are designed to �nd responsible
genes and SNPs for certain diseases. By selecting a small
number of SNPs with signi�cantly larger effects compared to
other SNPs and by disregarding SNPs of lesser signi�cance,

researchers can focus on the most promising candidate genes
and SNPs for use in diagnosis and therapy [21, 22].

In [9], combined polymorphisms in different genomic
regions were evaluated for associations with BMD variation.
e �ndings showed that a combination of several gene poly-
morphisms contributes to the development of osteoporosis
in Taiwanese women. However, that study did not report a
subset of SNPs that can be used to predict osteoporosis out-
come in this population.erefore, the current study used the
same dataset used in [9] to elucidate the relationship between
osteoporosis and SNPs inTaiwanesewomen in a performance
comparison of three different classi�cation algorithms with
wrapper-based feature selection [23]: multilayer feedforward
neural network (MFNN) [24–28], naive Bayes [29], and
logistic regression [30].eMFNNs have proven particularly
effective for nonlinear mapping based on human knowledge
and are now attracting interest for use in solving complex
classi�cation problems [24]. An MFNN containing layers of
simple computing nodes, which is analogous to brain neural
networks, has proven effective for approximating nonlinear
continuous functions and for revealing previously unknown
relationships between given input and output variables [25,
26].e unique structure ofMFNNs enables them to learn by
using algorithms such as backpropagation and evolutionary
algorithms [31, 32]. Potentialmedical applications ofMFNNs
include solving problems in which the relationship between
independent variables and clinical outcome are poorly under-
stood [33]. Because MFNNs are capable of self-training
with minimal human intervention, many studies of large
epidemiology databases have, in addition to conventional
statistical methods, used MFNNs for further insight into the
interrelationships among variables. A naive Bayes classi�er
assumes that the presence (or absence) of a particular feature
of a class is unrelated to the presence (or absence) of any other
feature, given the class variable. Depending on the precise
nature of the probability model, naive Bayes classi�ers can
be trained very efficiently in a supervised learning setting.
e classi�er obtained by using this set of discriminant
functions and by estimating the relevant probabilities from
the training set is o�en called the naive Bayesian classi�er
because, if the the attributes are “naively” assumed to be
independent given the class, direct application of the Bayes
theorem easily con�rms that this classi�er is optimal in terms
of minimi�ing the misclassi�cation rate or �ero-one loss [34,
35]. Logistic regression is a statistical method of predicting
the outcome of a variable that is categorical (i.e., it can have
several different categories) and is dependent on one or more
predictor variables. A logistic function can be used to model
the probabilities describing the possible outcome of a single
trial as a function of explanatory variables. Logistic regression
is typically used to measure the relationship between a
categorical dependent variable and one or more continuous
independent variables by converting the dependent variable
to probability scores [36].

e wrapper-based feature selection method [23], in
which the feature selection algorithm acts as a wrapper
around the classi�cation algorithm, was also used to identify
an SNP subset with sufficient predictive power to distinguish
between high- and low-risk alleles. In the wrapper-based
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T 2: Demographic data for study subjects.

Factor Range Descriptive statistics
Age (year) 27–83 𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇; 𝜎𝜎 𝜎 𝜎𝜎𝜎𝜎𝜎

Menopause Postpremenopausal/
Prepremenopausal 247 (83.73%)/48 (16.27%)

BMI (kg/m2) 17.22–35.49 𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇𝜇; 𝜎𝜎 𝜎𝜎𝜎𝜎 𝜎𝜎
BMD High/low 112 (37.97%)/183 (62.03%)
BMI: body mass index; BMD: bone mineral density.

approach, the function used to evaluate feature subsets uses
the classi�cation algorithm itself to perform a best-�rst
search for a good subset [23]. Starting from an empty feature
set, it searches forward for potential feature subsets by per-
forming greedy hillclimbing augmented with a backtracking
technique [37]. e wrapper-based feature selection method
is applied here because Huang et al. [21] showed that it
may be superior to hybrid approaches combining chi-square
and information-gain methods reported in the literature. A
comprehensive literature review shows no attempts to predict
osteoporosis outcome in Taiwanese women using genetic
factors (SNPs) and the three above mentioned classi�cation
algorithms with wrapper-based feature selection method.

is study therefore compared performance in three
classi�cation algorithms: MFNN, naive Bayes, and logistic
regression, with and without wrapper-based feature selection
techniques. Identifying the genes and SNPs associated with
Taiwan population of womenwith osteoporosis would enable
researchers to focus on the candidate genes and SNPs that
are most promising for use in diagnosis and therapy. e
results of our studies could be generalized to SNP searches
in genetic studies of human disorders and to development of
new molecular diagnostic/prognostic tools. However, before
routine application of genomic analysis in clinical practice,
genetic markers must be validated in prospective clinical
trials.

2. Materials andMethods

2.1. Subjects. e dataset in this study, which included SNPs,
age, menopause, and BMI, was the same dataset used in
a previous study by the �rst author of this paper [9]. e
𝑇𝑇-score was calculated according to WHO classi�cations
using a locally derived reference range provided by the
manufacturer. e subjects were divided into two BMD
groups according to𝑇𝑇-score [38–40]. Subjects with𝑇𝑇-score>
−1 were enrolled in the high BMD group, and those with
𝑇𝑇-scores ≤ −1 were enrolled in the low BMD group. e
overall dataset was derived from 295 cases, including (i) 247
postmenopausal cases (83.73%) and 48 prepremenopausal
cases (16.27%); (ii) 112 high BMD cases (37.97%) and 183
low BMD cases (62.03%). Table 2 presents the demographic
characteristics of the study subjects. Post-menopause was
de�ned as the absence of menstruation for >6 months or age
≥ 50 years [9]. Clinical data used for diagnosis were further
converted into numerical form, that is, 1 for “high BMD” and
0 for “low BMD.”

2.2. Candidate Genes. Table 1 shows the 22 SNPs analyzed in
this study, which were the same as those analyzed previously
by the �rst author of this paper [9]. Table 1 shows that the nine
candidate genes included TNF𝛼𝛼, transforming growth factor-
beta 1 (TGF𝛽𝛽1), osteocalcin, parathyroid hormone (PTH),
interleukin 1 receptor antagonist (IL1_ra), HSP, calcitonin
receptor (CTR), bone morphogenetic protein-4 (BMP-4),
and three genotypes per locus.

2.�. C�assi�cati�n �����it��s. e three families of classi�-
cation algorithms used as the basis for comparisons in this
studywereMFNN, naive Bayes, and logistic regression.ese
classi�ers were implemented using theWaikato Environment
for Knowledge Analysis (WEKA) soware [37].

AnMFNN is an arti�cial neural network (ANN)model in
which connections between the units do not form a directed
cycle [24–28, 30]. From an algorithmic perspective, the
underlying process of an MFNN can be divided into retriev-
ing and learning phases [24]. Assume an 𝐿𝐿-layer feedforward
neural network with𝑁𝑁𝑙𝑙 units at the 𝑙𝑙th layer. In the retrieving
phase, the MFNN iterates through all layers to produce the
retrieval response {𝑎𝑎𝑖𝑖(𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿  𝐿 𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿} at the output
layer based on test pattern inputs {𝑎𝑎𝑖𝑖(0), 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   0},
the known weights 𝑤𝑤𝑖𝑖𝑖𝑖 of the network, and the nonlinear
activation function𝑓𝑓𝑖𝑖 (e.g., sigmoid function). In the learning
phase of this MFNN, the backpropagation algorithm [30]
and evolutionary algorithms [31, 32] are used in the learning
scheme. e backpropagation algorithm is used as a simple
gradient descent approach. e weight updating mechanism
is a backpropagation of corrective signals from the output
layer to the hidden layers. e goal is iteratively selecting
a set of weights 𝑤𝑤𝑖𝑖𝑖𝑖(𝑙𝑙𝑙 for all layers such that the squared
error function 𝐸𝐸 can be minimized by a pair of input training
patterns {𝑎𝑎𝑖𝑖(0), 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   0} and target training patterns
{𝑡𝑡𝑗𝑗,𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗     𝐿𝐿}.

Mathematically, the iterative gradient descent formula-
tion for updating each speci�c weight𝑤𝑤𝑖𝑖𝑖𝑖(𝑙𝑙𝑙 can be expressed
by the following equation:

𝑤𝑤𝑖𝑖𝑖𝑖 (𝑙𝑙)⟵ 𝑤𝑤𝑖𝑖𝑖𝑖 (𝑙𝑙) − 𝜂𝜂
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖 (𝑙𝑙)
, (1)

where 𝜂𝜂 is the learning rate and 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖(𝑙𝑙𝑙 can be effectively
calculated through a numerical chain rule by backpropagat-
ing the error signal from the output layer to the input layer.

Structurally, however, an MFNN is a spatial and iterative
neural network with several layers of hidden neuron units
between the input and output neuron layers. e basic
function of each neuron is the linear basis function, and
activation is modeled with a non-decreasing and differen-
tiable sigmoid function. is approach uses an MFNN to
model osteoporosis outcome. Inputs contain the information
about clinical factors, for example, SNPs, that are needed
for the database. Outputs contain the information about the
osteoporosis outcome.

In summary, the MFNN is trained �rst by repeatedly
providing input-output training pairs and by executing the
backpropagation learning algorithm. Aer this training pro-
cess is complete, the MFNN is tested by sending testing data
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F 1: Flowchart of wrapper-based approach to feature subset selection [23].

0, 0, 1, 0

0, 0, 0, 0

0, 0, 0, 10, 1, 0, 01, 0, 0, 0

1, 1, 0, 0 1, 0, 1, 0 0, 1, 1, 0 1, 0, 0, 1 0, 1, 0, 1 0, 0, 1, 1

1, 1, 1, 0 1, 1, 0, 1 1, 0, 1, 1 0, 1, 1, 1

1, 1, 1, 1

F 2: State space search for feature subset selection [23].

inputs (i.e., SNPs) to the network. e forward propagation
of the MFNN reveals the osteoporosis outcome for a speci�c
case so that causes can be inferred from effects. Here, the
default WEKA parameters were used, that is, hidden layer
neurons = 6, learning rate = 0.3, momentum variable = 0.2,
and training time = 500.

Second, all features in naive Bayes, which is the simplest
Bayesian network, are assumed to be conditionally indepen-
dent [34]. Let (𝑋𝑋1,𝑋𝑋2,… ,𝑋𝑋𝑝𝑝) be features (i.e., SNPs) used to
predict class 𝐶𝐶 (i.e., disease status, 1 = high BMD or 0 = low
BMD). Given a data instance with genotype (𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥𝑝𝑝),
the best prediction of the disease class is given by class 𝑐𝑐,
which maximizes the conditional probability Pr(𝐶𝐶 𝐶 𝐶𝐶 𝐶
𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,… ,𝑋𝑋𝑝𝑝 = 𝑥𝑥𝑝𝑝). Bayes theorem is used
to estimate the conditional probability Pr(𝐶𝐶 𝐶 𝐶𝐶 𝐶 𝐶𝐶1 =
𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,… ,𝑋𝑋𝑝𝑝 = 𝑥𝑥𝑝𝑝), which is decomposed into a
product of conditional probabilities.

ird, the logistic regression generates the coefficients for
the following formula used for logit transformation of the
probability of a patient having a characteristic of interest:
logit(𝑝𝑝𝑝𝑝  𝑝𝑝0 +𝑏𝑏1𝑥𝑥1 +𝑏𝑏2𝑥𝑥2 +⋯+𝑏𝑏𝑘𝑘𝑥𝑥𝑘𝑘 [41].e formula used
to calculate the probability of the characteristic of interest in
this study is 𝑝𝑝 𝑝𝑝 𝑝𝑝𝑝𝑝  𝑝𝑝−logit(𝑝𝑝𝑝), where 1 = high BMD and
0 = low BMD.

2.4. Feature Selection. e wrapper-based feature selection
approach [23], in which a feature selection algorithm acts
as a wrapper around a classi�cation algorithm, was used to
�nd a subset of SNPs that maximizes the performance of
the prediction model. Figure 1 shows that, in the wrapper
approach, the feature subset is selected by using a black box
classi�cation algorithm (i.e., selection is performed using
the interface alone and does not require knowledge of the
algorithm). To search for a good subset, the feature subset
selection algorithm includes the classi�cation algorithm itself
in the evaluation function. e accuracy of the deduced
classi�ers is estimated using accuracy estimation techniques.
e search space is organized such that each state represents
a feature subset. For 𝑛𝑛 features, each state has 𝑛𝑛 bits, and each
bit indicates whether a feature is present (1) or absent (0). To
determine the connectivity between the states, this study used
operators that add or delete a single feature from each state,
where the states correspond to the search space commonly
used in stepwise method [23]. Figure 2 shows an example of
the state space and operators obtained by stepwise method
in a four-feature problem. e size of the search space for 𝑛𝑛
features is O(2𝑛𝑛) [23]. e classi�cation algorithms are used
to calculate a performance measure for each of 16 different
subsets.
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F 3: In the wrapper-based feature selection approach, genetic factors are evaluated independently of multilayer feedforward neural
network (MFNN), naive Bayes, and logistic regression.

T 3: Results of repeated 10-fold cross-validation experiment
using multilayer feedforward neural network (MFNN), naive Bayes,
and logistic regression without feature selection.

Algorithm AUC Sensitivity Speci�city Number of SNPs
MFNN 0.489 0.400 0.629 11
Naive Bayes 0.462 0.296 0.612 11
Logistic
regression 0.485 0.333 0.615 11

AUC: area under the ROC curve.

erefore, the wrapper-based approach conducts a best-
�rst search for a good subset by including the classi�cation
algorithm itself (MFNN, naive Bayes, or logistic regression)
in the feature subset evaluation [23]. To search for potential
feature subsets, the best-�rst search starts from an empty
feature set and searches forward by greedy hillclimbing
augmented with a backtracking technique [37]. Figure 3
shows how MFNN, naive Bayes, and logistic regression were
applied in the wrapper-based approach.

2.5. Evaluating Predictive Performance. e performance of
the prediction models was measured in terms of receiver
operating characteristic (ROC) and area under the ROC
curve (AUC) [42]. e AUC of a classi�er can be interpreted
as the probability of the classi�er ranking a randomly chosen
positive example higher than a randomly chosen negative
one [42]. Most researchers have now adopted AUC for
evaluating the predictive capability of classi�ers since AUC
is a better performance metric compared to accuracy [42].
is study used the AUC value for performance comparison
of different prediction models using the same dataset. e
higher the AUC, the better the learning performance [43].
Other calculations included sensitivity, the proportion of
correctly predicted responders out of all tested responders,
and speci�city, the proportion of correctly predicted nonre-
sponders out of all tested nonresponders.

To investigate the generalization of the predictionmodels
produced by the above algorithms, the repeated 10-fold cross-
validation method was used [44]. First, the whole dataset

was randomly divided into ten distinct parts. e model
was then trained with nine-tenths of the data and tested
by the remaining tenth of data to estimate its predictive
performance. is procedure was repeated nine more times.
Each time, a different tenth of the data was used as testing
data, and a different nine-tenths of the data were used as
training data. Finally, the average estimate over all runs
was reported by running the above regular 10-fold cross-
validation 100 times with different splits of data. In repeated
10-fold cross-validation testing, the performance of all mod-
els was evaluated with and without feature selection.

3. Results

Tables 3 and 4 summarize the results of the repeated 10-fold
cross-validation experiments for MFNN, naive Bayes, and
logistic regression using SNPs with and without feature selec-
tion. First, the AUC, sensitivity, and speci�city were calcu-
lated for the three predictive models without wrapper-based
feature selection. Table 3 shows that the average AUC values
for the MFNN, the naive Bayes, and the logistic regression
prediction models were 0.489, 0.462 and 0.485, respectively.
In terms of AUC, the the MFNN model (AUC = 0.489)
outperformed the naive Bayes (AUC = 0.462) and logistic
regression (AUC = 0.485) models.

A repeated 10-fold cross-validation experiment was per-
formed to compare performance in the three wrapper-based
predictive algorithms. Table 4 shows that the MFNN, the
naive Bayes, and the logistic regression models had average
AUC values of 0.631, 0.569, and 0.620, respectively. In terms
of AUC, the MFNN model (AUC = 0.631) outperformed
both the naive Bayes model (AUC = 0.569) and the logis-
tic regression model (AUC = 0.620). Each wrapper-based
model selected 3 to 8 SNPs (Table 4). Out of 11 SNPs, the
wrapper-based MFNN model identi�ed only 4: rs1800469
(TGF𝛽𝛽1-509), VNTR (IL1_ra), rs2227956 (HSP70 hom), and
rs1801197 (CTR).

e classi�ers were also compared with and without
feature selection. Feature selection using the wrapper-based
approach clearly improved performance in the MFNN,
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T 4: Results of repeated 10-fold cross-validation experiment using multilayer feedforward neural network (MFNN), naive Bayes, and
logistic regression with wrapper-based feature selection approach.

Algorithm AUC Sensitivity Speci�city Number of SNPs
MFNN 0.631 0.579 0.689 4 (rs1800469, VNTR, rs2227956, rs1801197)
Naive Bayes 0.569 0 0.620 3 (rs1800469, rs1800247, rs1801197)
Logistic regression 0.620 0.407 0.623 8 (rs1800469, rs1800629, rs6254, rs6256, rs2227956, rs1061581, rs1801197, rs17563)
AUC: area under the ROC curve.

the naive Bayes, and the logistic regression. Overall, the
MFNN classi�er with the wrapper-based approach demon-
strated superior prediction performance (AUC = 0.631)
compared to the other models. Additionally, the MFNN
classi�er with wrapper-based feature selection required fewer
SNPs (𝑛𝑛 𝑛 𝑛) compared to the MFNN classi�er without
feature selection (𝑛𝑛 𝑛 𝑛𝑛).

Table 4 shows that the AUCs did not signi�cantly differ
between theMFNNmodel with wrapper-based feature selec-
tion (AUC = 0.631) and the logistic regression model with
wrapper-based feature selection (AUC = 0.620). However,
the MFNN classi�er with wrapper-based feature selection
required fewer SNPs (𝑛𝑛 𝑛 𝑛) compared to the logistic
regression classi�er with wrapper-based feature selection
(𝑛𝑛 𝑛 𝑛), that is, by selecting a small number of SNPs with
signi�cantly larger effects compared to other SNPs and by
disregarding relatively insigni�cant SNPs, the MFNN model
with wrapper-based feature selection successfully identi�ed
a subset of four major SNPs that could be used to predict
osteoporosis outcome in the study population (rs1800469
(TGF𝛽𝛽1-509), VNTR (IL1_ra), rs2227956 (HSP70 hom),
and rs1801197 (CTR)). Aer con�rming that the MFNN
model outperforms the logistic regression model, the next
objective was �nding the candidate genes and SNPs that
are most promising for diagnosing osteoporosis, designing
therapies, and predicting outcome in the studied population
of Taiwanese women with osteoporosis.

4. Discussion

is study compared three classi�cation algorithms, includ-
ing MFNN, naive Bayes, and logistic regression with and
without feature selection in terms of accuracy in predict-
ing osteoporosis outcome in a population of Taiwanese
women. Accounting for models is not a trivial task because
even a relatively small set of candidate genes obtains a
large number of possible models [20]. For example, the
11 candidate SNPs studied yielded 211 possible models.
e three classi�ers were chosen for comparison because
they cover varying techniques with different representational
models such as probabilisticMFNN, naive Bayes, and logistic
regression models [43]. e proposed procedures can also
be implemented using the publicly available soware WEKA
[37] and are thus easily applicable in genomic studies.
To the best of our knowledge, this study is the �rst to
propose the use of three classi�cation algorithms, including
MFNN, naive Bayes, and logistic regression, and wrapper-
based feature selection method for modeling osteoporosis

outcome in Taiwanese women based on genetic factors such
as SNPs.

In this paper, the wrapper-based feature selection
approach was used to �nd a subset of SNPs that maximizes
the performance of the prediction model according to how
feature selection search is incorporated in the classi�cation
algorithms.e results showed that theMFNN classi�er with
wrapper-based approach was superior to the other tested
algorithms and achieved the greatest AUC with the smallest
number of SNPs when distinguishing between high and low
BMD in Taiwanese women.ese results suggest thatMFNN
model is a good method of modeling complex nonlinear
relationships among clinical factors and the responsiveness
of osteoporosis outcome in Taiwanese women. e wrapper-
based approach does not require knowledge of the classi�ca-
tion algorithm used in the feature selection process, in which
features are optimized by using the classi�cation algorithm as
part of the evaluation function [21, 23]. Another advantage of
the wrapper-based method is its inclusion of the interaction
between feature subset search and the classi�cation model
[21]. However, the risk of over-�tting is high when using the
wrapper-based method [21, 45]. In the current study, use of
the wrapper-based feature selection approach to assess high
and lowBMD individuals revealed a panel of geneticmarkers,
including TGF𝛽𝛽1-509, IL1_ra, HSP70 hom, and CTR, which
were more prominent compared to other markers observed
in the examined Taiwanese women population with osteo-
porosis.

A noted limitation of this study is that, due to the small
sample size, the AUC values were too low (<0.7) to obtain
good dataset classi�cations. A dataset based on a larger
sample size is needed for improved accuracy. erefore,
further prospective clinical trials are recommended to deter-
mine whether the observed outcome associations with these
candidate genes are reproducible in a larger population of
Taiwanese women with osteoporosis.

5. Conclusion

is study used anMFNNmethodology with wrapper-based
feature selection method to predict osteoporosis outcome in
Taiwanese women based on clinical factors such as SNPs.
e trained MFNN model showed good responsiveness in
inferring osteoporosis outcome. e �ndings suggest that
patients and doctors can use the proposed tool to enhance
decision making based on clinical factors such as SNP geno-
typing data. However, genetic markers require validation in
further prospective clinical trials before routine clinical use
of genomic analysis for predicting osteoporosis outcome.
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