
Hindawi Publishing Corporation
Advances in Optical Technologies
Volume 2013, Article ID 168923, 8 pages
http://dx.doi.org/10.1155/2013/168923

Research Article
Splice Loss of Graded-Index Fibers: Accurate Semianalytical
Descriptions Using Nelder-Mead Nonlinear Unconstrained
Optimization with Three-Parameter Fundamental Modal Field

Raja Roy Choudhury,1 Arundhati Roy Choudhury,2 and Mrinal Kanti Ghose3

1 Applied Electronics and Instrumentation Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India
2 Physics Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India
3 Computer Science Department, Sikkim Manipal Institute of Technology, Majitar, Sikkim 737136, India

Correspondence should be addressed to Raja Roy Choudhury; ra ch2@yahoo.co.in

Received 5 March 2013; Accepted 4 June 2013

Academic Editor: Yong Zhao

Copyright © 2013 Raja Roy Choudhury et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A faster and accurate semianalytical formulation with a robust optimization solution for estimating the splice loss of graded-index
fibers has been proposed. The semianalytical optimization of modal parameters has been carried out by Nelder-Mead method
of nonlinear unconstrained minimization suitable for functions which are uncertain, noisy, or even discontinuous. Instead of
normally used Gaussian function, as the trial field for the fundamental mode of graded-index optical fiber a novel sinc function
with exponentially and 𝑅−3/2 (𝑅 is the normalized radius of the optical fiber) decaying trailing edge has been used. Due to inclusion
of three parameters in the optimization of fundamental modal solution and application of an efficient optimization technique with
simple analytical expressions for various modal parameters, the results are found to be accurate and computationally easier to find
than the standard numerical method solution.

1. Introduction

Single mode fiber is considered as the most important broad-
band transmission media for optical communication system.
Achieving accurate values of modal field distribution in such
fiber is very essential, as it can provide basic solutions for
wave equation and many useful properties like splice loss,
microbending loss, fiber coupling, and the prediction of
intramodal dispersion [1]. However, the various expressions
for the fundamental modal field that have been reported so
far are not able to predict propagation constant and modal
parameters exactly in all regions of single mode operation
[2]. The Gaussian approximation shows poor accuracy for
lower normalized frequency region although this region may
involve single mode fiber operation [2]; however, it can
perform satisfactorily only for higher normalized frequency
region and give good result near the cut-off frequency of next
higher mode [3]. Besides, it is also equally important that the
approximation should describe the field in the cladding

accurately, as it is useful in the study of evanescent coupling
problem. To overcome these inefficiencies, an exponentially
and 𝑅

−3/2 decaying trailing edge fundamental modal field
solution in core-cladding interface region has been consid-
ered.

To achieve higher accuracy compared to Gaussian func-
tion, the Gaussian-Hankel [2], the generalized Gaussian [4],
the extended Gaussian [5], and the Laguerre-Gauss/Bessel
expansion approximation [6, 7] have been proposed so far.
An approximate analytical description with no requirement
for optimization has also been presented [8]. But such ana-
lytical expression may not work for all specifications of
an optical fiber. In the proposed formulation, Nelder-Mead
method of nonlinear unconstrained minimization and the
process of minimization of core parameter (𝑈) for all specific
requirements have been used to achieve an accurate and
computationally appropriate result.

Unlike the existing reported fundamental modal solution
with one or two parameters [2–8], an attempt has been
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made to propose a three-parameter fundamental modal field
solution for graded-index fiber to introduce more flexibility
to solve the fundamental modal solution more accurately,
especially in core-cladding interface region wherein the solu-
tion has different form (exponentially and 𝑅

−3/2 decaying
trailing edge). Ghatak et al. [9] had arrived at simple ana-
lytical expressions to describe different optical fiber charac-
teristics by implementing variational technique. Again, the
optimization process requires expressions for propagation
constant𝛽 and core parameter 𝑈. The analytical expressions
for 𝛽 and 𝑈 used for the present study involve many fiber
parameters, such as core radius (𝑎), refractive indices of core
and cladding (𝑛co and 𝑛cl), aspect ratio (𝑆

0

), and wavelength
(𝜆 = 2𝜋/𝑘), where 𝑘 is the free space wave number. Hence,
any desired specification can be incorporated by varying
these parameters. Now, the task of optimization can be
carried out by using Nelder-Mead method of nonlinear
unconstrained minimization, to meet a particular design.

For graded-index optical fiber at the splices, the power
transmission coefficients with transverse and angular mis-
match have been estimated by using the methods given by
Meunier andHosain [10] andHosain et al. [11]. For arbitrarily
graded-index fiber, the Gaussian approximation does not
give accurate result at lower normalized frequency or in
cases where the power law profile deviates from its simplest
form [12]. Further, the numerical solution requires rigorous
computations and specialized numerical techniques [13].
However, using the proposed three-parameter fundamental
modal solution coupled with Nelder-Mead method of non-
linear unconstrained minimization, the algorithm becomes
comparatively easier to be implemented on an ordinary
personal computer, which provides computationally more
efficient result [14, 15] than standard numerical method
and yields excellent agreement with exact solutions. This is
achieved due to the fact that requisite analytical formulae are
deduced beforehand and then parameters of those analytical
expressions are found by optimization using Nelder-Mead
simplex method for nonlinear unconstrained minimization.
Furthermore, Nelder-Mead simplex method for nonlinear
unconstrainedminimization is a direct searchmethod [16, 17]
which does not require any derivative information, so it can
optimize nonstationary functions, as needed for the problems
under study [18–20].The proposed semianalytical model can
also be used in the study of nonlinear fiber [21].

2. Formulation of the Problem

2.1. Theory. Splice loss can be evaluated analytically with the
help of the following equations [22]:
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(18)
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𝑅
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(19)

where 𝜓
1

and 𝜓
2

are given in (26). 𝛼, 𝑅
0

, and 𝜇 are the three
variational parameters present in the fundamental modal
solution.

𝐸𝑖(𝑧) is exponential integral given by [23] as follows:

𝐸𝑖 (1, 𝑧) = ∫

∞

𝑧

𝑒
−𝑡

𝑡
𝑑𝑡. (20)

𝐶𝑖(𝑧) is the cosine integral function, defined by [23], as fol-
lows:

𝐶𝑖 (𝑧) = 𝜒 + ln (𝑧) + ∫

𝑧

0

cos 𝑡 − 1

𝑡
𝑑𝑡, (21)

where 𝜒 is Euler’s constant 0.5772.

𝑊𝑀(𝑘,𝑚, 𝑧) are the Whittaker functions which are
solutions to the Whittaker differential equation [23].

Hypergeom(𝑛, 𝑑, 𝑧) is the generalized hypergeometric
function 𝐹(𝑛, 𝑑, 𝑧), where [23]

𝐹 (𝑛, 𝑑, 𝑧) =

∞
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𝐶
𝑛,𝑘
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with,

𝐶V,𝑘 =

V

∏

𝑗=1

Γ (V
𝑗

+ 𝑘)

Γ (V
𝑗

)

, (23)

where Γ(𝑎) is the gamma function [23].

2.2. Basic Formulations. The refractive index profile for a
weakly guiding fiber is given by
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(24)

where the normalized profile functions for the trapezoidal
and triangular index profiles 𝑓

𝑖

(𝑖 = 1, 2, 3) are given by

𝑓
1

= 1,

𝑓
2

=
1 − 𝑅

1 − 𝑆
0

,

𝑓
3

= 0.

(25)

Here, 𝑆
0

is the aspect ratio, 𝑅 is the normalized radius (=𝑟/𝑎),
𝑎 is the core radius, 𝑟 is the actual radius of the optical fiber,
and 𝑛

1

and 𝑛
2

are, respectively, the refractive indices of the
core axis and cladding.

For the present study, the following approximations for
the fundamental mode as the trial field have been proposed:

𝜓
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=
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0
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0

,

(26)

where 𝛼, 𝑅
0

, and 𝜇 are the three variational parameters
present in the fundamental modal solution.

To employ variational technique, first the scalar varia-
tional expression for the propagation constant𝛽 as given by
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(27) has been considered and is shown in equations through
(28) to (30) as follows:
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Now, the core parameter 𝑈 is given by

𝑈
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= 𝑎
2

(𝑘
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2
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− 𝛽
2

) . (32)

Now for a fixed value of normalized frequency, the core
parameter 𝑈 is minimized with respect to the variational
parameters 𝛼, 𝑅

0

, and 𝜇. Once the optimized values of these
three parameters are obtained, the propagation constant and
other design parameters can be obtained as explained in the
next section.

2.3. Splice Loss. For small angular misalignment (𝜃) at the
splice of two optical fibers, following Hosain et al. [11], the
well-known overlap integral can be represented as
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where 𝑝 = 𝑎𝑘𝑛𝜃, 𝑛 being refractive index of the index match-
ing fluid joining the fibers and 𝜃 being the angular misalign-
ment.

The transmission coefficient𝑇
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(𝑝) at the splicewith angu-
lar mismatch can then be expressed as
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Expanding the exponential term, (33) can be written as
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and from (33), 𝐶
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According to Hosain et al. [11], only the first four terms in
(35a) are enough to obtain sufficient accuracy for misalign-
ment up to 1

0, which corresponds to 𝑝 ≈ 0.8 for an optical
fiber with 𝑛 = 1.5 and 𝑎 = 4 𝜇m working at a wavelength
𝜆 = 0.8 𝜇m. Here, up to the fifth term of (35a) have been
calculated and the required expressions are given in (9)-(10).

The transmission coefficient 𝑇
𝑡

(Δ) at the splice for a
transverse offset 𝑑 is expressed as follows:
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where Δ = 𝑑/𝑎 is the normalized transverse offset, and in
practice for Δ ≤ 0.8, one can approximately write [11]
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Integrals given in (38)–(41) can be evaluated by using the
expression of fundamental modal field given by (26). Hence,
(34) and (36) can be evaluated with the help of (35a), (35b),
and (37).
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Figure 1: Variation of power transmission coefficients 𝑇
𝑎

with the
normalized angular offset p for splicing of two identical single mode
triangular index fibers with𝑉 = 2.7 (exact numerical results [10, 13];
results by our approximation; results based on Gaussian approxima-
tion [10, 13]).

2.4. Evaluation of Integrals. Evaluation of integrals to deter-
mine propagation constant and splice loss is presented in (1)–
(23). Substituting (1)–(6) into (28), (29), and (30), analytical
expression of propagation constant 𝛽 can be obtained with
the help of (26) and (27). The transmission coefficient 𝑇

𝑎

(𝑝)

(34) at the splice with angular mismatch can be obtained by
substituting (9)-(10) into (35a) and (35b). Using (31), (1), (2),
(5), and (6), (38) can be obtained. Equations (40) and (41)
can be evaluated using (11). Once (38)–(41) are evaluated,
𝐶
𝑡

(Δ)/𝐶
𝑡

(0) (see (37)) can be calculated. Then, the analytical
expression of transmission coefficient 𝑇

𝑡

(Δ) at the splice
between two identical optical fibers having a transverse offset
can be evaluated using (36).

3. Results and Discussions

Detailed comparison between the proposed formulation and
available exact numerical results [10, 13] has been carried
out in terms of accuracy assessment. It has been justified
by many authors [1–3] that two-parameter approximations
are more accurate than single-parameter approximation.The
proposed approximation of fundamental field involving three
optimizing parameters incorporates more flexibility to mod-
ify the fundamental modal solution of optical fibers having
different specifications. Optimized values of these parameters
for different normalized frequencies are given in Tables 1 and
2 for a particular specification of optical fiber having trape-
zoidal and triangular index profiles, respectively. Values for
other normalized frequencies having different specification
of optical fiber can also be obtained by using Nelder-Mead
method of nonlinear unconstrained minimization.

In order to verify the feasibility of the proposed approx-
imation, the outcomes of the proposed study have been
compared with the earlier reported numerical results [10, 13].
In the present study, 𝑆

0

= 0.25 and 𝑉 = 2.4 are considered
for trapezoidal index profile, which corresponds to a typical
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Figure 2: Variation of power transmission coefficients 𝑇
𝑡

with the
normalized transverse offset Δ for splicing of two identical single
mode triangular index fibers with 𝑉 = 2.7 (exact numerical results
[10, 13]; results by our approximation; results based on Gaussian
approximation [10, 13]).

Table 1: Values of optimizing parameters with different normalized
frequencies for trapezoidal index profile.

𝛼 𝑅
0

𝜇 𝑉

1.839506 1.487480 0.006634 1.6000
1.854451 1.152568 0.040590 1.8000
1.878781 1.006541 0.097612 2.0000
1.908874 0.923490 0.171137 2.2000
1.941083 0.867514 0.253638 2.4000
1.954907 0.814689 0.289126 2.6000
1.987346 0.781444 0.277328 2.8000
1.967303 0.722072 0.256257 3.0000
2.207612 0.797867 0.283156 3.2000
1.930533 0.637208 0.226140 3.4000

dispersion shifted silica fiber with 𝑎 = 3.2 𝜇m, 𝛿 = (𝑛
1

2

−

𝑛
2

2

)/2𝑛
1

2

= 0.008, and zero dispersionwavelength at 1.55 𝜇m
[12]. For triangular index profile, 𝑉 = 2.7 and 𝑆

0

= 0 have
been chosen, taking 𝑎 = 3.5 𝜇m, 𝛿 = 0.008, and zero disper-
sion wavelength at 1.5 𝜇m [12].

For evaluation of splice loss, the applicability of the pro-
posed formulations in case of power transmission coefficients
𝑇
𝑎

(𝑝) and𝑇
𝑡

(Δ) at splices between two identical optical fibers
has been considered. Gaussian approximation gives accurate
result for the evaluation of transmission coefficient only in the
region near the cutoff of single mode operation, but it leads
to considerable error throughout the single mode region [11].
The variation of 𝑇

𝑎

with 𝑝 and 𝑇
𝑡

with Δ, in case of splicing
of two identical triangular index fibers, has been plotted in
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Figure 3: Variation of power transmission coefficients 𝑇
𝑎

with the
normalized angular offset 𝑝 for splicing of two identical singlemode
trapezoidal index fibers with 𝑉 = 2.4 (exact numerical results [10,
13]; results by our approximation; results based onGaussian approx-
imation [10, 13]).
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Figure 4: Variation of power transmission coefficients 𝑇
𝑡

with the
normalized transverse offset Δ for splicing of two identical single
mode trapezoidal index fibers with𝑉 = 2.4 (exact numerical results
[10, 13]; results by our approximation; results based on Gaussian ap-
proximation [10, 13]).

Figures 1 and 2, respectively. Similarly, the variations of these
power transmission coefficients for the case of splicing of two
identical trapezoidal index fibers are illustrated in Figures 3
and 4. For the practical range of 𝑝 and Δ, the results obtained
by the proposed approximation are identically matching with
the exact available and numerical results [10, 13].

Table 2: Values of optimizing parameters with different normalized
frequencies for triangular index profile.

𝛼 𝑅
0

𝜇 𝑉

1.836461 1.962401 −0.000309 1.7000
1.843169 1.323589 0.014877 1.9000
1.858852 1.102224 0.050720 2.1000
1.881018 0.986778 0.103042 2.3000
1.907224 0.914502 0.167036 2.5000
1.934891 0.862840 0.237307 2.7000
1.954757 0.817735 0.290207 2.9000
1.947828 0.764272 0.271233 3.1000
1.941593 0.718887 0.255127 3.3000
2.150373 0.784010 0.278234 3.5000

4. Conclusions

An accurate three-parameter approximation of fundamental
modal field solution of an optical fiber has been presented,
which can effectively be used to estimate the power trans-
mission coefficients in case of splicing of two identical single
mode graded-index fibers in presence of both transverse and
angular misalignments. Taking trapezoidal and triangular
index fibers as examples, it has been shown that the results
obtained with our function are excellently matching with
the exact available and numerical results [10, 13]. Besides
providing values of optimizing parameters involved in the
approximate field obtained by Nelder-Mead method of non-
linear unconstrained minimization, all related simplified
analytical expressions have also been presented, which can be
used directly by optical fiber designer while predicting splice
losses of an optical fiber, having triangular and trapezoidal
index profiles for a wide range of normalized frequencies.The
salient features of the proposed solution are easy computation
on an ordinary personal computer and a robust algorithm
for nonlinear unconstrained optimization being applied in an
optical fiber having triangular and trapezoidal index profiles.
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