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This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD)
energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm,
referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components
(ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that
contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-
SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and
outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the
various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is
superior to approaches based on Empirical Mode Decomposition method and requires less time.

1. Introduction

Roller bearings are important and frequently encountered
components in rotating machines, which are found in
widespread industrial applications. Roller bearing fault diag-
nosis is therefore meaningful. Fault diagnosis includes two
aspects: feature extraction and pattern recognition. When a
fault occurs in a roller bearing, it is very difficult to extract
the fault characteristic information from the nonstationary
vibration signals [1, 2].

The traditional diagnosis techniques extract the fault
characteristic information from the waveforms of the vibra-
tion signals in either the time domain or the frequency
domain.Then, criterion functions are constructed to identify
the condition of the roller bearing. However, it is very difficult
to accurately evaluate the condition of a roller bearing
through an analysis in the time or frequency domain only
[2, 3].

The Empirical Mode Decomposition (EMD) method
of feature extraction is based on the local characteristic
time scale of the signal and can adaptively decompose a
complicated multicomponent signal into a sum of intrinsic
mode functions (IMFs) whose instantaneous frequencies
have physical significance [4, 5]. By applying an envelope
analysis to each IMF component, the characteristic informa-
tion of original signal can be extracted more accurately and
effectively. In addition, the frequency components involved in
each IMF are related not only to the sampling frequency but
to changes in the signal itself; that is, EMD can be regarded as
a self-adaptive filter whose bandwidth and central frequency
changewith the signal itself.Therefore, EMD is a self-adaptive
signal processing method that can be applied to nonlinear
and nonstationary processes [6]. However, amplitude and
frequency information is lost because of the cubic spline
and the Hilbert transform used in the EMD [7]. Rilling
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and Flandrin asserted that two tones can be separated using
EMD, and numerical experiments supported their claims
[8]. Wu and Huang [9] found that two components whose
frequencies lie within an octave cannot be separated by
EMD. However, there are currently no rules or guidelines for
deciding when two separate components can be separated
using EMD. Furthermore, the end effect [10], mode mixing
[11], overshoot and undershoot [12], negative frequencies-
instantaneous frequency [13], and a lack of a theoretical
foundation [14] are all current drawbacks of EMD.

Recently, Cheng et al. developed a new signal analysis
method, the local characteristic-scale decomposition (LCD),
that defines intrinsic scale components, and, with the physical
instantaneous frequency, this method can decompose a com-
plicated signal into several intrinsic scale components (ISC)
[15]. By analysing each resulting ISC, which involves the local
characteristic of the signal, the characteristic information
of the original signal can be extracted more accuracy and
effectively. The LCD method is superior to the Hilbert-
Huang Transform method in reducing the end effect and
the iteration time and in the accuracy of the instantaneous
characteristic.

Pattern recognition is the other aspect of roller bearing
fault diagnosis. Traditional statistical pattern recognition
methods and Artificial Neural Network (ANN) classifiers
assume that sufficient samples are available, which is not
always true in practice [16]. The Support Vector Machine
(SVM) is a powerful machine learning method, based on sta-
tistical learning theory and the structural risk minimization
principle that has been successfully applied in classification
and regression problems [17]. SVMs not only can solve the
problems of overfitting, local optimal solutions, and slow
convergence rates that exist in ANNs, but they also have
an excellent generalization capability in situations where
there are a small number of samples. Furthermore, SVMs
can solve nonlinear, high-dimensional pattern recognition
problems with a limited number of samples and represent
nonlinear relationships between the input and the output [18].
SVMs have been found to be remarkably effective in many
practical applications. This method is widely used in areas
such as pattern recognition [19], time-series forecasting [20],
diagnostics [21–25], robotics [26], signal processing [25, 27],
speech and word recognition [28], machine vision [29], and
financial forecasting [30]. In SVMs, the kernel parameters
have an influence on the generalization performance, and the
regularization constant 𝐶 determines the trade-off between
minimizing the training error and minimizing the model
complexity. The parameters of the kernel function implicitly
define the nonlinear mapping from the input space to the
high-dimensional feature space [31]. The performance of
the SVM will be degraded if these parameters are not
properly chosen. There are several methods for choosing the
parameters of the SVM such as trial-and-error procedures
[32], the grid algorithm [33], the cross-validation method
[34], the generalization error estimationmethod [35], and the
gradient descent method [36]. These methods have several
drawbacks; for example, both the grid method and the cross-
validation method require long and complicated calculations
[33].

In recent years, heuristic algorithms have been developed
and are widely used.These algorithms use simple approaches
found in heuristic optimisation algorithms. Some heuristic
algorithms that have been used to optimise SVM param-
eters are Ant Colony Optimization (ACO) [37], Particle
Swarm Optimization (PSO) [38–40], the Genetic Algorithm
(GA) [41], and the Bee Colony Algorithm (BCA) [42].
The Artificial Chemical Reaction Optimisation Algorithm
(ACROA), which was introduced by Bilal Alatas, is a novel
computational method that was inspired by chemical reac-
tions [43]. The ACROA has been applied successfully to
optimisation problems and the mining of classification rules
[44]. Compared with the GA, the ACROA can reach a global
optimum in a very short time, and the classification result is
the same. The ACROA is adapted to the solution procedure
to an optimisation problem. This algorithm is based on the
second law of thermodynamics; that is, a system tends toward
the highest entropy and the lowest enthalpy [45]. In the
ACROA, the enthalpy or potential energy and the entropy can
be used as the objective functions for the minimisation and
maximisation problems, respectively, for the optimisation
problem of interest.The ACROA is robust, and thus we chose
the ACROA to solve our problem. In this study, the ACROA
is applied to optimise the SVM parameters.

In this paper, LCD is applied to diagnose the roller
bearing faults. First, the original acceleration vibration signal
is decomposed using LCD and the ISC components are
obtained, and then the concept of LCD energy entropy is
introduced, which can reflect the actual condition and the
fault pattern of the roller bearing. The LCD energy entropies
of different vibration signals illustrate that the energy of the
vibration signal in different frequency bands will change
when a bearing fault occurs. To identify the condition of the
roller bearing further, the ACROA-SVM serves as a classifier,
and the extracted energy features of the stationary ISCs
are taken as classifier input vectors so that a faulty bearing
can be distinguished from a normal bearing. To verify the
superiority of the LCD method, it is compared with the
EMD method. As in the LCD method, the original signal
is decomposed with EMD, and then the energy features are
extracted. These resulting features are also used as input
vectors to the ACROA-SVM to identify the condition of
a roller bearing. The experimental results show that the
diagnostic approach of the ACROA-SVM based on LCD
energy entropy has better identification accuracy than EMD
and is faster.

The remainder of this paper is organised as follows.
Section 2 discusses the LCD method. In Section 3, the con-
cept of LCD energy entropy is proposed, and the LCD
energy entropies of different vibration signals are calculated
to illustrate that the energy of an acceleration signal in
different frequency bands changes when a roller bearing fault
occurs. Section 4 explains the ACROA and the parameter
optimisation of an SVM based on the ACROA. In Section 5,
the fault diagnosis method based on LCD and the ACROA-
SVM is given, in which the energy features extracted from
a number of ISCs are used as input vectors to the ACROA-
SVM. In Section 6, the fault diagnosis method is used to
diagnose the condition of actual roller bearings and is
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Figure 1: Four types of typical signal owning instantaneous frequency with physical meaning.

compared with the EMD method. The conclusions drawn
from this research are given in Section 7.

2. LCD Method

Figure 1 shows four types of signals having an instantaneous
frequency with physical significance. In Figure 1, point A is
the value of the line connecting two adjacent peaks at the time
where theminimumoccurs between the twomaximums, and
point B is theminimumpoint.The LCDmethod is developed
from the simple assumptions that any complicated signal
consists of several ISCs and any two ISCs are independent of
each other. In this way, each signal can be decomposed into
a number of ISCs, each of which must satisfy the following
definition [15].

(I) In the entire data set, all the localmaxima are positive,
all the local minima are negative, and the signal is
monotonic between any two adjacent extreme points.

(II) Among the data, let all themaximal points be denoted
as (𝜏𝑘, 𝑋𝑘), 𝑘 = 1, 2, . . . ,𝑀, where𝑀 is the number of
maximal points.

The line formed by any two adjacent extreme points, 𝑙𝑘, at
the 𝜏𝑘+1 as 𝐴𝑘+1, is specified as follows:

𝑙𝑘 =
(𝑋𝑘+2 − 𝑋𝑘) (𝑡 − 𝜏𝑘)

(𝜏𝑘+2 − 𝜏𝑘)
+ 𝑋𝑘. (1)

Then, the relation

𝑎𝐴𝑘+1 + (1 − 𝑎)𝑋𝑘+1 = 0, 𝑎 ∈ (0, 1) , (2)

should be true, where

𝐴𝑘+1 =
(𝜏𝑘+1 − 𝜏𝑘)

(𝜏𝑘+2 − 𝜏𝑘)
(𝑋𝑘+2 − 𝑋𝑘) + 𝑋𝑘. (3)

Generally, 𝑎 = 0.5 when 𝐴𝑘+1 = −𝑋𝑘+1.
Based on the definition of the ISC component, a real-

valued signal, 𝑥(𝑡) (𝑡 > 0), can be decomposed into a number
of ISCs using the LCD method in the following way.
(1) Let (𝜏𝑘, 𝑋𝑘) (𝑘 = 1, 2, . . . ,𝑀) denote the extrema of

the signal 𝑥(𝑡), and let 𝐴𝑘 (𝑘 = 2, 3, . . . ,𝑀 − 1) be calculated
as in (3). Then, the values 𝐿𝑘 (𝑘 = 2, 3, . . . ,𝑀 − 1) can be
calculated as follows:

𝐿𝑘 =
𝐴𝑘 + 𝑋𝑘

2
, 𝑘 = 2, 3, . . . ,𝑀 − 1. (4)

Note that the values of𝐴𝑘 and 𝐿𝑘 are for 𝑘 from 2 to𝑀−1.
Hence, we must extend the boundaries of the data, which can
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be achieved inmany different ways, such as themethods used
in EMD [10, 46].

By extension, the two end extrema (𝜏0, 𝑋0) and
(𝜏𝑀+1, 𝑋𝑀+1) can be obtained. According to (3) and
(4), we can obtain 𝐿1 and 𝐿𝑀. Otherwise, we can extend the
sequence 𝐿𝑘 directly from the known values.
(2)Connect all the 𝐿𝑘 with a cubic spline to form the base

line, denoted as 𝐵1(𝑡). Theoretically, the difference between
the original data and the base line, 𝐵1(𝑡), is the first ISC, ℎ1(𝑡);
that is,

ℎ1 (𝑡) = 𝑥 (𝑡) − 𝐵1 (𝑡) . (5)

If ℎ1(𝑡) meets conditions (I) and (II), then it is an ISC
component, and ℎ1(𝑡) is chosen as the first ISC.
(3) Or see the ℎ1(𝑡) as the original data, and repeat the

above step, defining

ℎ11 (𝑡) = ℎ1 (𝑡) − 𝐼11 (𝑡) . (6)

If ℎ11(𝑡) does not satisfy conditions (I) and (II), repeat
this step 𝑘 times until ℎ1𝑘(𝑡) satisfies the ISC conditions; then
denote ℎ1𝑘(𝑡) as the first ISC, 𝐼1(𝑡).
(4) Separate 𝐼1(𝑡) from the initial data, and define the

residue as 𝑢1(𝑡):

𝑢1 (𝑡) = 𝑥 (𝑡) − 𝐼1 (𝑡) . (7)

(5) Next, add 𝑢1(𝑡) to the original data, and repeat steps
(1)–(4). Similarly, we obtain 𝐼2(𝑡), . . . , 𝐼𝑛(𝑡) until the residue
𝑢𝑛(𝑡) is either a monotonic or a constant function.Then, 𝑥(𝑡)
is decomposed into 𝑛 ISCs and a residue 𝑢𝑛(𝑡); that is,

𝑥 (𝑡) =

𝑛

∑

𝑖=1

𝐼𝑖 (𝑡) + 𝑢𝑛 (𝑡) . (8)

Similar to the Cauchy convergence test, the standard
deviation (SD) is defined as

SD =
𝑇

∑

𝑡=0

[

󵄨󵄨󵄨󵄨ℎ𝑖𝑘(𝑡) − ℎ𝑖(𝑘−1)(𝑡)
󵄨󵄨󵄨󵄨

2

ℎ
2

𝑖(𝑘−1)
(𝑡)

] , (9)

where 𝑇 is the length of time. The sifting process is stopped
when SD is less than a chosen value. Generally, a value of SD
less than 0.3 is ideal for an ISC.

Figure 2 shows a multicomponent, modulated signal that
is defined by the following function:

𝑥 (𝑡) = 2 sin (2𝜋𝑓1𝑡) + 4 sin (2𝜋𝑓2𝑡) sin (2𝜋𝑓3𝑡)

+ sin (2𝜋𝑓4𝑡) ,
(10)

where 𝑓1 = 15, 𝑓2 = 10, 𝑓3 = 0.1, and 𝑓4 = 5.
The decomposed results in Figure 3 show that the LCD

method is superior to the EMD method with the same steps
of decomposition. Intuitively, in contrast with IMFs, ISCs
provide more information on the modulation characteristics.
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Figure 2: The multicomponent modulated signal.

Table 1: The LCD energy entropies of the vibration signals of the
roller bearing with different faults.

Normal Outer-race fault Inner-race fault
1.1504 1.0887 0.8333

3. LCD Energy Entropy

The vibration signal from a faulty roller bearing reflects
the corresponding resonant frequency components, and its
energy changes with the frequency distribution.Therefore, in
this study, the LCD energy entropy is proposed to capture this
change.

It is assumed that the vibration signal of a faulty roller
bearing 𝑥(𝑡) has been decomposed with LCD into 𝑛 ISCs
and a residue 𝑢𝑛(𝑡), where the energies of the 𝑛 ISCs are
𝐸1, 𝐸2, . . . , 𝐸𝑛. The sum of the energies of the 𝑛 ISCs should
be equal to the total energy of the original signal when the
residue 𝑢𝑛(𝑡) is ignored. Because the ISCs 𝐼1(𝑡), 𝐼2(𝑡), . . .,𝐼𝑛(𝑡)
include various frequency components, 𝐸 = {𝐸1, 𝐸2, . . . , 𝐸𝑛}
forms an energy distribution in the frequency domain of
the roller bearing vibration signal. The corresponding LCD
energy entropy is defined as

𝐻EN = −
𝑛

∑

𝑖=1

𝑞𝑖 log 𝑞𝑖, (11)

where 𝑞𝑖 = 𝐸𝑖/𝐸 is the percentage of the energy of 𝐼𝑖(𝑡) in the
total signal energy (𝐸 = ∑𝑛

𝑖=1
𝐸𝑖).

Figures 4(a), 4(b), and 4(c) show the three cases of the
roller bearing vibration signal: normal, with an outer-race
fault and with an inner-race fault, respectively. Table 1 shows
that the energy entropy of the vibration signal of a normal
roller bearing is greater than that of the others because the
energy distribution of this kind of signals in each frequency
band is comparatively even anduncertain. For a roller bearing
with an outer-race fault, the energy entropy is lower because
the energy is distributed mainly in the resonant frequency
band and the distribution uncertainty is lower. Moreover, the
higher resonant frequency components are produced in the
roller bearing with an inner-race fault and the impact is more
severe, so the energy entropy in this case would be the least.
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Figure 3: The EMD (a) and LCD (b) decomposed results of the multicomponent modulated signal shown in Figure 2.
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Figure 4: The vibration acceleration signal of the normal roller bearing (a), out-race fault (b), and inner-race fault (c), respectively.

It can be concluded from the preceding analysis that the
energy entropy based on LCD can reflect the condition and
the fault pattern of the roller bearing. However, for each
roller bearing, the LCD energy entropy varies for the same
condition. Therefore, it is not sufficient to distinguish the
condition and the fault pattern only according to the LCD
energy entropy; further analysis is desirable.

4. ACROA-SVM

4.1. Artificial Chemical ReactionOptimizationAlgorithm. The
ACROA is an adaptive optimisation technique.The stochastic
search algorithm of the ACROA is based on the process of
chemical reactions. A chemical reaction is a process that leads
to the transformation of one set of chemical substances into
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another. Two key reactions in the ACROA are bimolecular
and monomolecular reactions [43]. The principle of the
ACROA is presented in the flow chart in Figure 5 and consists
of the following five steps [44].

Step 1. Define the problem and the algorithm parameters.

Step 2. Initialize the reactants and evaluate them.

Step 3. Simulate the chemical reactions.

Step 4. Update the reactants.

Step 5. Check the termination criterion.

The optimization problem is specified as follows:

maximize 𝑓 (𝑥)

subject to 𝑥𝑗 ∈ 𝐷𝑗 = [𝑙𝑗, 𝑢𝑗] , 𝑗 = {1, 2, . . . , 𝑁} ,

(12)

where 𝑓(𝑥) is a fitness function, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) is the
vector of decision variables, 𝑁 is the number of decision
variables, and 𝐷𝑗 is the range of feasible values for decision
variable 𝑗, where 𝑙𝑗 and 𝑢𝑗 are the lower and upper bounds
of the jth decision variable, respectively. More details about
these steps can be found in [43, 44].

4.2. Support Vector Machine (SVM). The SVM is developed
from the optimal separation plane under linearly separable
conditions. The basic idea of the SVM is to map the training
samples from the input space into a higher dimensional
feature space via a mapping function 𝜙 [37]. Suppose there is

a given training sample set𝐺 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑙}, where
each sample 𝑥𝑖 ∈ 𝑅

𝑑 belongs to a class determined by 𝑦 ∈
{+1, −1}. When the training data are not linearly separable
in the feature space, the target function can be expressed as
follows [17]:

min 𝜙 (𝜔) =
1

2
⟨𝜔 ⋅ 𝜔⟩ + 𝐶

𝑙

∑

𝑖=1

𝜉𝑖

s.t 𝑦𝑖 (⟨𝜔 ⋅ 𝜙 (𝑥𝑖)⟩ + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, 𝑖 = {1, 2, . . . , 𝑙} ,

(13)

where𝜔 is the normal vector of the hyperplane,𝐶 is a penalty
parameter, 𝑏 is the bias that is a scalar, 𝜉𝑖 are nonnegative slack
variables, and 𝜙(𝑥) is a mapping function.

By introducing Lagrangemultipliers𝛼𝑖 ≥ 0, the optimiza-
tion problem can be rewritten as follows.

Maximize

𝐿 (𝜔, 𝑏, 𝛼) =

𝑙

∑

𝑖=1

𝛼𝑖 −
1

2

𝑙

∑

𝑖,𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 ⋅ 𝑥𝑗) . (14)

Subject to

0 ≤ 𝛼𝑖 ≤ 𝐶

𝑙

∑

𝑖=1

𝛼𝑖𝑦𝑖 = 0.

(15)

The decision function can be obtained as follows:

𝑓 (𝑥) = sign(
𝑙

∑

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 ⋅ 𝑥) + 𝑏) . (16)
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The most common kernel functions used in SVMs are as
follows:

(i) linear kernel

𝐾(𝑥, 𝑥𝑖) = ⟨𝑥 ⋅ 𝑥𝑖⟩ , (17)

(ii) polynomial kernel

𝐾(𝑥, 𝑥𝑖) = (⟨𝑥 ⋅ 𝑥𝑖⟩ + 𝑐)
𝑑
, (18)

(iii) RBF kernel

𝐾(𝑥, 𝑥𝑖) = exp(−
󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑖

󵄩󵄩󵄩󵄩

2

2𝜎2
) , (19)

where 𝑑 and 𝜎 are kernel parameters.
In this paper, the radial basis function kernel is used

because of its universal application and good performance.

4.3. Optimisation of the SVM Parameters Using the ACROA.
SVM parameters have an important effect on the classifica-
tion accuracy. The parameters of the Gaussian kernel func-
tion include a penalty factor 𝐶 and the standard deviation
𝜎. The selection of the SVM parameters is very difficult.
Generally, 𝐶 and 𝜎 are selected according to experience. In
this paper, the ACROA is used to optimise the parameters of
the SVM.These variables are𝐶 and𝜎, and the fitness function
is the accuracy of the SVM.The fitness of the SVM is defined
as follows:

fitness (𝑥) = accuracySVM (𝑥) , (20)

where 𝑥 = (𝐶, 𝜎), and the accuracy of the SVM is defined as

accuracySVM

=
Number of correct classifications of test samples

Total number of samples in test set
.

(21)

The flow chart of the ACROA-SVM is shown in Figure 6.

4.4. Experimental Results. To evaluate the performance of
the proposed ACROA-SVMmethod, we used three common
benchmark data sets from the UCI benchmark, the Iris,
Thyroid, and Seed data sets. The sizes of the training and test
sets can be found in Table 2.

The Iris data set contains 150 instances and four attributes.
In this data set, the class attribute is typed and there are three
classes: Setosa, Versicolor, and Virginica.

The Thyroid data set is used for the diagnosis of hyper-
thyroidism or hypothyroidism. This data set contains 215
patterns and 5 attributes, and there are three classes: normal,
hyper, and hypo.

The Seed data set was obtained from the high-quality
visualization of the internal structure of wheat kernels. The
Seed data set contains 210 instances of wheat samples with 7

ACROA

Training SVM modelTraining samples
sets

Calculating the fitness function

Optimal SVM parameters obtained

Is stop condition satisfied?

Yes

No

, 𝜎SVM parameters C

Figure 6: Parameter optimization flow chart of SVM based on
ACROA.

Table 2: Properties of the problems.

Name Data Train Test Input Class
Iris 150 114 36 4 3
Thyroid 215 162 53 5 3
Seed 210 159 51 7 3

inputs, and there are three classes included: Kama, Rosa, and
Canadian.

Fourmethods, theACROA-SVM, theGA-SVM, the PSO-
SVM, and the SVM, were used to classify these data sets. For
theGA, the generation andpopulation sizeswere set to 50 and
20, respectively. To make a fair comparison, the values of the
ACROA were chosen to be the same, for example, iterations
= 50, ReacNum = 20. For the PSO, the parameters were fixed
with the values given in the literature [39, 40]; that is,𝑊 =

0.75, 𝑐1 = 𝑐2 = 1.5, the numbers of particles was 20, and the
iteration count was 50. In the SVM method, the values of 𝐶
and 𝜎were chosen by default, and thus the computation time
was not calculated. The results in Tables 3, 4, and 5 show that
the values of 𝐶 and 𝜎 obtained by each method are different.
The test error value of the ACROA-SVM method is better
than those of the GA-SVM, the PSO-SVM, and the SVM
method. Furthermore, the computation time of the proposed
ACROA-SVMmethod is less than those of the GA-SVM and
the PSO-SVMmethods.The ACROA-SVMmethod was next
applied to a roller bearing fault diagnosis problem.

5. Roller Bearing Fault Diagnosis Method
Based on LCD and ACROA-SVM

It can be observed from the preceding analysis that the
LCD energy entropies of the vibration signals of the roller
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Table 3: The identification result of IRIS data set.

Method Training samples Test samples 𝐶 𝜎 Cost time (s) Test error (%)
ACROA-SVM1 114 36 224.55 4.26 83.76 0
ACROA-SVM2 76 24 240.30 4.83 43.7128 0
GA-SVM1 114 36 181.0026 1.24 543.63 0
GA-SVM2 76 24 180.0001 1.32 231.91 0
PSO-SVM1 114 36 185.34 1.36 426.89 0
PSO-SVM2 76 24 179.21 1.45 247.12 0
SVM1 114 36 200 1 / 0
SVM2 76 24 200 1 / 4.17

Table 4: The identification result of THYROID data set.

Method Training samples Test samples 𝐶 𝜎 Cost time (s) Test error (%)
ACROA-SVM1 162 53 214.09 4.91 187.51 7.55
ACROA-SVM2 142 43 226.97 1.06 91.814 4.65
GA-SVM1 162 53 245.62 2.98 1239.72 11.33
GA-SVM2 142 43 224.77 2.62 407.33 9.3
PSO-SVM1 162 53 248.73 3.01 1189.83 11.33
PSO-SVM2 142 43 226.18 2.75 397.25 9.3
SVM1 162 53 200 1 / 18.87
SVM2 142 43 200 1 / 18.61

Table 5: The identification result of SEED data set.

Method Training samples Test samples 𝐶 𝜎 Cost time (s) Test error (%)
ACROA-SVM1 159 51 16356.01 4.31 238.06 0
ACROA-SVM2 106 34 186.05 4.85 135.07 0
GA-SVM1 159 51 180.1 1.01 549.44 3.92
GA-SVM2 106 34 180.28 2.27 484 0
PSO-SVM1 159 51 185.26 1.35 472.11 0
PSO-SVM2 106 34 178.23 1.89 383.45 0
SVM1 159 51 200 1 / 3.92
SVM2 106 34 200 1 / 0

bearings with different conditions and fault patterns are
obviously different, which shows that the energy of each ISC
changes when the roller bearing develops a fault. In this
paper, by taking the energy feature of each ISC component
as the ACROA-SVM input vector, the condition and the fault
pattern of the roller bearing can be identified effectively. The
flow chart of the roller bearing fault diagnosis method based
on LCD and the ACROA-SVM is shown in Figure 7.

The fault diagnosismethod consists of the following seven
steps [47].
(1) Collect signals from the roller bearings as samples for

the three conditions: normal, outer-race fault, and inner-race
fault.
(2) Decompose the original vibration signals into several

ISCs, and choose the first 𝑚 ISCs that include the most
dominant fault information to extract the feature.

(3) Calculate the total energy 𝐸𝑖 of the first𝑚 ISCs from

𝐸𝑖 = ∫

+∞

−∞

󵄨󵄨󵄨󵄨𝐼𝑖(𝑡)
󵄨󵄨󵄨󵄨

2
𝑑𝑡, (𝑖 = 1, 2, . . . , 𝑚) . (22)

(4) Construct the feature vector 𝑇 with the energy levels
as its elements as follows:

𝑇 = [𝐸1, 𝐸2, . . . , 𝐸𝑚] . (23)

Considering that the energy is sometimes biggest, 𝑇 is
adjusted by normalizing the feature to simplify the subse-
quent analysis and processing.

Let

𝐸 = (

𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨𝐸𝑖
󵄨󵄨󵄨󵄨

2
)

1/2

. (24)
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Figure 7:The flow chart of the roller bearing fault diagnosismethod
based on LCD and ACROA-SVM.

Then

𝑇
󸀠
= [

𝐸1

𝐸
,
𝐸2

𝐸
, . . . ,

𝐸𝑚

𝐸
] (25)

and the vector 𝑇󸀠 is a normalized vector.
(5) Run the ACROA-SVM, where the SVM parameters,

namely, 𝐶 and 𝜎, are optimized by the ACROA.
(6) Input the vector 𝑇󸀠 into the ACROA-SVM classifier

and perform the training. The fitness function is given by
(20).The resulting values of𝐶 and 𝜎 are input to the ACROA-
SVM classifier.
(7) For ACROA-SVM1, define the condition of an outer-

race fault with the label 𝑦 = +1 and the other conditions
with the label 𝑦 = −1. Thus, the outer-race fault can
be separated from the other conditions by ACROA-SVM1.
Similarly, define the condition of an inner-race fault with
the label 𝑦 = +1 and the other conditions with the label
𝑦 = −1 for ACROA-SVM2. Thus, the inner-race fault
can be separated from other conditions by ACROA-SVM2.
Similarly, the roller fault can be separated from the other
conditions by ACROA-SVM3 and so on.

6. Application

The test rig is shown in Figure 8 and includes a motor,
a coupling, a rotor, and a shaft with two roller bearings.
The roller bearings are of the 6311 type. This test rig is
popular for testing imbalances, misalignment, and various
types of bearing faults. The shaft rotational frequency is

Driver motor

Bearing Rotor

Worktable

Coupling Shaft

Figure 8: Test rig.

25Hz, and the rotor’s polar moment of inertia is 0.03 kg⋅m2.
After the impulse excitation experiment to the roller bearing,
the first three resonance frequencies of the roller bearing
are determined as 420Hz, 732Hz, and 1016Hz, respectively.
According to Nyquist sampling theorem, sampling frequency
𝑓𝑠 is chosen as follows [48]:

𝑓𝑠 ≥ 2𝑓max, (26)

where 𝑓𝑠 is the sampling frequency and 𝑓max is the highest
frequency contained in the signal.

The sampling frequency value can be chosen as 3–5
𝑓max. Thus, the sampling frequency can be taken as 4096Hz.
The vibration signal is obtained from the acceleration sen-
sor mounted on the bearing housing when the rotational
frequency of the shaft is steady. Because the roller bearing
usually turns at a constant speed, the starting and stopping
processes are not considered. The inner-race and outer-race
defects were created by cutting slots having a width and a
depth of 0.15mm and 0.13mm, respectively, with a laser. The
roller bearings with the three conditions (normal, inner-race
fault (IR fault), and outer-race fault (OR fault)) were tested,
and 60 vibration signals from the bearings in each condition
were obtained, fromwhich 45 groupswere selected at random
as the training data.

First, after the original vibration signals were decom-
posed into ISCs using LCD, the first five ISCs that include the
most dominant fault information were chosen and arranged
from high to low, according to the frequency components,
as 𝐼1(𝑡), 𝐼2(𝑡), . . . , 𝐼5(𝑡). Then, the fault feature vector 𝑇󸀠
was obtained according to (22), (23), (24), and (25). The
ACROA-SVM was used to identify the various patterns.
The identification results for the test samples based on LCD
preprocessing are shown in Table 6.

In order to make a fair comparison, the same original
vibration signals were chosen. These signals were decom-
posed into IMFs using EMD. Five IMFs were chosen, and
they were arranged from high to low, according to the
frequency components, as 𝑐1(𝑡), 𝑐2(𝑡), . . . , 𝑐5(𝑡), and then the
fault feature vector 𝑇󸀠 was obtained according to (21), (22),
(23), and (24). Next, the ACROA-SVM was used to identify
the various patterns. The identification results of the test
samples based on EMD preprocessing are shown in Table 7
and are compared with those using LCD.

When used as the preprocessor to extract the energy
in each frequency band as ACROA-SVM input vector, both
methods (LCD and EMD based) are capable of identifying
the faults in the bearings. As mentioned in Section 5, outer-
race condition is separated by SVM1 and inner-race condi-
tion is separated by SVM2. For SVM1, LCD-ACROA-SVM1
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Table 6: The identification results based on LCD and ACROA-SVMmethod.

Test samples 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 LCD-ACROA-SVM1 LCD-ACROA-SVM2 Identification results
OR fault 0.9745 0.2185 0.0455 0.0182 0.0028 (+1) OR fault
OR fault 0.9755 0.2785 0.0515 0.0192 0.0035 (+1) OR fault
OR fault 0.9735 0.2271 0.0238 0.0118 0.0061 (+1) OR fault
OR fault 0.9787 0.2010 0.0405 0.0092 0.0069 (+1) OR fault
OR fault 0.9373 0.3484 0.2070 0.0766 0.0291 (+1) OR fault
IR fault 0.9846 0.1645 0.0536 0.0213 0.0158 (−1) (+1) IR fault
IR fault 0.9766 0.1638 0.0662 0.0210 0.0159 (−1) (+1) IR fault
IR fault 0.9718 0.1049 0.0400 0.0304 0.0258 (−1) (+1) IR fault
IR fault 0.9950 0.0917 0.0358 0.0120 0.0138 (−1) (+1) IR fault
IR fault 0.9961 0.0774 0.0331 0.0220 0.0162 (−1) (+1) IR fault
Normal 0.9685 0.2077 0.1042 0.0649 0.0611 (−1) (−1) Normal
Normal 0.9621 0.2326 0.1123 0.0715 0.0512 (−1) (−1) Normal
Normal 0.9741 0.1978 0.0908 0.0547 0.0277 (−1) (−1) Normal
Normal 0.9666 0.2137 0.1236 0.0616 0.0312 (−1) (−1) Normal
Normal 0.9764 0.2317 0.1326 0.0636 0.0317 (−1) (−1) Normal

Table 7: The identification results of LCD-ACROA-SVM compared with EMD-ACROA-SVM or LCD-SVM with EMD-SVM.

Method Training samples Test samples 𝐶 𝜎 Cost time (s) Test error (%)
LCD-ACROA-SVM1 45 15 287.80 2.94 5.59 0
LCD- SVM1 45 15 200 1 / 6.67
EMD-ACROA-SVM1 45 15 1955.47 2.92 6.67 6.67
EMD-SVM1 45 15 200 1 / 13.34
LCD-ACROA-SVM2 30 10 285.61 4.71 4.57 0
LCD- SVM2 30 10 200 1 / 10
EMD-ACROA-SVM2 30 10 1570.16 0.99 5.74 0
EMD-SVM2 30 10 200 1 / 10

classifier has higher accuracy than the LCD-SVM1, the EMD-
ACROA-SVM1, and the EMD-SVM1 classifier. For SVM2,
the accuracy rate of the LCD-ACROA-SVM2 and the EMD-
ACROA-SVM2 are the same. In summary, it can be observed
from Table 7 that the ACROA-SVM method based on LCD
has higher accuracy (i.e., less error) than the method based
on EMD and has shorter computation times.

7. Conclusion

A roller bearing fault diagnosis method based on LCD
energy entropy and theACROA-SVMwas investigated in this
paper. First, the original vibration signals were preprocessed
using the LCD method. The LCD energy entropy was used
as the input to the ACROA-SVM classifier. A theoretical
analysis and experimental results show that the ACROA-
SVM combined with the LCD method has higher accuracy
and shorter computation times than when combined with
EMD. Furthermore, the analysis shows that the LCDmethod
is a self-adaptive signal processing method and is superior to
the EMDmethod. This signal-processing method is adaptive
and suitable for nonlinear and nonstationary process.
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