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This paper deals with the problem of stability for a class of Lur’e systems with interval time-
varying delay and sector-bounded nonlinearity. The interval time-varying delay function is not
assumed to be differentiable. We analyze the global exponential stability for uncertain neutral
and Lur’e dynamical systems with some sector conditions. By constructing a set of improved
Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, we establish some
stability criteria in terms of linear matrix inequalities. Numerical examples are given to illustrate
the effectiveness of the results.

1. Introduction

In many practical systems, models of system are described by neutral differential equations,
in which the models depend on the delays of state and state derivatives. Heat exchanges,
distributed networks containing lossless transmission lines, and population ecology are
examples of neutral systems. Because of its wider application, therefore, several researchers
have studied neutral systems and provided sufficient conditions to guarantee the asymptotic
stability of neutral time delay systems, see [1–6] and references cited therein.

It is well known that nonlinearities may cause instability and poor performance of
practical systems, which have driven many researchers to study [3–9]. Many nonlinear
control systems can be modeled as a feedback connection of a linear neutral system and a
nonlinear element. One of the important classes of nonlinear systems is the Lur’e system
whose nonlinear element satisfies certain sector constraints. Lur’e systems with sector bound
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have been widely interested in the control system such as Kalman-YaKubovih-Popov lemma,
Popov criterion, and Circle criterion [10–12]. On the other hand, it is well known that the
existence of time delay in a system may cause instability and oscillations. Example of time
delay systems are chemical engineering systems, biological modeling, electrical networks,
physical networks, and many others, [3–5].

The stability criteria for system with time delays can be classified into two categories:
delay-independent and delay-dependent. Delay-independent criteria does not employ any
information on the size of the delay; while delay-dependent criteria makes use of such
information at different levels. Delay-dependent stability conditions are generally less
conservative than delay-independent ones especially when the delay is small. In most of the
existing results, the range of time-varying delay considered in paper is form 0 to an upper
bound. In practice, the range of delay may vary in a range for which the lower bound is
not restricted to be 0, that is, interval time-varying delay. A typical example with interval
time delay is the networked control system, which has been widely studied in the recent
literature (see, e.g., [3, 13, 14]). However there are fewer results for removing restriction to
the derivative of interval time-varying delays. Therefore their methods have a conservatism
which can be improved upon.

It is known that exponential stability is more favorite property than asymptotic
stability since it gives a faster convergence rate to the equilibrium point, the decay rates (i.e.,
convergent rates) are important indices of practical systems, and the exponential stability
analysis of time-delay systems has been a popular topic in the past decades; see, for example,
[3, 13, 15] and their references. In [13], delay-dependent exponential stability for uncertain
linear systems with interval time-varying delays, in [15], global exponential periodicity
and global exponential stability of a class of recurrent neural networks with time-varying
delays.

Recently, there are many research study on the asymptotic stability of a class of neutral
and Lur’e dynamical systems with time delay, see, for example, [8, 9, 16, 17]. The problems
have been dealt with stability analysis for neutral systems with mixed delays and sector-
bounded nonlinearity [8], robust absolute stability criteria for uncertain Lur’e systems of
neutral type [16], and robust stability criteria for a class of Lur’e systems with interval time-
varying delay [9]. However, it is worth pointing out that, even though these results above
were elegant, there still exist some points waiting for the improvement. Firstly, most of the
work above the time-varying delays are required to be differentiable. In fact, the constraint
on the derivative of the time-varying delay is not required which allows the time-delay to be
a fast time-varying function. Secondly, in most studies on the asymptotic stability of Lur’e
dynamical systems still need to be improved to the exponential stability.

Based on the above discussions, we consider the problem of robust stability for a
class of uncertain neutral and Lur’e dynamical systems with sector-bounded nonlinearity.
The time delay is a continuous function belonging to a given interval, which means that the
lower and upper bounds for the time varying delay are available, but the delay function
is not necessary to be differentiable. To the best of the authors knowledge, there were
no global stability results for uncertain neutral and Lur’e dynamical systems with some
sector conditions [8, 9, 16, 17]. Based on the construction of improved Lyapunov-Krasovskii
functionals combined with Liebniz-Newton’s formula and the integral terms, new delay-
dependent sufficient conditions for the uncertain neutral and Lur’e dynamical of system are
established of LMIs. The new stability condition is much less conservative and more general
than some existing results. Numerical examples are given to illustrate the effectiveness of our
theoretical results.
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The rest of this paper is organized as follows. In Section 2, we give notations, defini-
tion, propositions, and lemma to be used in the proof of the main results. Delay-dependent
sufficient conditions for uncertain neutral and Lur’e dynamical systems with sector-bounded
nonlinearity are presented in Section 3. Numerical examples illustrated the obtained results
and are given in Section 4. The paper ends with conclusions in Section 5 and cited references.

2. Problem Formulation and Preliminaries

The following notation will be used in this paper: R
+ denotes the set of all real nonnegative

numbers; R
n denotes the n-dimensional space and the vector norm ‖ · ‖; Mn×r denotes the

space of all matrices of (n × r)-dimensions. AT denotes the transpose of matrix A; A is
symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes the set of all eigenvalues of
A; λmax(A) = max{Reλ; λ ∈ λ(A)}. xt := {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖;
C([0, t],Rn) denotes the set of all R

n-valued continuous functions on [0, t]; Matrix A is called
semipositive definite (A ≥ 0) if xTAx ≥ 0, for all x ∈ R

n; A is positive definite (A > 0) if
xTAx > 0 for all x /= 0;A > B means A − B > 0; diag(c1, c2, . . . , cm) denotes block diagonal
matrix with diagonal elements ci, i = 1, 2, . . . , m. The symmetric term in a matrix is denoted
by ∗.

Consider the following uncertain Lur’e system of neutral type with interval time-
varying delays and sector-bounded nonlinearity:

ẋ(t) − Cẋ(t − η(t)) = (A + ΔA(t))x(t) + (A1 + ΔA1(t))x(t − h(t)) + (B + ΔB(t))f(σ(t)),

σ(t) = HTx(t) =
[
h1 h2 · · · hm

]T
x(t), ∀t ≥ 0,

x(t + s) = φ(t + s), ẋ(t + s) = ϕ(t + s), s ∈ [−m, 0], m = max
{
h2, η

}
,

(2.1)

where x(t) ∈ R
n is the state vector; σ(t) ∈ R

n is the output vector; A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

n×n, A1 ∈ R
n×n, H ∈ R

n×m are constant known matrices; f(σ(t)) ∈ R
m is the nonlinear

function in the feedback path, which is denoted as f for simplicity in the sequel. Its form is
formulated as

f(σ(t)) =
[
f1(σ1(t)) f2(σ2(t)) · · · fm(σm(t))

]T
,

σ(t) =
[
σ1(t) σ2(t) · · · σm(t)

]T =
[
hT1x(t) hT2x(t) · · · hTmx(t)

]
,

(2.2)

wherein, each term fi(σi(t)), i = 1, 2, . . . , m satisfies any one of the following sector conditions:

fi(σi(t)) ∈ K[0,ki] =
{
fi(σi(t)) | fi(0) = 0, 0 < σi(t)fi(σi(t)) ≤ kiσi(t)2, σi(t)/= 0

}
(2.3)

or

fi(σi(t)) ∈ K[0,∞] =
{
fi(σi(t)) | fi(0) = 0, σi(t)fi(σi(t)) > 0, σi(t)/= 0

}
. (2.4)
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ΔA(t), ΔB(t), and ΔA1(t) are time-varying uncertainties of appropriate dimensions, which
are assumed to be of the following form:

[
ΔA(t) ΔB(t) ΔA1(t)

]
= DF(t)

[
E1 E2 E3

]
, (2.5)

whereD, E1, E2, and E3 are knownmatrices of appropriate dimensions, and the time-varying
matrix F(t) satisfies

FT (t)F(t) ≤ I, ∀t ≥ 0. (2.6)

The delays h(t) and τ(t) are time-varying continuous functions that satisfy

0 ≤ h1 ≤ h(t) ≤ h2, 0 ≤ η(t) ≤ η, η̇(t) ≤ ηd < 1. (2.7)

We introduce the following technical well-known propositions and definition, which will be
used in the proof of our results.

Definition 2.1. If there exist γ > 0 and ψ(γ) > 0 such that

‖x(t)‖ ≤ ψ(γ)e−γt, ∀t > 0, (2.8)

system (2.1) is said to be exponentially stable at the equilibrium point, where γ is called the
degree of exponential stability.

Proposition 2.2 (Cauchy inequality). For any symmetric positive definite matrixN ∈ Mn×n and
x, y ∈ R

n we have

±2xTy ≤ xTNx + yTN−1y. (2.9)

Proposition 2.3 (see [2]). For any symmetric positive definite matrix M > 0, scalar γ > 0, and
vector function ω : [0, γ] → R

n such that the integrations concerned are well defined, the following
inequality holds

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.10)

Proposition 2.4 (Schur complement lemma, [2]). Given constant symmetric matrices X, Y , Z
with appropriate dimensions satisfying X = XT , Y = YT > 0. Then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y
)
< 0 or

(−Y Z
ZT X

)
< 0. (2.11)

3. Main Results

Now we present a new delay-dependent condition for the uncertain system (2.1) satisfying
the sector conditions (2.3).
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Assumption 3.1. All the eigenvalues of matrix C are inside the unit circle.

Theorem 3.2. Under Assumption 3.1, given α > 0. The system (2.1) satisfying the sector condition
(2.3) is α-exponentially stabilizable if there exist symmetric positive definite matrices P , Q, R, U,
F, L; symmetric positive semidefinite matrices Z = diag(z1, z2, . . . , zm) and J = diag(j1, j2, . . . , jm);
scalars ε1 > 0 and ε2 > 0; matrices Ni; i = 1, 2, 3 of appropriate dimension such that the following
LMI holds:

M1 = M− [
0 I −I 0 0 0 0 0 0

]T

× e−2αh2U[
0 −I I 0 0 0 0 0 0

]
< 0,

M2 = M− [
0 −I 0 I 0 0 0 0 0

]T

× e−2αh2U[
0 I 0 −I 0 0 0 0 0

]
< 0,

(3.1)

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

φ11 φ12 φ13 φ14 φ15 φ16 φ17 φ18 φ19

∗ φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29

∗ ∗ φ33 0 0 0 0 0 0
∗ ∗ ∗ φ44 0 0 0 0 0
∗ ∗ ∗ ∗ φ55 φ56 φ57 φ58 φ59

∗ ∗ ∗ ∗ ∗ φ66 φ67 φ68 0
∗ ∗ ∗ ∗ ∗ ∗ φ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ φ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ φ99

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (3.2)

where

φ11 = PA +ATP +Q +QT − e−2αh1R − e−2αh2R + 2αxT (t)Px(t), φ12 = PA1 +ATNT
1 ,

φ13 = e−2αh1R, φ14 = e−2αh2R, φ17 = PC, φ18 = PD, φ19 = εiET1 ,

φ16 = ATL +ATNT
3 , φ15 = ATHZT + PB +HKJ +ATNT

2 + 2αHZ,

φ22 = −2e−2αh2U +N1A1 +AT
1N

T
1 , φ23 = e−2αh2U, φ24 = e−2αh2U,

φ25 = AT
1HZT +N1B +AT

1N
T
2 , φ26 = AT

1L −N1 +AT
1N

T
3 , φ27 =N1C, φ28 =N1D,

φ29 = εiET3 , φ33 = −e−2αh1Q − e−2αh1R − e−2αh2U, φ44 = −e−2αh2Q − e−2αh2R − e−2αh2U,

φ57 = ZHTC +N2C, φ55 = ZHTB + BTHZT − J − JT +N2B + BTNT
2 ,

φ56 = BTL −N2 + BTNT
3 , φ59 = εiET2 , φ58 = ZHTD +N2D, φ88 = −εiI,

φ99 = −εiI, φ66 = h21R + h22R + F + (h2 − h1)2U − L − LT −N3 −NT
3 ,

φ67 = LC +N3C, φ68 = LD +N3D, φ77 = −e−2αη(1 − ηD
)
F.

(3.3)
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The solution x(t) of the system satisfies,

‖x(t)‖ ≤

√√
√
√a

∥
∥φ

∥
∥2 + b‖M1‖2 + c‖M2‖2

λm(P)
, (3.4)

where a = λM(P) + 2h2λM(R) + h2λM(U) + 2λM(HZKHT ), b = 2λM(Q)(1 − e−2αh2)/2α +
2h2λM(R)((1−e−2αh2)/2α)+h2λM(U)((1−e−2αh2)/2α), and c = λM(F)((1−e−2αη)/2α), ‖M1‖ =
sup−m≤s≤0‖x(s)‖, ‖M2‖ = sup−m≤s≤0‖ẋ(s)‖.

Proof. Using (2.5), the uncertain system (2.1) can be represented as

ẋ(t) = Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ
(
t − η(t)) +Dp(t),

p(t) = F(t)
(
E1x(t) + E2f(σ(t)) + E3x(t − h(t))

)
,

σ(t) = HTx(t) =
[
h1 h2 · · · hm

]T
x(t), ∀t ≥ 0,

x(s) = φ(s), s ∈ [−max
(
h2, η2

)
, 0
]
.

(3.5)

We consider the following Lyapunov-Krasovskii functional

V (x(t)) =
8∑

i=1

Vi, (3.6)

where

V1(x(t)) = e2αtxT (t)Px(t),

V2(x(t)) =
∫ t

t−h1
e2αsxT (s)Qx(s)ds,

V3(x(t)) =
∫ t

t−h2
e2αsxT (s)Qx(s)ds,

V4(x(t)) = h1

∫0

−h1

∫ t

t+s
e2αsẋT (τ)Rẋ(τ)dτ ds,

V5(x(t)) = h2

∫0

−h2

∫ t

t+s
e2αsẋT (τ)Rẋ(τ)dτ ds,
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V6(x(t)) = (h2 − h1)
∫−h1

−h2

∫ t

t+s
e2αsẋT (τ)Uẋ(τ)dτ ds,

V7(x(t)) =
∫ t

t−η(t)
e2αsẋT (s)Fẋ(s)ds,

V8(x(t)) = 2
m∑

i=1

λie
2αt

∫σi

0
fi(σi)dσi.

(3.7)

Taking the derivative of V (xt) along the solution of system (3.5), we have

V̇1(x(t)) = 2αe2αtxT (t)Px(t) + 2e2αtxT (t)Pẋ(t),

= e2αt
[
2αxT (t)Px(t) + 2xT (t)P(Ax(t) +A1x(t − h(t))

+Bf(σ(t)) + Cẋ
(
t − η(t))Dp(t))

]
, V̇2(x(t))

= e2αt
[
xT (t)Qx(t) − e−2αh1xT (t − h1)Qx(t − h1)

]
, V̇3(x(t))

= e2αt
[
xT (t)Qx(t) − e−2αh2xT (t − h2)Qx(t − h2)

]
, V̇4(x(t))

≤ e2αt
[

h21ẋ
T (t)Rẋ(t) − h1e−2αh1

∫ t

t−h1
ẋT (s)Rẋ(s)ds

]

, V̇5(x(t))

≤ e2αt
[

h22ẋ
T (t)Rẋ(t) − h2e−2αh2

∫ t

t−h2
ẋT (s)Rẋ(s)ds

]

, V̇6(x(t))

≤ e2αt
[

(h2 − h1)2ẋT (t)Uẋ(t) − (h2 − h1)e−2αh2
∫ t−h1

t−h2
ẋT (s)Uẋ(s)ds

]

, V̇7(x(t))

≤ e2αt
[
ẋT (t)Fẋ(t) − e−2αη(1 − ηd

)
ẋT

(
t − η(t))Fẋ(t − η(t))

]
, V̇8(x(t))

= 2
m∑

i=1

λie
2αt

(

2α
∫σi(t)

0
fi(σi)dσi + fi(σi(t))σ̇i(t)

)

≤ e2αt
[
4αfT (σ(t))Zσ(t) + 2fT (σ(t))Zσ̇(t)

]

≤ e2αt
[
4αfT (σ(t))ZHx(t) + 2fT (σ(t))ZHTẋ(t)

]

= e2αt
[
4αfT (σ(t))ZHx(t) + 2fT (σ(t))ZHT

×(Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ
(
t − η(t)) +Dp(t))

]
.

(3.8)
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Applying Proposition 2.3 and the Leibniz-Newton formula, we have

−h1
∫ t

t−h1
ẋT (s)Rẋ(s)ds ≤ −

[∫ t

t−h1
ẋ(s)

]T
R

[∫ t

t−h1
ẋ(s)

]

≤ −[x(t) − x(t − h1)]TR[x(t) − x(t − h1)]

= −xT (t)Rx(t) + 2xT (t)Rx(t − h1) − xT (t − h1)Rx(t − h1),

−h2
∫ t

t−h2
ẋT (s)Rẋ(s)ds ≤ −

[∫ t

t−h2
ẋ(s)

]T
R

[∫ t

t−h2
ẋ(s)

]

≤ −[x(t) − x(t − h2)]TR[x(t) − x(t − h2)]

= −xT (t)Rx(t) + 2xT (t)Rx(t − h2) − xT (t − h2)Rx(t − h2).

(3.9)

Note that

−(h2 − h1)
∫ t−h1

t−h2
ẋT (s)Uẋ(s)ds = − (h2 − h1)

∫ t−h(t)

t−h2
ẋT (s)Uẋ(s)ds

− (h2 − h1)
∫ t−h1

t−h(t)
ẋT (s)Uẋ(s)ds

= − (h2 − h(t))
∫ t−h(t)

t−h2
ẋT (s)Uẋ(s)ds

− (h(t) − h1)
∫ t−h(t)

t−h2
ẋT (s)Uẋ(s)ds

− (h(t) − h1)
∫ t−h1

t−h(t)
ẋT (s)Uẋ(s)ds

− (h2 − h(t))
∫ t−h1

t−h(t)
ẋT (s)Uẋ(s)ds.

(3.10)

Using Proposition 2.3 gives

−(h2 − h(t))
∫ t−h(t)

t−h2
ẋT (s)Uẋ(s)ds ≤ −

[∫ t−h(t)

t−h2
ẋ(s)ds

]T
U

[∫ t−h(t)

t−h2
ẋ(s)ds

]

≤ −[x(t − h(t)) − x(t − h2)]TU[x(t − h(t)) − x(t − h2)],

−(h(t) − h1)
∫ t−h1

t−h(t)
ẋT (s)Uẋ(s)ds ≤ −

[∫ t−h1

t−h(t)
ẋ(s)ds

]T
U

[∫ t−h1

t−h(t)
ẋ(s)ds

]

≤ −[x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))].
(3.11)
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Let β = (h2 − h(t))/(h2 − h1) ≤ 1, so we have

−(h2 − h(t))
∫ t−h1

t−h(t)
ẋT (s)Uẋ(s)ds = −β

∫ t−h1

t−h(t)
(h2 − h1)ẋT (s)Uẋ(s)ds

≤ −β
∫ t−h1

t−h(t)
(h(t) − h1)ẋT (s)Uẋ(s)ds

≤ −β[x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))],

−(h(t) − h1)
∫ t−h(t)

t−h2
ẋT (s)Uẋ(s)ds = −(1 − β)

∫ t−h(t)

t−h2
(h2 − h1)ẋT (s)Uẋ(s)ds

≤ −(1 − β)
∫ t−h(t)

t−h2
(h2 − h(t))ẋT (s)Uẋ(s)ds

≤ −(1 − β)[x(t − h(t)) − x(t − h2)]T

×U[x(t − h(t)) − x(t − h2)].
(3.12)

Therefore from (3.10)–(3.12), we obtain

−(h2 − h1)
∫ t−h1

t−h2
ẋT (s)Uẋ(s)ds ≤ − [x(t − h(t)) − x(t − h2)]TU[x(t − h(t)) − x(t − h2)]

− [x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))]

− β[x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))]

− (
1 − β)[x(t − h(t)) − x(t − h2)]TU[x(t − h(t)) − x(t − h2)].

(3.13)

We add the following zero equation:

2ξT (t)N
[
Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ

(
t − η(t)) +Dp(t) − ẋ(t)] = 0, (3.14)

where N = [NT
1 NT

2 NT
3 ]

T , ξ(t) = [xT (t − h(t)) fT (σ(t)) ẋT (t)]T and by using the identity
relation

−ẋ(t) +Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ
(
t − η(t)) +Dp(t) = 0, (3.15)

we have

− 2ẋT (t)Lẋ(t) + 2ẋT (t)LAx(t) + 2ẋT (t)LA1x(t − h(t)) + 2ẋT (t)LBf(σ(t))

+ 2ẋT (t)LCẋ
(
t − η(t)) + 2ẋT (t)LDp(t) = 0.

(3.16)
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For system (2.1)with nonlinearity located in the sectors [0, kj] (j = 1, 2, . . . , m), if there exists
J = diag(j1, j2, . . . , jm), then we have

jifi(σi)
[
kih

T
i x(t) − fi(σi)

]
≥ 0, i = 1, 2, . . . , m, (3.17)

which is equivalent to

xT (t)HKJf(σ(t)) − fT (σ(t))Jf(σ(t)) ≥ 0. (3.18)

Similarly, for any ε > 0, from (3.4), we have

− εpT (t)p(t) + ε(E1x(t) + E2f(σ(t)) + E3x(t − h(t))
)T

× (
E1x(t) + E2f(σ(t)) + E3x(t − h(t))

) ≥ 0.
(3.19)

Hence, according to (3.9), (3.13), and by adding the zero term (3.16) and (3.18)-(3.19), we get

V̇ (x(t)) ≤ e2αt
{
2αxT (t)Px(t) + 2xT (t)P

(
Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ

(
t − η(t))

+Dp(t)
)
+ xT (t)Qx(t) − e−2αh1xT (t − h1)Qx(t − h1)

− e−2αh2xT(t − h2)Qx(t − h2)+h21ẋT (t)Rẋ(t) + h22ẋT (t)Rẋ(t) − e−2αh1xT (t)Rx(t)

+ 2e−2αh1xT (t)Rx(t − h1) + xT (t)Qx(t) − e−2αh1xT (t − h1)Rx(t − h1)

− e−2αh2xT (t − h2)Rx(t − h2) − e−2αh2xT (t)Rx(t) + 2e−2αh2xT (t)Rx(t − h2)

× ẋT (t)Fẋ(t) − e−2αη(1 − ηD
)
ẋT

(
t − η(t))Fẋ(t − η(t))2αfT (σ(t))ZHx(t)

+ 2fT (σ(t))ZHT(Ax(t) +A1x(t − h(t)) + Bf(σ(t)) + Cẋ
(
t − η(t)) +Dp(t))

− e−2αh2xT (t)Rx(t) + 2e−2αh2xT (t)Rx(t − h2)(h2 − h1)2ẋT (t)Uẋ(t)

+ 2xT (t)HKJf(σ(t)) − 2fT (σ(t))Jf(σ(t)) − 2ẋT (t)Lẋ(t) + 2ẋT (t)LAx(t)

+ 2ẋT (t)LA1x(t − h(t)) + 2ẋT (t)LBf(σ(t)) + 2ẋT (t)LCẋ
(
t − η(t))

+ 2ẋT (t)LDp(t) − εpT (t)p(t) + ε(E1x(t) + E2f(σ(t)) + E3x(t − h(t))
)T

× (
E1x(t) + E2f(σ(t)) + E3x(t − h(t))

) − e−2αh2[x(t − h(t)) − x(t − h2)]T

×U[x(t − h(t)) − x(t − h2)]

−e−2αh2[x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))]
}
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− β[x(t − h1) − x(t − h(t))]TU[x(t − h1) − x(t − h(t))]

− (
1 − β)[x(t − h(t)) − x(t − h2)]TU[x(t − h(t)) − x(t − h2)]

= e2αt
{
ζT(t)Mζ(t) − β[x(t − h1) − x(t − h(t))]Te−2αh2U[x(t − h1) − x(t − h(t))]

−(1 − β)[x(t − h(t)) − x(t − h2)]Te−2αh2U[x(t − h(t)) − x(t − h2)]
}

= e2αt
{
ζT(t)

[(
1 − β)M1 + βM2

]
ζ(t)

}
,

(3.20)

where M1 and M2 are defined as in (3.1), respectively, and ζ(t) = [x(t) x(t − h(t)) x(t −
h1) x(t − h2) f(σ(t)) ẋ(t) ẋ(t − η(t)) p(t)]. By (1 − β)M1 + βM2 < 0 holds if and only if
M1 < 0 and M2 < 0. For showing the convergence rate, we have V̇ (x(t)) ≤ 0, and then
V (x(t)) ≤ V (x(0)). However,

V1(x(0)) = e2αtxT (0)Px(0) ≤ λmax(P)
∥∥φ

∥∥2
, V2(x(0))

=
∫0

−h1
e2αsxT (s)Qx(s)ds,≤ λmax(Q)

∫0

−h1
e2αsds‖M1‖2

= λmax(Q)
1 − e−2αh2

2α
‖M1‖2, V3(x(0))

=
∫0

−h2
e2αsxT (s)Qx(s)ds,≤ λmax(Q)

∫0

−h2
e2αsds‖M1‖2

= λmax(Q)
1 − e−2αh2

2α
‖M1‖2, V4(x(0))

= h1

∫0

−h1

∫0

s

e2αsẋT (τ)Rẋ(τ)dτ ds

= h1

∫0

−h1
e2αs

[
xT (0)Rx(0) − xT (s)Rx(s)

]
ds

≤ h2λM(R)
∫0

−h1
e2αsds

∥∥φ
∥∥2 − h2λM(R)

∫0

−h1
e2αsds‖M1‖2

= h2λM(R)
1 − e−2αh2

2α
∥∥φ

∥∥2 − h2λM(R)
1 − e−2αh2

2α
‖M1‖2, V5(x(0))

= h2

∫0

−h2

∫0

s

e2αsẋT (τ)Rẋ(τ)dτ ds

≤ h2λM(R)
1 − e−2αh2

2α
∥∥φ

∥∥2 − h2λM(R)
1 − e−2αh2

2α
‖M1‖2, V6(x(0))

= h2

∫−h1

−h2

∫0

s

e2αsẋT (τ)Uẋ(τ)dτ ds
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≤ h2λM(U)
1 − e−2αh2

2α
∥
∥φ

∥
∥2 − h2λM(U)

1 − e−2αh2
2α

‖M1‖2, V7(x(0))

=
∫0

η(0)
e2αsẋT (s)Fẋ(s)ds,≤ λM(F)

∫0

−η
e2αsds‖M2‖2

≤ λM(F)
1 − e−2αη

2α
‖M2‖2, V8(x(t))

= 2
m∑

i=1

λie
2αt

∫σi

0
fi(σi)dσi ≤ 2

m∑

i=1

λie
2αt

∫σi

0
kσi(t)dσi

≤ 2
m∑

i=1

e2αtλikσ
2
i (t) ≤ 2

m∑

i=1

e2αtλikx
T (t)HHTx(t), V8(x(0))

≤ 2λM
(
HZKHT

)∥
∥φ

∥
∥2
,

(3.21)

and V (x(t)) ≥ e2αtxT (t)Px(t) ≥ e2αtλm(P)‖x(t)‖2. Then, from Definition 2.1, we conclude that
the equilibrium point is globally exponentially stable. This completes the proof.

Remark 3.3. For system (2.1) with uncertainty located in the sector conditions (2.4), if there
exists J = diag(j1, j2, . . . , jm), it follows that

rifi(σi(t))hTi x(t) ≥ 0, i = 1, 2, . . . , m, (3.22)

which is equivalent to

xT (t)HJf(σ(t)) ≥ 0. (3.23)

By replacing (3.18) with (3.23) and letting α = 0, we obtain the following robust
stability criterion.

Corollary 3.4. Under Assumption 3.1, the system (2.1) satisfying the sector condition (2.4) is
asymptotically stable if there exist symmetric positive definite matrices P , Q, R, U, F, L; symmetric
positive semidefinite matrices Z = diag(z1, z2, . . . , zm) and J = diag(j1, j2, . . . , jm); scalars ε1 > 0
and ε2 > 0; matricesNi; i = 1, 2, 3 of appropriate dimension such that the following LMI holds:

M1 = M− [
0 I −I 0 0 0 0 0 0

]T

× e−2αh2U[
0 −I I 0 0 0 0 0 0

]
< 0,

M2 = M− [
0 −I 0 I 0 0 0 0 0

]T

× e−2αh2U[
0 I 0 −I 0 0 0 0 0

]
< 0,
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 φ13 φ14 �15 φ16 φ17 φ18 φ19

∗ φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29

∗ ∗ φ33 0 0 0 0 0 0
∗ ∗ ∗ φ44 0 0 0 0 0
∗ ∗ ∗ ∗ �55 φ56 φ57 φ58 φ59

∗ ∗ ∗ ∗ ∗ φ66 φ67 φ68 0
∗ ∗ ∗ ∗ ∗ ∗ φ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ φ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ φ99

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.24)

where

�15 = ATHZT + PB +HJ, �55 = ZHTB + BTHZT . (3.25)

Remark 3.5. The following stability criteria are presented for finite and infinite sector condi-
tions, for systems without uncertainties.

Corollary 3.6. Under Assumption 3.1, given α > 0. The system (2.1) without uncertainties
satisfying the sector condition (2.3) is α-exponentially stabilizable if there exist symmetric positive
definite matrices P ,Q, R,U, F, L; symmetric positive semidefinite matrices Z = diag(z1, z2, . . . , zm)
and J = diag(j1, j2, . . . , jm); matricesNi; i = 1, 2, 3 of appropriate dimension such that the following
LMI holds:

M1 = M− [
0 I −I 0 0 0 0

]T

× e−2αh2U[
0 −I I 0 0 0 0

]
< 0,

M2 = M− [
0 −I 0 I 0 0 0

]T

× e−2αh2U[
0 I 0 −I 0 0 0

]
< 0,

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

φ11 φ12 φ13 φ14 φ15 φ16 φ17

∗ φ22 φ23 φ24 φ25 φ26 φ27

∗ ∗ φ33 0 0 0 0
∗ ∗ ∗ φ44 0 0 0
∗ ∗ ∗ ∗ φ55 φ56 φ57

∗ ∗ ∗ ∗ ∗ φ66 φ67

∗ ∗ ∗ ∗ ∗ ∗ φ77

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.26)

Corollary 3.7. Under Assumption 3.1, the system (2.1) without uncertainties satisfying the
sector condition (2.4) is asymptotically stable if there exist symmetric positive definite matrices
P , Q, R, U, F, L; symmetric positive semidefinite matrices Z = diag(z1, z2, . . . , zm) and
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J = diag(j1, j2, . . . , jm); matrices Ni; i = 1, 2, 3 of appropriate dimension such that the following
LMI holds:

M1 = M− [
0 I −I 0 0 0 0

]T

× e−2αh2U[
0 −I I 0 0 0 0

]
< 0,

M2 = M− [
0 −I 0 I 0 0 0

]T

× e−2αh2U[
0 I 0 −I 0 0 0

]
< 0,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢⎢⎢
⎣

φ11 φ12 φ13 φ14 �15 φ16 φ17

∗ φ22 φ23 φ24 φ25 φ26 φ27

∗ ∗ φ33 0 0 0 0
∗ ∗ ∗ φ44 0 0 0
∗ ∗ ∗ ∗ �55 φ56 φ57

∗ ∗ ∗ ∗ ∗ φ66 φ67

∗ ∗ ∗ ∗ ∗ ∗ φ77

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥
⎦

.

(3.27)

Remark 3.8. In this paper, the restriction that the state delay is differentiable is not required
which allows the state delay to be fast time-varying. Meanwhile, this restriction is required
in some existing result, see [8, 9, 16, 17].

Remark 3.9. It is worth pointing out that we can extend this method to more complex
dynamical network models, such as neutral-type neural networks [18, 19] or BAM neutral-
type neural networks [20, 21].

4. Numerical Examples

In this section, we provide numerical examples to show the effectiveness of our theoretical
results.

Example 4.1. Consider the following nominal Lur’e system with time-varying delays which
is studied in [8, 9, 17]:

ẋ(t) − Cẋ(t − η(t)) = Ax(t) +A1x(t − h(t)) + Bf(σ(t)),

σ(t) = HTx(t) = [h1 h2]
Tx(t), ∀ ≥ 0,

(4.1)

where

A =
[−2 0.5
0 −1

]
, A1 =

[
1 0.4
0.4 −1

]
, B =

[ −0.5
−0.75

]
,

C =
[
0.2 0.1
0.1 0.2

]
, H =

[
0.2
0.6

]
.

(4.2)
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Table 1: Upper delay bound h2 with h1 = 0.

ηD Method hD 0.6 0.8 No restriction on ḣD

0.1 [8] h2 0.9888 0.7228 —
Corollary 3.4 h2 — — 1.0651

0.5 [8] h2 0.7793 0.6282 —
Corollary 3.4 h2 — — 0.9210

0.9 [8] h2 0.0983 0.0967 —
Corollary 3.4 h2 — — 0.1177

Table 2: Upper delay bound h2 with h1 = 0.

ηD Method hD 0.6 0.8 No restriction on ḣD

0.5
[8] h2 0.7793 0.6282 —
[17] h2 0.7901 0.6321 —

Corollary 3.6 h2 — — 0.9209

0.9

[8] h2 0.0983 0.0967 —
[17] h2 0.0994 0.0981 —
[9] h2 0.1086 0.1086 —

Corollary 3.6 h2 — — 0.1181

Tables 1 and 2 give comparison of maximum allowable value of h2 for (4.1) obtained
in Corollary 3.6 with nonlinearity satisfying (2.3), where k = 100 and Corollary 3.7 with
nonlinearity satisfying (2.4), respectively. We see that, when h1 = 0, the maximum allowable
bounds for h2 obtained from Corollaries 3.6 and 3.7 are much better than those obtained in
[8, 9, 17]. The results obtained in [8, 9] may not be used for the case when h1 /= 0. Moreover,
the differentiability of the time delay h(t) is not required in Corollaries 3.6 and 3.7.

We let h(t) = 0.7| cos t|, η(t) = 1, φ(t) = [−0.1 cos t, cos t], for all t ∈ [−1, 0], and f(x(t)) =
δ|x(t)|, |δ| ≤ 0.5. Figure 1 shows the trajectories of solutions x1(t) and x2(t) of the nominal
Lur’e system with time-varying delays (4.1).

Example 4.2. Consider the following uncertain Lur’e system with interval time-varying delay
with the following parameters:

ẋ(t) − Cẋ(t − η(t)) = (A + ΔA(t))x(t) + (A1 + ΔA1(t))x(t − h(t))
+ (B + ΔB(t))f(σ(t)),

(4.3)

where

A =
[−2 0
0 −0.9

]
, A1 =

[−1 0
−1 −1

]
, B =

[−0.2
−0.3

]
, C =

[
0.2 0
0 0.2

]
,

H =
[
0.4
0.8

]
, D = E1 = E3 =

[
0.1 0
0 0.1

]
, E2 =

[
0.1
0

]
.

(4.4)
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Figure 1: The trajectories of x1(t) and x2(t) of the the nominal Lur’e systemwith time-varying delays (4.1).

Solution. From the conditions (3.1) of Theorem 3.2, we let α = 0.4, h1 = 0.1, h2 = 0.4, t = 0.8,
η = 0.1, and K = 0.5. By using the LMI Tool-box in MATLAB, we obtain

P =
[
28.6713 −0.2237
−0.2237 2.4026

]
, Q =

[
25.1176 0.7616
0.7616 1.0772

]
, U =

[
23.6798 3.0045
3.0045 3.1148

]
,

F =
[
7.0939 −0.3657
−0.3657 0.8018

]
, N1 =

[−3.1736 0.4426
−1.4601 1.2008

]
, L =

[
16.5554 0

0 16.5554

]
,

N3 =
[−5.5006 −0.4441
−0.9892 −14.4101

]
, N2 =

[−1.6410 0.2843
]
, R =

[
12.0906 0.2313
0.2313 2.2354

]
,

Z = 0.9717, J = 4.7851, e1 = 10.2112, e2 = 18.1870.

(4.5)

Thus, the system (2.1), is 0.4-exponentially stabilizable. Given α > 0, we will give the values
of the maximum allowable upper bounds of the uncertain Lur’e system with interval time-
varying delay (4.3) for difference ηd of the delay for different decay rates 0.1 ≤ α ≤ 0.4. From
Theorem 3.2, we obtain the maximum allowable upper bound of the time-varying delay h2,
as shown in Table 3.

We let h(t) = 0.1 + 0.65| sin t|, η(t) = 0.5 + 0.4| sin t|, φ(t) = [− cos t, cos t], for all t ∈
[−0.9, 0], and f(x(t)) = δ|x(t)|, |δ| ≤ 0.5. Figure 2 shows the trajectories of solutions x1(t) and
x2(t) of the uncertain Lur’e system with interval time-varying delay (4.3).

5. Conclusions

In this paper, we have investigated the delay-dependent robust stability criteria for uncertain
neutral and Lur’e dynamical systems with sector-bounded nonlinearity. Based on Lyapunov-
krasovskii theory, new delay-dependent sufficient conditions for robust stability have been
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Table 3: Maximum allowable upper bounds h2 of the uncertain Lur’e system with interval time-varying
delay (4.3) for different values of the ηd and decay rates.

ηd = 0.2 ηd = 0.4 ηd = 0.6 ηd = 0.8
α = 0.1 0.7423 0.7094 0.6541 0.5294
α = 0.2 0.6798 0.6513 0.6031 0.4923
α = 0.3 0.6291 0.6037 0.5606 0.4604
α = 0.4 0.5870 0.5637 0.5245 0.4326

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Time t

x1(t)
x2(t)

x
1(
t)
,x

2(
t)

−1
−0.8
−0.6
−0.4
−0.2

Figure 2: The trajectories of x1(t) and x2(t) of the uncertain Lur’e system with interval time-varying delay
(4.3).

derived in terms of LMIs. The interval time-varying delay function is not required to be
differentiable which allows time-delay function to be a fast time-varying function. The
global exponential stability for uncertain neutral and Lur’e dynamical systems with some
conditions are investigated. Numerical examples are given to illustrate the effectiveness of the
theoretic results which show that our results are much less conservative than some existing
results in the literature.
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