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A robust control problem for discrete-time uncertain stochastic systems is discussed via gain-scheduled control scheme subject to
𝐻
∞
attenuation performance. Applying Linear ParameterVarying (LPV)modeling approach and stochastic difference equation, the

uncertain stochastic systems can be described by combining time-varyingweighting function and linear systemswithmultiplicative
noise terms. Due to the consideration of stochastic behavior, the stability in the sense of mean square is applied for the system.
Furthermore, two kinds of Lyapunov functions are employed to derive their corresponding sufficient conditions to solve the
stabilization problems of this paper. In order to use convex optimization algorithm, the derived conditions are converted into
Linear Matrix Inequality (LMI) form. Via solving those conditions, the gain-scheduled controller can be established such that the
robust asymptotical stability and 𝐻

∞
performance of the disturbed uncertain stochastic system can be achieved in the sense of

mean square. Finally, two numerical examples are applied to demonstrate the effectiveness and applicability of the proposed design
method.

1. Introduction

In control problems, accurate parameters of dynamic system
are always important premised assumption. Unfortunately,
the accurate parameters are hardly to be obtained in practical
applications due to modeling errors and natural perturba-
tions. For this reason, robust control schemes [1–12] were
proposed to guarantee stability of dynamic system with
admissible uncertainties. Through [1–3], the uncertainty of
system is described by norm bounded time-varying function.
On the other hand, based on LPV modeling approach [4–
6], the uncertain systems can be interpreted by combining
several subsystems and chosen time-varying weighting func-
tion. Referring to [4–6, 9], LPV system can be established
to completely represent the uncertain systems by using
LPV modeling approach. Furthermore, Lyapunov stability
theory has been widely applied for stability analysis and
synthesis of LPV systems. In the Lyapunov stability theory,
the choice of Lyapunov function to present the system energy
is an important issue that will influence conservatism of the
derived stability criterion. Generally, Parameter Independent

Lyapunov Function (PILF) [4, 7] and Parameter Dependent
Lyapunov Function (PDLF) [10, 11] are applied to propose
their stability criteria for LPV systems. In this paper, both
PILF and PDLF are, respectively, applied to derive the cor-
responding stability criterion for the considered LPV system.

Referring to the literature [13, 14], gain-scheduled design
scheme provides powerful tool to deal with stabilization
problems of the LPV systems. Moreover, based on the gain-
scheduled design scheme, robustness of LPV systems can be
increased due to a gain-table designed by numerous opera-
tion points. Besides, it is well known that external disturbance
often causes poor control performance and unstable source of
controlled systems.Therefore,𝐻

∞
gain-scheduled controller

designmethods have been proposed by [8, 14–16] to constrain
the effect of external disturbance on LPV systems. With𝐻

∞

control theory, the performance index can cope with the
worst case as the effect of external disturbance.

Practically, stochastic behavior of dynamic systems often
appears around operating environment. Due to unmea-
surable and unpredictable property, stability of stochastic
system is difficult to be analyzed and discussed. Referring
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to [17, 18], the stochastic behavior is considered as external
disturbance or unknown perturbation. On the other hand,
stochastic difference equation has been proposed by [19] to
formulate the stochastic behavior into multiplicative noise
term expressed by multiplication of states and noises. Via the
multiplicative noise term, the stochastic behavior of system is
more representative and understandable than that described
by disturbance or perturbation. Therefore, many efforts [20–
27] have been developed to discuss stability analysis and
synthesis of stochastic systems. Referring to [26, 27], the
uncertainty is described by specific norm bounded time-
varying function that limits the description of uncertain
stochastic system. In order to extend stability criterion to
uncertain stochastic systems, the LPV stochastic system is
proposed and considered in this paper.

To the best of our knowledge, there have been less
works on discussing robust stabilization problems of the LPV
stochastic systems subject to 𝐻

∞
performance. The main

purpose of this paper is thus to develop the gain-scheduled
controller design methods for the LPV stochastic systems.
According to the consideration of stochastic behavior, the
robust stability criterion proposed in this paper is more
general than the one in [4, 8, 14]. And both PILF and PDLF
are applied to derive their corresponding sufficient conditions
that are converted into the LMI form. Via solving those
conditions, the feasible solutions can be obtained to establish
the corresponding gain-scheduled controller to guarantee
the asymptotical stability and 𝐻

∞
performance of the LPV

stochastic system in the sense of mean square. For discussing
the conservatism of proposed design methods, a numerical
example is proposed to find the minimum performance
index of the derived conditions. In addition, a ship autopilot
servosystem is proposed to show the effectiveness and appli-
cability of the proposed design methods.

The paper is organized as follows. In Section 2, disturbed
discrete-time LPV stochastic systems and its stabilization
problems are described. The gain-scheduled 𝐻

∞
controller

design method is proposed in Section 3. And less conser-
vative stability criterion is proposed in Section 4. Finally,
two numerical examples are employed to demonstrate effec-
tiveness and application of the proposed design methods in
Section 5. Some conclusions are stated in Section 6.

2. Systems Description and
Problem Formulation

In this section, the following discrete-time disturbed uncer-
tain stochastic system is proposed:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡)

+ (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the
control input vector, 𝑤(𝑡) ∈ R𝑝 is the exogenous disturbance
input, and 𝛽(𝑡) is a discrete type scalar Brownian motion

satisfying the independent increment property [19]; that is,
𝐸{𝑥(𝑡)𝛽(𝑡)} = 0. And the covariance of𝛽(𝑡) can be assumed as
𝐸{𝛽
𝑇

(𝑡)𝛽(𝑡)} = 𝜏
2, where the 𝜏 is intensity level of themotion.

𝐸{⋅} denotes the expected value of ⋅.A(𝛼(𝑡)) ∈ R𝑛×𝑛,B(𝛼(𝑡)) ∈
R𝑛×𝑚, E(𝛼(𝑡)) ∈ R𝑛×𝑝, A(𝛼(𝑡)) ∈ R𝑛×𝑛, B(𝛼(𝑡)) ∈ R𝑛×𝑚,
and E(𝛼(𝑡)) ∈ R𝑛×𝑝 which are matrices depending on time-
varying parameters vector 𝛼(𝑡) = [𝛼1(𝑡) 𝛼2(𝑡) ⋅ ⋅ ⋅ 𝛼

𝑟
(𝑡)].

Referring to [12], the time-varying parameter 𝛼(𝑡) can be
expressed as a convex combination. Thus, the matrices of
system (1) depending on the 𝛼(𝑡) can be reconstructed by the
following equation:

[

A (𝛼 (𝑡)) B (𝛼 (𝑡)) E (𝛼 (𝑡))

A (𝛼 (𝑡)) B (𝛼 (𝑡)) E (𝛼 (𝑡))
]

=

𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡) [

A
𝑖
B
𝑖
E
𝑖

A
𝑖
B
𝑖
E
𝑖

] ,

(2)

where 𝑁 = 2𝑟 and 𝜗
𝑖
(𝑡) is measurable at each time instant.

Moreover, 𝜗
𝑖
(𝑡) satisfies ∑𝑁

𝑖=1 𝜗𝑖(𝑡) = 1 and 0 ≤ 𝜗
𝑖
(𝑡) ≤ 1. The

A
𝑖
,B
𝑖
,E
𝑖
,A
𝑖
,B
𝑖
, andE

𝑖
are constantmatriceswith appropriate

dimensions. Based on (2), system (1) can be rewritten as
follows:

𝑥 (𝑡 + 1) =
𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)

+ (A
𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) .

(3)

Based on the LPV modeling approach and stochastic differ-
ence equation, the LPV stochastic system (3) is structured to
substitute the uncertain stochastic system (1) to develop gain-
scheduled controller design methods. Moreover, the design
methods are proposed to satisfy the𝐻

∞
performance such as

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

(4)

for 𝑤(𝑡) ̸= 0 and 𝑥(0) = 0, in which 𝑡
𝑓
is the terminal time of

control, 𝜂 is a prescribed value which denotes the worst case
effect of 𝑤(𝑡) on 𝑥(𝑡), and S is a positive definite weighting
matrix. Besides, in case such as 𝑤(𝑡) = 0, the robust stability
of (3) is an important issue. The concerned stability of (3) is
thus provided as the following definition by the sense ofmean
square [20, 23].

Definition 1. For LPV stochastic system (3) with zero external
disturbance 𝑤(𝑡) = 0, the solution with admissible robust
uncertainties is asymptotically mean square stable if 𝐸{𝑥(𝑡)}
and state correlation matrix 𝐸{𝑥

𝑇

(𝑡)𝑥(𝑡)} are converged to
zero as 𝑡 → ∞.

In next section, both PILF and PDLF are applied to derive
their corresponding sufficient condition into LMI problem
for applying the convex optimization algorithm [28, 29].
Through solving the condition, the gain-scheduled controller
can be established to achieve robust asymptotical stability and
𝐻
∞

performance of (3) in the sense of mean square.
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3. Stability Criterion for Disturbed LPV
Stochastic Systems

In this section, the gain-scheduled control scheme [14] is
employed to discuss the stabilization problem of (3). Thus,
the following gain-scheduled controller is proposed:

𝑢 (𝑡) = − F (𝛼 (𝑡)) 𝑥 (𝑡) (5a)

or

𝑢 (𝑡) =

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) (−F

𝑗
𝑥 (𝑡)) . (5b)

Substituting (5a)-(5b) into (1), the following closed-loop
system can be inferred:

𝑥 (𝑡 + 1) = (A (𝛼 (𝑡)) −B (𝛼 (𝑡)) F (𝛼 (𝑡))) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + ((A (𝛼 (𝑡)) −B (𝛼 (𝑡)) F (𝛼 (𝑡)))

⋅ 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) = R (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡) =

𝑁

∑

𝑖=1
𝜗
𝑖
(𝑡)((A

𝑖
−B
𝑖

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)𝑥 (𝑡)

+E
𝑖
𝑤 (𝑡)

+((A
𝑖
− B
𝑖

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)𝑥 (𝑡) +E

𝑖
𝑤 (𝑡))𝛽 (𝑡))

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡)

+E
𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(6)

where R(𝛼(𝑡)) = A(𝛼(𝑡)) − B(𝛼(𝑡))F(𝛼(𝑡)), R(𝛼(𝑡)) =

A(𝛼(𝑡))−B(𝛼(𝑡))F(𝛼(𝑡)),R
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
, andR

𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
.

For closed-loop system (6), the following sufficient condition
is derived via the PILF.

Theorem 2. With given positive scalars 𝜏 and 𝜂, if there exist
gains F

𝑗
, positive definite matrices P and S, and value 𝜂 >

0 satisfying the following inequality, the robust asymptotical
stability and𝐻

∞
performance of the closed-loop system (6) are

achieved in the sense of mean square:

[

[

[

[

[

[

[

[

[

−Q ∗ ∗ ∗ ∗

0 −𝜂
2I ∗ ∗ ∗

A
𝑖
Q − B

𝑖
Y
𝑗

E
𝑖

−Q ∗ ∗

𝜏 (A
𝑖
Q − B

𝑖
Y
𝑗
) 𝜏 (E

𝑖
) 0 −Q ∗

Q 0 0 0 −U

]

]

]

]

]

]

]

]

]

< 0,

𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

(7)

where Q = P−1, Y
𝑗
= F
𝑗
Q, U = S−1, the ∗ denotes the

transposed elements of the symmetric position, and I denotes
identity matrix.

Proof. Choosing a Lyapunov function as 𝑉(𝑥(𝑡)) =

𝑥
𝑇

(𝑡)P𝑥(𝑡), one can obtain first forward difference of
the 𝑉(𝑥(𝑡))

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) −𝑉 (𝑥 (𝑡)) = (R (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡) + (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡))

⋅ 𝛽 (𝑡))

𝑇

P (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (R (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P𝑥 (𝑡) =
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ ((R
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

⋅P (R
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (R

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)))

− 𝑥
𝑇

(𝑡)P𝑥 (𝑡) ,

(8)

where R(𝛼(𝑡)), R(𝛼(𝑡)), R
𝑖𝑗
, and R

𝑖𝑗
are defined in (6).

Taking expectation of (8), the following equation can be
obtained with the independent increment property of Brow-
nian motion; that is, 𝐸{𝑥(𝑡)𝛽(𝑡)} = 0 and 𝐸{𝛽(𝑡)𝛽(𝑡)} = 𝜏

2.
Consider

𝐸 {Δ𝑉 (𝑥 (𝑡))} = 𝐸

{

{

{

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ (𝑥
𝑇

(𝑡) (R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
−P) 𝑥 (𝑡)

+𝑤
𝑇

(𝑡) (E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗
) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (R𝑇
𝑖𝑗
PE
𝑖
+ 𝜏

2R𝑇
𝑖𝑗
PE
𝑖
)𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
)𝑤 (𝑡))

}

}

}

= 𝐸 {Ψ} ,

(9)

where

Ψ =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

⋅
[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖

]

]

[

𝑥 (𝑡)

𝑤 (𝑡)

] .

(10)

Let us define the following performance function:

𝐽
𝐷
=

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)) . (11)
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Then, one has the following relations with zero initial condi-
tions:

𝐽
𝐷
= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡))

+

𝑡𝑓

∑

0
(Δ𝑉 (𝑥 (𝑡))) −𝑉 (𝑥 (𝑡))

}

}

}

≤ 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

+Δ𝑉 (𝑥 (𝑡)))

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡)

− 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡) +Ψ)

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
𝐿 (𝑥, 𝑤, 𝑡)

}

}

}

.

(12)

According to (9), one has

𝐿 (𝑥, 𝑤, 𝑡)

= 𝐸

{

{

{

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

Λ[

𝑥 (𝑡)

𝑤 (𝑡)

]

}

}

}

,

(13)

where

Λ

=
[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P + S ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

.

(14)

Applying Schur complement [28], the following inequal-
ity can be obtained from (7):

[

[

(A
𝑖
Q − B

𝑖
Y
𝑗
)

𝑇

Q−1 (A
𝑖
Q − B

𝑖
Y
𝑗
) + 𝜏

2
(A
𝑖
Q − B

𝑖
Y
𝑗
)

𝑇

Q−1 (A
𝑖
Q − B

𝑖
Y
𝑗
) −Q +QU−1Q ∗

E𝑇
𝑖
Q−1 (A

𝑖
Q − B

𝑖
Y
𝑗
) + 𝜏

2E𝑇
𝑖
Q−1 (A

𝑖
Q − B

𝑖
Y
𝑗
) E𝑇

𝑖
Q−1E
𝑖
+ 𝜏

2E𝑇
𝑖
Q−1E
𝑖
− 𝜂

2I
]

]

< 0.

(15)

Due to definitions as Q = P−1, Y
𝑗
= F
𝑗
Q, and U = S−1,

inequality (15) can be rewritten as follows:

[

[

P−1R𝑇
𝑖𝑗
PR
𝑖𝑗
P−1 + 𝜏

2P−1R𝑇
𝑖𝑗
PR
𝑖𝑗
P−1 − P−1 + P−1SP−1 ∗

E𝑇
𝑖
PR
𝑖𝑗
P−1 + 𝜏

2E𝑇
𝑖
PR
𝑖𝑗
P−1 E𝑇

𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

< 0. (16)

Multiplying both sides of (16) with diag{P, I}, where the
diag{⋅, ⋅} denotes a block-diagonal matrix with element ⋅, one
can obtain the following inequality:

[

[

R𝑇
𝑖𝑗
PR
𝑖𝑗
+ 𝜏

2R𝑇
𝑖𝑗
PR
𝑖𝑗
− P + S ∗

E𝑇
𝑖
PR
𝑖𝑗
+ 𝜏

2E𝑇
𝑖
PR
𝑖𝑗

E𝑇
𝑖
PE
𝑖
+ 𝜏

2E𝑇
𝑖
PE
𝑖
− 𝜂

2I
]

]

< 0.

(17)

Obviously, the left-hand side of inequality (17) is equal to
Λ in (13). Thus, Λ < 0 is found if condition (7) holds.
And 𝐿(𝑥, 𝑤, 𝑡) < 0 can be obtained from (13) with Λ < 0.
According to 𝐿(𝑥, 𝑤, 𝑡) < 0, the following inequalities can be
inferred from (12) as follows:

𝐽
𝐷
< 0 (18)

or

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

. (19)

Because (19) is equivalent to (4), it is easy to show that
the closed-loop system (6) with controller (5a)-(5b) satisfies
𝐻
∞

performance when the condition (7) holds. Next, the
asymptotical stability is necessary to be proven. By assuming
𝑤(𝑡) = 0, the following inequality can be found from
𝐿(𝑥, 𝑤, 𝑡) < 0 if the condition inTheorem 2 holds:

𝐸 {Ψ+𝑥
𝑇

(𝑡) S𝑥 (𝑡)} < 0 (20a)

or

𝐸 {Ψ} < 𝐸 {−𝑥
𝑇

(𝑡) S𝑥 (𝑡)} . (20b)

According to S > 0, one can find 𝐸{Ψ} < 0. From (9),
𝐸{Ψ} < 0 implies𝐸{Δ𝑉(𝑥(𝑡))} < 0. According toDefinition 1,
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the asymptotical stability of the closed-loop system (6) can be
achieved via controller (5a)-(5b) in the sense of mean square
due to 𝐸{Δ𝑉(𝑥(𝑡))} < 0. Thus, the proof of this theorem is
complete.

Based on the PILF, the sufficient conditions are derived in
Theorem 2. Via finding the feasible solutions, the controller
(5a)-(5b) is designed to guarantee the asymptotical stability
and 𝐻

∞
performance of the closed-loop system (6) in the

sense of mean square. However, Theorem 2 processes con-
servatism in finding a common matrix P to satisfy sufficient
condition (7) for 𝑖, 𝑗 = 1, 2, . . . , 𝑁. For this reason, the less
conservative sufficient conditions than the ones inTheorem 2
are proposed in the next section.

4. Relaxed Stability Criterion for Disturbed
LPV Stochastic Systems

Referring to [10, 11], the PDLF is proposed to derive relaxed
stability criterion for LPV systems. The reason for reducing
conservatism in solving stabilization problem of the system
(1) is that the PDLF consists of state and multiple positive
definite matrices. Based on the PDLF, a relaxed stability
criterion for system (1) is proposed in this section. Besides,
arbitrary matrices G

𝑖
are introduced to reduce conservatism

of the proposed stability criterion in this section. Thus, the
following gain-scheduled controller is proposed:

𝑢 (𝑡) = − F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) 𝑥 (𝑡) , (21a)

or

𝑢 (𝑡) = −(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

𝑥 (𝑡) . (21b)

Remark 3. According to the arbitrary matrices G
𝑖
, the

freedom of searching feasible solutions of Theorem 4 is
increased. Moreover, the sufficient conditions of Theorem 4
can be converted into extended LMI form by using the
arbitrary matrices G

𝑖
. Referring to [16], the extended form

possesses less conservatism than standard LMI form as
in (7). Thus, the structure of (21a)-(21b) is applied to the
proposed relaxed gain-scheduled controller design method
for disturbed uncertain stochastic systems (1).

Substituting (21a)-(21b) into system (1), the correspond-
ing closed-loop system can be represented as follows:

𝑥 (𝑡 + 1) = X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)

=

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡)

⋅ (X
𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡) + (X

𝑖𝑗
𝑥 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(22)

where

X (𝛼 (𝑡)) = A (𝛼 (𝑡)) 𝑥 (𝑡)

−B (𝛼 (𝑡)) F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) ,

X (𝛼 (𝑡)) = A (𝛼 (𝑡)) 𝑥 (𝑡)

−B (𝛼 (𝑡)) F (𝛼 (𝑡))G−1 (𝛼 (𝑡)) ,

X
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

,

X
𝑖𝑗
= A
𝑖
−B
𝑖
F
𝑗
(

𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

.

(23)

For stability problemof closed-loop system (22), the sufficient
conditions are derived by 𝐻

∞
performance definition and

PDLF.

Theorem 4. With given positive scalars 𝜏 and 𝜂, if there exist
feedback gains F

𝑖
, positive definite matrices P

𝑖
and S, and

arbitrary matrices G
𝑖
to satisfy the following conditions, then

the asymptotical stability and 𝐻
∞

performance of the closed-
loop system (22) are guaranteed in the sense of mean square.
Consider

[

[

[

[

[

[

[

[

[

[

Q
𝑖
− G𝑇
𝑖
− G
𝑖

∗ ∗ ∗ ∗

0 −𝜂
2I ∗ ∗ ∗

A
𝑖
G
𝑗
− B
𝑖
F
𝑗

E
𝑖

−Q
𝑘

∗ ∗

𝜏 (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) 𝜏E

𝑖
0 −Q

𝑘
∗

G
𝑖

0 0 0 −U

]

]

]

]

]

]

]

]

]

]

< 0,

𝑓𝑜𝑟 𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑁,

(24)

whereQ
𝑘
= P−1
𝑘

and U = S−1.

Proof. Choosing a Lyapunov function as 𝑉(𝑥(𝑡)) =

𝑥
𝑇

(𝑡)P(𝛼(𝑡))𝑥(𝑡), the first forward difference of the 𝑉(𝑥(𝑡))
can be obtained, such as

Δ𝑉 (𝑥 (𝑡)) = 𝑉 (𝑥 (𝑡 + 1)) −𝑉 (𝑥 (𝑡))

= (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

⋅P (𝛼 (𝑡 + 1)) (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡) .

(25)

In this paper, P(𝛼(𝑡+1)) is defined by the following equation:

P (𝛼 (𝑡 + 1)) =
𝑁

∑

𝑗=1
𝜗
𝑗
(𝑡 + 1)P

𝑗
= (

𝑁

∑

𝑘=1
𝜀
𝑘
(𝑡)P
𝑘
) , (26)
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where 𝜀(𝑡) is the time-varying parameter satisfying
∑
𝑁

𝑘=1 𝜀𝑘(𝑡) = 1 and 0 ≤ 𝜀
𝑘
(𝑡) ≤ 1. Due to (26), (25) can

be rewritten as in the following equation:

Δ𝑉 (𝑥 (𝑡)) = (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡))

𝑇

P (𝜀 (𝑡))

⋅ (X (𝛼 (𝑡)) 𝑥 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)

+ (X (𝛼 (𝑡)) 𝑥 (𝑡) +E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡)) − 𝑥
𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡) .

(27)

Taking expectation of (27), the following equation can be
found with the independent increment property of Brownian
motion:

𝐸 {Δ𝑉 (𝑥 (𝑡))} = 𝐸 {𝑥
𝑇

(𝑡)

⋅ (X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))

+ 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))) 𝑥 (𝑡) +𝑤

𝑇

(𝑡)

⋅ (E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))

+ 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡))) 𝑥 (𝑡) + 𝑥

𝑇

(𝑡)

⋅ (X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+ 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)))𝑤 (𝑡) +𝑤

𝑇

(𝑡)

⋅ (E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+ 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)))𝑤 (𝑡) − 𝑥

𝑇

(𝑡)

⋅P (𝛼 (𝑡)) 𝑥 (𝑡)} .

(28)

Applying the cost function (11), one can find the following
relations:

𝐽
𝐷
= 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡))

+

𝑡𝑓

∑

0
Δ𝑉 (𝑥 (𝑡)) −𝑉 (𝑥 (𝑡

𝑓
))

}

}

}

≤ 𝐸

{

{

{

𝑡𝑓

∑

0
(𝑥
𝑇

(𝑡) S𝑥 (𝑡) − 𝜂
2
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

+Δ𝑉 (𝑥 (𝑡)))

}

}

}

= 𝐸

{

{

{

𝑡𝑓

∑

0
Φ (𝑥, 𝑤, 𝑡)

}

}

}

.

(29)

According to (28), one has

Φ (𝑥, 𝑤, 𝑡) = [

𝑥 (𝑡)

𝑤 (𝑡)

]

𝑇

Ξ[

𝑥 (𝑡)

𝑤 (𝑡)

] , (30)

where

Ξ

= [

X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) − P (𝛼 (𝑡)) + S ∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) + 𝜏

2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂
2I

] .

(31)

Applying the Schur complement, one has the following
inequality from (24):

[

[

Q
𝑖
− G𝑇
𝑖
− G
𝑖
+ G𝑇
𝑖
U−1G

𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
Q−1
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
Q−1
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
Q−1
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(32)

According to the fact that P−1
𝑖

− G𝑇
𝑖
− G
𝑖
≥ −G𝑇

𝑖
P
𝑖
G
𝑖
, the

following inequality holds from (32)with definitionQ
𝑘
= P−1
𝑘

and U = S−1

[

[

−G𝑇
𝑖
P
𝑖
G
𝑖
+ G𝑇
𝑖
SG
𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
P
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
P
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(33)
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Since 𝜗
𝑖
≥ 0 and ∑

𝑁

𝑖=1 𝜗𝑖 = 1, the following inequality can be
inferred from (33):

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑁

∑

𝑘=1
𝜗
𝑖
(𝑡) 𝜗
𝑗
(𝑡) 𝜀
𝑘
(𝑡)

⋅
[

[

−G𝑇
𝑖
P
𝑖
G
𝑖
+ G𝑇
𝑖
SG
𝑖
+ (A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
)

𝑇

P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) ∗

E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) + 𝜏

2E𝑇
𝑖
P
𝑘
(A
𝑖
G
𝑗
− B
𝑖
F
𝑗
) E𝑇

𝑖
P
𝑘
E
𝑖
+ 𝜏

2E𝑇
𝑖
P
𝑘
E
𝑖
− 𝜂

2I
]

]

< 0.

(34)

And inequality (34) can be rewritten as follows:

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−G𝑇 (𝛼 (𝑡))P (𝛼 (𝑡))G (𝛼 (𝑡)) + G𝑇 (𝛼 (𝑡)) SG (𝛼 (𝑡))

+ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))𝑇 P (𝜀 (𝑡))

⋅ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

+𝜏
2
(A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

𝑇

P (𝜀 (𝑡))

⋅ (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡)) (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

+𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡)) (A (𝛼 (𝑡))G (𝛼 (𝑡)) − B (𝛼 (𝑡)) F (𝛼 (𝑡)))

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡))

+𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂

2I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (35)

Before and after multiplying (35) by diag{G−𝑇(𝛼(𝑡)), I} and
diag{G−1(𝛼(𝑡)), I}, one has

[

X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2X𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) − P (𝛼 (𝑡)) + S ∗

E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) + 𝜏
2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))X (𝛼 (𝑡)) E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) + 𝜏

2E𝑇 (𝛼 (𝑡))P (𝜀 (𝑡))E (𝛼 (𝑡)) − 𝜂
2I

]

< 0.

(36)

Obviously, if condition (24) holds, then (36) can be obtained.
And Ξ < 0 can be also found from (31) due to (36). According
to Ξ < 0, Φ(𝑥, 𝑤, 𝑡) < 0 can be inferred from (30). Due
to Φ(𝑥, 𝑤, 𝑡) < 0 and (29), the following inequalities can be
obtained:

𝐽
𝐷
< 0 (37)

or

𝐸

{

{

{

𝑡𝑓

∑

0
𝑥
𝑇

(𝑡) S𝑥 (𝑡)
}

}

}

< 𝐸

{

{

{

𝜂
2
𝑡𝑓

∑

0
𝑤
𝑇

(𝑡) 𝑤 (𝑡)

}

}

}

. (38)

Because (38) is equivalent to (4), it is easy to show that
the closed-loop system (22) driven by (21a)-(21b) satisfies
𝐻
∞
performance for all nonzero external disturbances. Next,

the asymptotical stability of the closed-loop system (22) is
proven. If the condition of this theorem is satisfied, then

Φ(𝑥, 𝑤, 𝑡) < 0 is held. By assuming 𝑤(𝑡) = 0, the following
inequality can be found from (29):

𝐸 {Δ𝑉 (𝑥 (𝑡)) + 𝑥
𝑇

(𝑡) S𝑥 (𝑡)} < 0 (39)

or

𝐸 {Δ𝑉 (𝑥 (𝑡))} < 𝐸 {−𝑥
𝑇

(𝑡) S𝑥 (𝑡)} . (40)

According to S > 0, one can deduce that 𝐸{Δ𝑉(𝑥(𝑡))} < 0.
And then the closed-loop system (22) is asymptotically stable
in the sense of mean square according to 𝐸{Δ𝑉(𝑥(𝑡))} < 0
and Definition 1. The proof of this theorem is complete.

In this section, the sufficient conditions are derived
by PDLF for discussing the stabilization problems of the
closed-loop system (22).Through the several positive definite
matrices and arbitrary matrices G

𝑖
, the conservatism of

Theorem 4 can be reduced in finding the feasible solutions



8 Mathematical Problems in Engineering

of conditions (24). In the following section, two numerical
examples are proposed to demonstrate the effectiveness and
application of the proposed design method.

5. Simulation Results

In this section, two numerical examples are proposed. The
first example is employed to discuss the conservatism of the
proposed design methods. Another example is to discuss the
stabilization problem of disturbed ship autopilot servosystem
with multiplicative noise to show the application of the
proposed design methods. Moreover, the design method
of [14] is employed to compare with the proposed design
methods of this paper.

Example 5. Consider the following disturbed stochastic LPV
system:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡) + (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) =

2
∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡)

+E
𝑖
𝑤 (𝑡) + (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(41)

where

A1 = [

2 −0.1
0.5 1.65

] ,

A2 = [

2 −0.1
0.5 0.35

] ,

B1 = [

1
−0.95

] ,

B2 = [

1
0.35

] ,

E1 = [

0.1
0
] ,

E2 = [

0.2
0
] ,

A1 = [

0.03 0
0.004 0.0165

] ,

A2 = [

0.03 0
0.004 0.0035

] ,

B1 = [

0.01
−0.0075

] ,

B2 = [

0.01
0.0055

] ,

E1 = [

0.001
0

] ,

E2 = [

0.002
0

] ,

𝜗1 (𝑡) = |sin (𝑡)| ,

𝜗2 (𝑡) = 1− |sin (𝑡)| .
(42)

In this numerical example, the intensity level is given as 𝜏 = 1.
For discussing the conservatism of Theorems 2 and 4, the
positive definite matrix S is determined as identity matrix to
find the minimum available value of 𝜂. Applying the convex
optimization algorithm [29], the minimum available value of
𝜂 for the sufficient condition of the theorems is shown in
Table 1. From Table 1, the minimum available value of 𝜂 to
satisfy Theorem 2 is 1.5166. In case such as 𝜂 = 1.5166, the
following feasible solutions of condition (7) can be obtained:

P = [

57.1827 34.8967
34.8967 22.9765

] ,

F1 = [4.2194 1.4732] ,

F2 = [1.8602 0.0691] .

(43)

Based on (43), the gain-scheduled controller can be designed
such as

𝑢 (𝑡) = −

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
𝑥 (𝑡) . (44)

Applying (44), the responses of (41) are stated in Figure 1
with initial condition 𝑥(𝑡) = [5 −3]𝑇. And the external
disturbance𝑤(𝑡) is chosen as zero-meanwhite noisewith unit
variance. For checking satisfaction of (4), the following ratio
is obtained via using the simulation results:

𝐸 {∑

𝑡𝑓=5
0 𝑥
𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=5
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 1.696. (45)

Obviously, the ratio in (45) is smaller than the obtained value
𝜂
2
= 2.3 with 𝜂 = 1.5166. From Figure 1 and (45), system (41)

driven by (44) is robust asymptotically stablewith attenuation
𝜂 in the sense of mean square.

Besides, from Table 1, the minimum available value of 𝜂
for satisfying Theorem 4 is 1.4. In the case such as 𝜂 = 1.4,
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Table 1: Comparing results for Theorems 2 and 4.

𝜂 ⋅ ⋅ ⋅ 1.5166 1.5133 1.4 ⋅ ⋅ ⋅

Theorem 2 Feasible Feasible Infeasible Infeasible Infeasible
Theorem 4 Feasible Feasible Feasible Feasible Infeasible

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Time (s)
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Figure 1: Responses of Example 5 with controller (44).

the feasible solutions of conditions (24) can be obtained such
as

P1 = [

48.989 30.9426
30.9426 21.0296

] ,

P2 = [

12.7423 7.8087
7.8087 6.5371

] ,

G1 = [

0.2637 −0.3887
−0.4104 0.6518

] ,

G2 = [

0.2650 −0.3890
−0.3259 0.5924

] ,

F1 = [0.5621 −0.7445] ,

F2 = [0.4703 −0.6790] .

(46)

With the above feasible solutions, gain-scheduled controller
(21a)-(21b) is established as follows:

𝑢 (𝑡) = −(

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑗
)(

2
∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑗
)

−1

𝑥 (𝑡) . (47)

Based on controller (47), the responses of (41) are stated in
Figure 2 with the same initial condition and𝑤(𝑡) of the above

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

6

5

4

3

2

1
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−2

−3

−4

Time (s)
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Figure 2: Responses of Example 5 with controller (47).

case. Based on the simulation results, the following ratio value
can be obtained:

𝐸 {∑

𝑡𝑓=5
0 𝑥
𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=5
0

𝑤
𝑇
(𝑡) 𝑤 (𝑡)}

= 1.675. (48)

Obviously, the value of (48) is smaller than 𝜂
2
= 1.96 with

𝜂 = 1.4. From Figure 2 and (48), the asymptotical stability
and 𝐻

∞
performance of system (41) can be achieved via the

controller (46).
From the simulation results of this example, the proposed

design methods are useful tools to design gain-scheduled
controller for stabilizing the LPV stochastic system (41).
Besides, from Table 1, it is obvious to show that the minimum
available value of Theorem 2 is bigger than the one of
Theorem 4. Thus, the sufficient conditions of Theorem 4 are
less conservative than the one in Theorem 2 for discussing
stability issue of LPV systems.

Example 6. In this example, the ship autopilot servosystem
is applied to show applicability of the proposed controller
design methods. Referring to [30], the discretization dif-
ferential equation of ship motion is proposed. Considering
the practical operations, the parameter 𝑇1 in the system is
assumed as time-varying parameter 𝑇1(𝑡) in this section.
According to 𝑇1(𝑡), the ship autopilot system belongs to
uncertain system. Moreover, a multiplicative noise term is
added to describe the stochastic behavior of the system. And
an external disturbance is added to simulate random force
from outside. Thus, the disturbed ship autopilot servosystem
with multiplicative noise is considered as follows:

𝑥1 (𝑡 + 1) = 𝑥1 (𝑡) + 𝑥2 (𝑡) × Δ𝑡, (49a)

𝑥2 (𝑡 + 1) = 𝑥2 (𝑡) + 𝑥3 (𝑡) × Δ𝑡

+ 0.0002 (1+ 0.1𝛽 (𝑡)) 𝑤 (𝑡) ,

(49b)
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𝑥3 (𝑡 + 1) = −𝐾 × Δ𝑡

𝑇1 (𝑡) 𝑇2
𝑥2 (𝑡)

+(

− (𝑇1 (𝑡) + 𝑇2) × Δ𝑡

𝑇1 (𝑡) 𝑇2
+ 1)𝑥3 (𝑡)

+

𝐾 (𝑇
𝐸
− 𝑇3) × Δ𝑡

𝑇1 (𝑡) 𝑇2𝑇𝐸
𝑥4 (𝑡)

+

𝐾𝑇3 × Δ𝑡

𝑇1 (𝑡) 𝑇2𝑇𝐸
𝑢 (𝑡) ,

(49c)

𝑥4 (𝑡 + 1) = 0.2𝛽 (𝑡) 𝑥2 (𝑡) + 0.1𝛽 (𝑡) 𝑥3 (𝑡)

+ (

−1 × Δ𝑡

𝑇
𝐸

+ 1)𝑥4 (𝑡)

+

1 × Δ𝑡

𝑇
𝐸

(1+ 0.6𝛽 (𝑡)) 𝑢 (𝑡) ,

(49d)

where 𝑥1(𝑡) represents the difference of the heading angle
and desires heading angle of ship; 𝑥2(𝑡) represents the
navigational angle velocity; 𝑥3(𝑡) represents the navigational
angle acceleration; 𝑥4(𝑡) represents the actual rudder angle of
ship; 𝑢(𝑡) represents the steering angle; and 𝑤(𝑡) is chosen as
zero-mean white noise with unit variance. In order to achieve
all possible values of variation of the parameter 𝑇1(𝑡), the
time-varying range of 𝑇1(𝑡) is determined as follows:

𝑇1 (𝑡) ∈ [36.25 108.75] . (50)

Besides, the constant parameters 𝑇2 = 8.54, 𝑇3 = 17.61,
and 𝑇

𝐸
= 2.5, rudder gain 𝐾 = 0.1141, and sampling time

Δ𝑡 = 0.4 are given in this section. According to the LPV
modeling approach, system (49a)–(49d) can be described as
the following disturbed LPV stochastic system:

𝑥 (𝑡 + 1) = A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡) +E (𝛼 (𝑡))

⋅ 𝑤 (𝑡) + (A (𝛼 (𝑡)) 𝑥 (𝑡) +B (𝛼 (𝑡)) 𝑢 (𝑡)

+E (𝛼 (𝑡)) 𝑤 (𝑡)) 𝛽 (𝑡) =

2
∑

𝑖=1
𝜗
𝑖
(𝑡) (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡)

+E
𝑖
𝑤 (𝑡) + (A

𝑖
𝑥 (𝑡) +B

𝑖
𝑢 (𝑡) +E

𝑖
𝑤 (𝑡)) 𝛽 (𝑡)) ,

(51)

where

A1 =

[

[

[

[

[

[

1 0.4 0 0
0 1 0.4 0
0 −0.000064 0.9508 −0.000296
0 0 0 0.8521

]

]

]

]

]

]

,

A2 =

[

[

[

[

[

[

1 0.4 0 0
0 1 0.4 0
0 −0.00013 0.9438 −0.00088
0 0 0 0.8521

]

]

]

]

]

]

,

B1 =

[

[

[

[

[

[

0
0

0.0003
0.1363

]

]

]

]

]

]

,

B2 =

[

[

[

[

[

[

0
0

0.0010
0.1363

]

]

]

]

]

]

,

E1 =

[

[

[

[

[

[

0
0.0002

0
0

]

]

]

]

]

]

,

E2 = E1,

A1 =

[

[

[

[

[

[

0 0 0 0
0 0 0 0
0 0 0 0
0 0.2 0.1 0

]

]

]

]

]

]

,

A2 = A1,

B1 =

[

[

[

[

[

[

0
0
0

0.01

]

]

]

]

]

]

,

B2 = B1,

E1 =

[

[

[

[

[

[

0
0.00002

0
0

]

]

]

]

]

]

,

E2 = E1,

𝜗1 (𝑡) = |sin (𝑡)| ,

𝜗2 (𝑡) = 1− |sin (𝑡)| .
(52)

For (51), the performance index 𝜂 is given by 0.0032 and
the intensity level 𝜏 = 1 is given. Employing the convex
optimization algorithm, the feasible solutions of Theorem 2
can be obtained as follows:

P =

[

[

[

[

[

0.0033 0.0723 0.4088 −0.0004
0.0723 3.1263 21.1886 −0.0308
0.4088 21.1886 148.4819 −0.2240
−0.0004 −0.0308 −0.2240 0.0006

]

]

]

]

]

× 10−3,
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S =

[

[

[

[

[

[

0.2227 0.0452 −0.0042 −0.0030
0.0452 0.8313 0.0099 0.0059
−0.0042 0.0099 0.9017 −0.0012
−0.0030 0.0059 −0.0012 0.1516

]

]

]

]

]

]

× 10−7,

F1 = [0.5172 23.2092 150.4117 −0.9578] ,

F2 = [1.2392 57.8210 390.6686 −1.2176] .
(53)

According to the above feasible solutions, the following gain-
scheduled controller can be designed:

𝑢 (𝑡) = −

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑖
𝑥 (𝑡) . (54)

Based on the gain-scheduled controller (54), the responses
of system (51) are stated in Figures 3–6 via initial condition
𝑥(0) = [𝜋/2 0 0 0]𝑇. For checking the achievement of
(4), one can find the following values by substituting the
simulated responses into the following ratio function:

𝐸 {∑

𝑡𝑓=100
0 𝑥

𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=100
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 7.199× 10−7. (55)

It is easy to know that the ratio value in (55) is smaller than the
given 𝜂2 = 1×10−6 with 𝜂 = 0.001.Thus, the𝐻

∞
performance

of system (49a)–(49d) can be achieved via controller (54).
And, from Figures 3–6, one can find that system (49a)–(49d)
driven by (54) is asymptotically stable in the sense of mean
square.

Besides, applying Theorem 4, the following feasible solu-
tions of condition (24) are obtained:

P1 =

[

[

[

[

[

[

0.0029 0.0655 0.3755 −0.0004
0.0655 3.1063 21.4553 −0.0321
0.3755 21.4553 152.8154 −0.2360
−0.0004 −0.0321 −0.2360 0.0006

]

]

]

]

]

]

× 10−4,

P2 =

[

[

[

[

[

[

0.0028 0.0585 0.3261 −0.0003
0.0585 2.7418 18.8854 −0.0292
0.3261 18.8854 134.7003 −0.2158
−0.0003 −0.0292 −0.2158 0.0006

]

]

]

]

]

]

× 10−4,

S =

[

[

[

[

[

[

0.1817 0.0219 −0.0022 −0.0032
0.0219 0.4025 0.0026 0.0015
−0.0022 0.0026 0.4152 −0.0003
−0.0032 0.0015 −0.0003 0.1365

]

]

]

]

]

]

× 10−8,

G1 =

[

[

[

[

[

[

4.3444 −0.5847 0.0703 −0.7245
−0.5848 0.0899 −0.0111 0.0508
0.0703 −0.0111 0.0014 0.0012
−0.7242 0.0506 0.0013 4.2746

]

]

]

]

]

]

× 107,

G2 =

[

[

[

[

[

[

4.3445 −0.5847 0.0703 −0.7229
−0.5848 0.0900 −0.0111 0.0503
0.0703 −0.0111 0.0014 0.0020
−0.7233 0.0503 0.0018 4.3617

]

]

]

]

]

]

× 107,

F1 = [−0.0393 0.0594 −0.0121 −3.1880] × 107,

F2 = [−0.0370 0.0585 −0.0099 −2.7806] × 107.

(56)

And the following gain-scheduled controller can be designed
with the feedback gains in (56):

𝑢 (𝑡) = −(

2
∑

𝑗=1
𝜗
𝑗
(𝑡) F
𝑖
)(

2
∑

𝑗=1
𝜗
𝑗
(𝑡)G
𝑖
)

−1

𝑥 (𝑡) . (57)

Applying the controller (57), the responses of system (51) are
stated in Figures 3–6 via the same initial condition. From the
simulation results, the effect of the disturbance on the system
driven by (57) can be criticized as follows:

𝐸 {∑

𝑡𝑓=100
0 𝑥

𝑇

(𝑡) S𝑥 (𝑡)}

𝐸 {∑

𝑡𝑓=100
0 𝑤

𝑇
(𝑡) 𝑤 (𝑡)}

= 6.587 × 10−8. (58)

It is easy to know that the ratio value in (58) is smaller than the
given 𝜂2 = 1×10−6 with 𝜂 = 0.001.Thus, the𝐻

∞
performance

of system (49a)–(49d) can be achieved via controller (57).
And, from Figures 3–6, one can find that system (49a)–(49d)
driven by (57) is asymptotically stable in the sense of mean
square.

In order to emphasize the advantages of this paper,
the design method of [14] is applied to compare with the
proposed methods in this paper. Referring to [14], the 𝐻

∞

gain-scheduled controller design method was proposed for
LPV systems without consideration of stochastic behavior.
On the other hand, the same PDLF was used to derive
the sufficient condition in Theorem 8 of [14]. Applying the
design method of [14], the corresponding controller can be
established as follows:

𝑢 (𝑡) =

2
∑

𝑗=1
𝜗
𝑗
(𝑡)K
𝑖
𝑥 (𝑡) , (59)

where K1 = [−0.0188 −1.5204 −15.2101 0.5341] and K2 =
[1.9481 30.4800 145.7313 0.5315]. With the same initial
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Figure 3: Responses for 𝑥1(𝑡) of Example 6.
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Figure 4: Responses for 𝑥2(𝑡) of Example 6.

condition, the responses of (49a)–(49d) driven by (59) are
stated in Figures 3–6. From Figures 3–6, one can find that
controllers (57) provide better performance in both short
term and long term characteristics than others. Besides, the
overshoot and setting time of system (49a)–(49d) driven by
the controller designed by this paper are smaller than those
driven by controller (59). Therefore, the controller designed
by [14] provides the worst control performance to stabilize
system (49a)–(49d) due to stochastic behavior. Through the
simulation results, the proposed design methods provide
some improvements for [14] in stabilizing the disturbed
uncertain stochastic system (49a)–(49d).
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Figure 5: Responses for 𝑥3(𝑡) of Example 6.
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Figure 6: Responses for 𝑥4(𝑡) of Example 6.

6. Conclusion

The𝐻
∞
gain-scheduled controller designmethods have been

proposed in this paper for discrete-time disturbed uncertain
stochastic systems described by LPV stochastic system. By
choosing the Lyapunov functions, the sufficient conditions
were derived to establish the corresponding gain-scheduled
controller. And the 𝐻

∞
attenuation performance has been

considered to constrain the effect of external disturbance
on the considered systems. Applying the proposed design
methods, the simulation results have been proposed to show
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the effectiveness and applicability of this paper. From the
simulation results, the robust asymptotical stability and 𝐻

∞

performance of uncertain stochastic systems can achieve the
designed gain-scheduled controller in the sense of mean
square.
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