
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 548487, 8 pages
http://dx.doi.org/10.1155/2013/548487

Research Article
Augmented Arnoldi-Tikhonov Regularization Methods for
Solving Large-Scale Linear Ill-Posed Systems

Yiqin Lin,1 Liang Bao,2 and Yanhua Cao3

1 Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Yongzhou 425100, China
2Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China
3Department of Mathematics, North China Electric Power University, Beijing 102206, China

Correspondence should be addressed to Liang Bao; nlbao@yahoo.cn

Received 1 November 2012; Revised 18 March 2013; Accepted 19 March 2013

Academic Editor: Hung Nguyen-Xuan

Copyright © 2013 Yiqin Lin et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose an augmented Arnoldi-Tikhonov regularization method for the solution of large-scale linear ill-posed systems. This
method augments the Krylov subspace by a user-supplied low-dimensional subspace, which contains a rough approximation of
the desired solution. The augmentation is implemented by a modified Arnoldi process. Some useful results are also presented.
Numerical experiments illustrate that the augmented method outperforms the corresponding method without augmentation on
some real-world examples.

1. Introduction

We consider the iterative solution of a large system of linear
equations

𝐴𝑥 = 𝑏, (1)

where 𝐴 ∈ R𝑛×𝑛 is nonsymmetric and nonsingular, and
𝑏 ∈ R𝑛. We further assume that the coefficient matrix 𝐴 is
of ill-determined rank; that is, all its singular values decay
gradually to zero, with no gap anywhere in the spectrum.
Such systems are often referred to as linear discrete ill-
posed problems and arise from the discretization of ill-posed
problems such as Fredholm integral equations of the first kind
with a smooth kernel.The right-hand side 𝑏 of (1) is assumed
to be contaminated by an error 𝑒 ∈ R𝑛, which may stem from
discretization or measurement inaccuracies. Thus, 𝑏 = 𝑏̂ + 𝑒,
where 𝑏̂ is the unknown error-free right-hand side vector.

We would like to compute the solution 𝑥 of the linear
system of equations with the error-free right-hand side 𝑏̂,

𝐴𝑥 = 𝑏̂. (2)

However, since the right-hand side in (2) is not available,
we seek to determine an approximation of 𝑥 by solving the

available system (1) or a modification. Due to the ill condi-
tioning of 𝐴, the system (1) has to be regularized in order
to compute a useful approximation of 𝑥. Perhaps the best
known regularization method is Tikhonov regularization [1–
3], which in its simplest form is based on the minimization
problem

min
𝑥∈R𝑛

{‖𝐴𝑥 − 𝑏‖
2

+
1

𝜇
‖𝑥‖
2

} , (3)

where 𝜇 > 0 is a regularization parameter. Here and
throughout this paper ‖ ⋅ ‖ denotes the Euclidean vector
norm or the associated induced matrix norm.

After regulating the system (1), we need to compute the
solution 𝑥

𝜇
of the minimization problem (3). Such a vector

𝑥
𝜇
is also the solution of

(𝐴
𝑇

𝐴 +
1

𝜇
𝐼)𝑥 = 𝐴

𝑇

𝑏. (4)

Here and in the following, 𝐼 denotes the identity matrix,
whose dimension is conformed with the dimension used in
the context. If 𝜇 is far away from zero, then, due to the
ill conditioning of 𝐴, 𝑥

𝜇
is badly computed while, if 𝜇 is

close to zero, 𝑥
𝜇
is well computed, but the error 𝑥

𝜇
− 𝑥 is
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quite large. Thus, the choice of a good value for 𝜇 is fairly
important. Several methods have been proposed to obtain an
effective value for 𝜇. For example, if the norm of the error
𝑒 or a fairly accurate estimate is known, the regularization
parameter is quite easy to determine by application of the
discrepancy principle. The discrepancy principle proposes
that the regularization parameter 𝜇 can be chosen so that the
discrepancy 𝑏 − 𝐴𝑥

𝜇
satisfies

󵄩󵄩󵄩󵄩󵄩
𝑏 − 𝐴𝑥

𝜇

󵄩󵄩󵄩󵄩󵄩
= 𝜂𝜀, (5)

where 𝜀 = ‖ 𝑒 ‖ and 𝜂 > 1 is a constant; see, for example, [4]
for further details on the discrepancy principle.

The singular value decomposition [5] of 𝐴 can be used
to determine the solution 𝑥

𝜇
of the minimization problem

(3). For an overview of numerical methods for computing
the SVD, we refer to [6]. We remark that the computational
effort required to compute the SVD is quite high even for
moderately sized matrices.

Many numerical methods using Krylov subspaces have
been proposed for the solution of large-scale Tikhonov
regularization problems (3).Themain idea of such algorithms
has been to first project the large problems onto some Krylov
subspace to produce problems with small size and then solve
the small-sized problems by the SVD. For instance, several
well-established methods based on the Lanczos bidiagonal-
ization process have been proposed for the solution of the
minimization problem (3); see [7–10] and references therein.
These methods use the Lanczos bidiagonalization process to
construct a basis of the Krylov subspace:

K
𝑚
(𝐴
𝑇

𝐴,𝐴
𝑇

𝑏)

= span {𝐴𝑇𝑏, 𝐴𝑇𝐴𝐴𝑇𝑏, . . . , (𝐴𝑇𝐴)
𝑚−1

𝐴
𝑇

𝑏} .

(6)

We remark that each Lanczos bidiagonalization step needs
two matrix-vector product evaluations, one with 𝐴 and the
other with 𝐴𝑇. Other methods using the Krylov subspace

K
𝑚
(𝐴, 𝐴𝑏) = span {𝐴𝑏, 𝐴2𝑏, . . . , 𝐴𝑚𝑏} (7)

as the projection subspace have been also designed. For
example, Lewis and Reichel [11] proposed to exploit the
Arnoldi process to produce a basis of the Krylov subspace
K
𝑚
(𝐴, 𝐴𝑏) to obtain an approximation of the solution of

the Tikhonov regularization problem (3). Since each Arnoldi
decomposition step requires only one matrix-vector evalua-
tion with 𝐴, the approach based on the Arnoldi process may
require fewer matrix-vector product evaluations than that
based on the Lanczos bidiagonalization process. Moreover,
the methods based on the Arnoldi process do not require
the adjoint matrix 𝐴𝑇 and, hence, are more appropriate
to problems for which the adjoint is difficult to evaluate.
For such problems we refer to [12]. A similar Tikhonov
regularizationmethod based on generalized Krylov subspace
is proposed in [13].

Some numerical methods without using the Tikhonov
regularization technique have been already proposed to solve
the large-scale linear discrete ill-posed problem (1). These
methods include the range-restricted GMRES (RRGMRES)
method [14, 15], the augmented range-restricted GMRES
(ARRGMRES) method [16], and the flexible GMRES (FGM-
RES) method [17]. The RRGMRES method determines the
𝑚th approximation 𝑥

𝑚
of (1) by solving the minimization

problem

min
𝑥∈K
𝑚
(𝐴,𝐴𝑏)

‖𝐴𝑥 − 𝑏‖ , 𝑚 = 1, 2, . . . , 𝑥
0
= 0. (8)

The regularization is implemented by choosing a suitable
dimension number 𝑚; see, for example, [18]. The ARRGM-
RES method augments the Krylov subspace K

𝑚
(𝐴, 𝐴𝑏)

by a low-dimensional user-supplied subspace. The low-
dimensional subspace is determined by vectors that are able
to represent the known features of the desired solution.
The augmented method can yield approximate solutions of
higher accuracy than the RRGMRES method if the Krylov
subspace K

𝑚
(𝐴, 𝐴𝑏) does not allow representation of the

known features.
In this paper, we propose a new iterative method, named

augmented Arnoldi-Tikhonov regularization method, for
solving large-scale linear ill-posed systems (1). The new
method is deduced by combining the Tikhonov regulariza-
tion technique and the augmentation technique. The aug-
mentation is implemented by a modified Arnoldi process.

The following summarizes the structure of this paper.
Section 2 describes the augmented Arnoldi-Tikhonov regu-
larization method and some useful results. Some real-world
examples are presented in Section 3. Section 4 contains the
conclusions.

2. Augmented Arnoldi-Tikhonov
Regularization Method

We attempt to improve the Arnoldi-Tikhonov regularization
method proposed in [11] by augmenting the Krylov subspace
K
𝑚
(𝐴, 𝐴𝑏) by a 𝑘-dimensional subspaceW, which contains

a rough approximation of the desired solution of (2). Then,
the subspace of projection we will exploit in the following is
of the form

K
𝑚
(𝐴, 𝐴𝑏) +W = span {𝐴𝑏, 𝐴2𝑏, . . . , 𝐴𝑚𝑏} +W. (9)

Let 𝑊 be the 𝑛 by 𝑘 matrix whose columns form an
orthonormal basis of the space W. For the purpose of
augmentation by W, we apply the modified Arnoldi process
[16] to construct the modified Arnoldi decomposition

𝐴 [𝑊,𝑉
𝑚
] = [𝑈, 𝑉

𝑚+1
]𝐻, (10)

where 𝑈 ∈ R𝑛×𝑘, 𝑉
𝑚+1

∈ R𝑛×(𝑚+1), [𝑈, 𝑉
𝑚+1
] has orthonor-

mal columns, and𝐻 ∈ R(𝑚+𝑘+1)×(𝑚+𝑘) is an upperHessenberg
matrix. We point out that the leading principal 𝑘 by 𝑘
submatrix of 𝐻 is the upper triangular matrix in the QR
factorization [5] of 𝐴𝑊; that is,𝐻 is of the form
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Input: 𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛,𝑊 ∈ R𝑛×𝑘,𝑚.
Output: 𝑈 ∈ R𝑛×𝑘, 𝑉

𝑚+1
∈ R𝑛×(𝑚+1),𝐻 ∈ R(𝑚+𝑘+1)×(𝑚+𝑘).

(1) Compute QR-factorization 𝐴𝑊 = 𝑈𝐻.
(2) Compute V

1
= 𝐴𝑏 − 𝑈(𝑈

𝑇

𝐴𝑏), V
1
= V
1
/
󵄩󵄩󵄩󵄩V1
󵄩󵄩󵄩󵄩, and set 𝑉

1
= [V
1
].

(3) For 𝑗 = 1, 2, . . . , 𝑚 Do:
V
𝑗+1
:= 𝐴V

𝑗
;

For 𝑖 = 1, 2, . . . , 𝑘 Do:
ℎ
𝑖,𝑗+𝑘

:= 𝑈(:, 𝑖)
𝑇

V
𝑗+1

;
V
𝑗+1
:= V
𝑗+1
− ℎ
𝑖,𝑗+𝑘
𝑈(:, 𝑖);

End For
For 𝑖 = 1, 2, . . . , 𝑗 Do:

ℎ
𝑖+𝑘,𝑗+𝑘

:= V𝑇
𝑖
V
𝑗+1

;
V
𝑗+1
:= V
𝑗+1
− ℎ
𝑖+𝑘,𝑗+𝑘

V
𝑖
;

End For
ℎ
𝑗+𝑘+1,𝑗+𝑘

:= V
𝑗+1
/
󵄩󵄩󵄩󵄩󵄩
V
𝑗+1

󵄩󵄩󵄩󵄩󵄩
;

V
𝑗+1
:= V
𝑗+1
/ℎ
𝑗+𝑘+1,𝑗+𝑘

;
𝑉
𝑗+1
:= [𝑉
𝑗
, V
𝑗+1
];

End For

Algorithm 1: Modified Arnoldi process.

𝐻 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ
11
ℎ
12

⋅ ⋅ ⋅ ℎ
1𝑘

ℎ
1,𝑘+1

ℎ
1,𝑘+2

⋅ ⋅ ⋅ ℎ
1,𝑘+𝑚

d d
...

...
... ⋅ ⋅ ⋅

...
ℎ
𝑘−1,𝑘−1

ℎ
𝑘−1,𝑘

ℎ
𝑘−1,𝑘+1

ℎ
𝑘−1,𝑘+2

⋅ ⋅ ⋅ ℎ
𝑘−1,𝑘+𝑚

ℎ
𝑘𝑘

ℎ
𝑘,𝑘+1

ℎ
𝑘,𝑘+2

⋅ ⋅ ⋅ ℎ
𝑘,𝑘+𝑚

ℎ
𝑘+1,𝑘+1

ℎ
𝑘+1,𝑘+2

⋅ ⋅ ⋅ ℎ
𝑘+1,𝑘+𝑚

ℎ
𝑘+2,𝑘+1

ℎ
𝑘+2,𝑘+2

⋅ ⋅ ⋅ ℎ
𝑘+2,𝑘+𝑚

d d
...

ℎ
𝑘+𝑚,𝑘+𝑚−1

ℎ
𝑘+𝑚,𝑘+𝑚

ℎ
𝑘+𝑚+1,𝑘+𝑚

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (11)

ThemodifiedArnoldi relation (10) is shared by othermethods
such as GMRES-E [19] and FGMRES [20], which are also
augmented type methods.

The modified Arnoldi process is outlined in Algorithm 1.
We remark that the modified Arnoldi process in this paper
is slightly different from the one used by Morgan [19]
to augment the Krylov subspace with some approximate
eigenvectors. In his method, the augmenting vectors are put
after the Krylov vectors while in Algorithm 1, the augment-
ing subspace containing a rough approximation solution is
included in the projection subspace from the beginning.
In general, this can give better results at the start of the
regularization method proposed in this paper.

We remark that a loss of orthogonality can occur when
the algorithm progresses; see [21]. A remedy is the so-
called reorthogonalization where the current vector has to
be orthogonalized against previously created vectors. One
can choose between a selective reorthogonalization or a full

reorthogonalization against all vectors in the current aug-
mented subspace. In this paper we only use the full reorthog-
onalization. The full reorthogonalization can be done as a
classical or modifed Gram-Schmidt orthogonalization; see
[21] for details.

We now seek to determine an approximate solution 𝑥
𝜇,𝑚

of (3) in the augmented Krylov subspace K
𝑚
(𝐴, 𝐴𝑏) +W.

After computing theQR factorization [𝑊,𝑉
𝑚
] = 𝑄𝑅with𝑄 ∈

R𝑛×(𝑚+𝑘) having orthonormal columns and 𝑅 ∈ R(𝑚+𝑘)×(𝑚+𝑘)

being an upper triangularmatrix, we substitute𝑥 = [𝑊,𝑉
𝑚
]𝑦,

𝑦 ∈ R𝑚+𝑘, into (3). It yields the reduced minimization
problem

min
𝑦∈R𝑚+𝑘

{
󵄩󵄩󵄩󵄩𝐴 [𝑊,𝑉𝑚] 𝑦 − 𝑏

󵄩󵄩󵄩󵄩

2

+
1

𝜇

󵄩󵄩󵄩󵄩[𝑊,𝑉𝑚] 𝑦
󵄩󵄩󵄩󵄩

2

}

= min
𝑦∈R𝑚+𝑘

{
󵄩󵄩󵄩󵄩[𝑈, 𝑉𝑚+1]𝐻𝑦 − 𝑏

󵄩󵄩󵄩󵄩

2

+
1

𝜇

󵄩󵄩󵄩󵄩𝑄𝑅𝑦
󵄩󵄩󵄩󵄩

2

}
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= min
𝑦∈R𝑚+𝑘

{
󵄩󵄩󵄩󵄩󵄩
𝐻𝑦 − [𝑈,𝑉

𝑚+1
]
𝑇

𝑏
󵄩󵄩󵄩󵄩󵄩

2

+‖(𝐼 − 𝑃)𝑏‖
2

+
1

𝜇

󵄩󵄩󵄩󵄩𝑅𝑦
󵄩󵄩󵄩󵄩

2

} ,

(12)

in which 𝑃 = [𝑈,𝑉
𝑚+1
][𝑈, 𝑉

𝑚+1
]
𝑇 is an orthogonal projector

onto span([𝑈, 𝑉
𝑚+1
]). Obviously, the reduced minimization

problem (12) is equivalent to

min
𝑦∈R𝑚+𝑘

{
󵄩󵄩󵄩󵄩󵄩
𝐻𝑦 − [𝑈,𝑉

𝑚+1
]
𝑇

𝑏
󵄩󵄩󵄩󵄩󵄩

2

+
1

𝜇

󵄩󵄩󵄩󵄩𝑅𝑦
󵄩󵄩󵄩󵄩

2

}

= min
𝑦∈R𝑚+𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[

[

𝐻

1

√𝜇
𝑅
]

]

𝑦 − [
[𝑈,𝑉
𝑚+1
]
𝑇

𝑏

0
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.

(13)

The normal equations of the minimization problem (13) is

(𝐻
𝑇

𝐻 +
1

𝜇
𝑅
𝑇

𝑅)𝑦 = 𝐻
𝑇

[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏. (14)

We denote the solution of the minimization problem (13) by
𝑦
𝜇,𝑚

. Then, from (14) it follows that

𝑦
𝜇,𝑚
= (𝐻

𝑇

𝐻 +
1

𝜇
𝑅
𝑇

𝑅)

−1

𝐻
𝑇

[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏. (15)

The approximate solution of (3) is

𝑥
𝜇,𝑚
= [𝑊,𝑉

𝑚
] 𝑦
𝜇,𝑚
. (16)

Since the matrix𝐻𝑇𝐻+ (1/𝜇)𝑅𝑇𝑅 has a larger condition
number than the matrix [𝐻𝑇, (1/√𝜇)𝑅𝑇]𝑇, we apply the QR
factorization of [𝐻𝑇, (1/√𝜇)𝑅𝑇]𝑇 to obtain the solution 𝑦

𝜇,𝑚

of (13) instead.TheQR factorization of [𝐻𝑇, (1/√𝜇)𝑅𝑇]𝑇 can
be implemented by a sequence of Givens rotations.

Define

𝜙
𝑚
(𝜇) =

󵄩󵄩󵄩󵄩󵄩
𝑏 − 𝐴𝑥

𝜇,𝑚

󵄩󵄩󵄩󵄩󵄩

2

. (17)

Substituting 𝑥
𝜇,𝑚

= [𝑊,𝑉
𝑚
]𝑦
𝜇,𝑚

into (17) and using the
modified Arnoldi decomposition (10) yield

𝜙
𝑚
(𝜇) =

󵄩󵄩󵄩󵄩󵄩
𝑏 − 𝐴 [𝑊,𝑉

𝑚
] 𝑦
𝜇,𝑚

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑏 − [𝑈,𝑉

𝑚+1
]𝐻𝑦
𝜇,𝑚

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏 − 𝐻𝑦
𝜇,𝑚

󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃)𝑏‖
2

.

(18)

Substituting 𝑦
𝜇,𝑚

in (15) into (18), we obtain

𝜙
𝑚
(𝜇) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[𝐼 − 𝐻(𝐻
𝑇

𝐻 +
1

𝜇
𝑅
𝑇

𝑅)

−1

𝐻
𝑇

] [𝑈,𝑉
𝑚+1
]
𝑇

𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃) 𝑏‖
2

.

(19)

Note that

𝐼 − 𝐻(𝐻
𝑇

𝐻 +
1

𝜇
𝑅
𝑇

𝑅)

−1

𝐻
𝑇

= [𝜇𝐻𝑅
−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼]

−1

.

(20)

Therefore, the function 𝜙
𝑚
(𝜇) can be expressed as

𝜙
𝑚
(𝜇) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[𝜇𝐻𝑅
−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼]

−1

[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃) 𝑏‖
2

.

(21)

Concerning the properties of 𝜙
𝑚
(𝜇), we have the follow-

ing results, which are similar to those of Theorem 2.1 in [11]
for the Arnoldi-Tikhonov regularization method.

Theorem 1. The function 𝜙
𝑚
(𝜇) has the representation

𝜙
𝑚
(𝜇) = 𝑏

𝑇

[𝑈, 𝑉
𝑚+1
] [𝜇𝐻𝑅

−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼]

−2

× [𝑈,𝑉
𝑚+1
]
𝑇

𝑏 + ‖(𝐼 − 𝑃) 𝑏‖
2

.

(22)

Assume that 𝐴𝑏 ̸= 0 and (𝐻𝑅−1)𝑇[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏 ̸= 0. Then 𝜙
𝑚
is

strictly decreasing and convex for 𝜇 ≥ 0 with 𝜙
𝑚
(0) = ‖ 𝑏 ‖

2.
Moreover, the equation

𝜙
𝑚
(𝜇) = 𝜏 (23)

has a unique solution 𝜇
𝜏,𝑚

, such that 0 < 𝜇
𝜏,𝑚
< ∞, for any 𝜏

with
󵄩󵄩󵄩󵄩󵄩󵄩
𝑃N((𝐻𝑅−1)𝑇)[𝑈, 𝑉𝑚+1]

𝑇

𝑏
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃) 𝑏‖
2

< 𝜏 < ‖𝑏‖
2

, (24)

where 𝑃N((𝐻𝑅−1)𝑇) denotes the orthogonal projector onto
N((𝐻𝑅−1)

𝑇

).

Proof. The proof follows the same argument of the proof of
Theorem 2.1 in [11] and therefore is omitted.

We easily obtain the following theorem, of which the
proof is almost the same as that of Corollary 2.2 in [11].

Theorem 2. Assume that the modified Arnoldi process breaks
down at step 𝑗. Then the sequence {𝑠

𝑖
}
𝑗

𝑖=0
defined by

𝑠
0
= ‖𝑏‖
2

,

𝑠
𝑖
=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
N((𝐻𝑅−1)

𝑇

)
[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃)𝑏‖
2

, 0 < 𝑖 < 𝑗,

𝑠
𝑗
= 0,

(25)

is decreasing.

We apply the discrepancy principle to the discrepancy 𝑏−
𝐴𝑥
𝜇,𝑚

to determine an appropriate regularization parameter
𝜇 so that it satisfies (5). To make the equation

𝜙
𝑚
(𝜇) = 𝜂

2

𝜀
2 (26)
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Input: 𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛,𝑊 ∈ R𝑛×𝑘, 𝜀, 𝜂,𝑚
0
.

Output: 𝑥
𝜇,𝑚

, 𝜇
𝑚
,𝑚 = 𝑚min + 𝑚0.

(1) Compute the modified Arnoldi decomposition 𝐴[𝑊,𝑉
𝑚
] = [𝑈, 𝑉

𝑚+1
]𝐻, with𝑚 = 𝑚min + 𝑚0,

where𝑚min is the smallest number such that ‖(𝐼 − 𝑃)𝑏‖2 < 𝜂2𝜀2.
(2) Compute the solution 𝜇

𝑚
of the equation 𝜙

𝑚
(𝜇) = 𝜂

2

𝜀
2 by Newton’s method.

(3) Compute the solution 𝑦
𝜇,𝑚

of the least-squares problem (13) and obtain the approximate
solution 𝑥

𝜇,𝑚
= [𝑊,𝑉

𝑚
]𝑦
𝜇,𝑚

.

Algorithm 2: Augmented Arnoldi-Tikhonov regularization method.

have a solution, it follows from Theorem 1 that the input
parameter 𝑚 of the modified Arnoldi should be chosen so
that 𝑠

𝑚
< 𝜂
2

𝜀
2. To simplify the computations, we ignore

the first term in 𝑠
𝑚
. Then, the smallest iterative step number,

denoted by 𝑚min, of the modified Arnoldi process is chosen
so that

‖(𝐼 − 𝑃) 𝑏‖
2

< 𝜂
2

𝜀
2

. (27)

We can improve the quality of the computed solution by
choosing the practical iterative step number 𝑚 somewhat
larger than𝑚min.

After choosing the number 𝑚 of the modified Arnoldi
iterative steps, the regularization parameter 𝜇

𝑚
is determined

by solving the nonlinear equation 𝜙
𝑚
(𝜇) = 𝜂

2

𝜀
2. Many

numerical methods have been proposed for the solution
of a nonlinear equation, including Newton’s method [22],
super-Newton’s [23] method, and Halley’s method [24]. For
the specific nonlinear equation 𝜙

𝑚
(𝜇) = 𝜂

2

𝜀
2, Reichel and

Shyshkov proposed a new zero-finder method in their new
paper [25]. In this paper, we still make use of Newton’s
method to obtain the regularization parameter 𝜇

𝑚
.

In Algorithm 2, we outline the augmented Arnoldi-
Tikhonov regularizationmethod, which is used to solve large-
scale linear ill-posed systems (1).

Newton’s method requires to evaluate 𝜙
𝑚
(𝜇) and its first

derivative with respect to 𝜇 for computing approximations
𝜇
(𝑗)

𝑚
of 𝜇
𝑚
for 𝑗 = 0, 1, 2, . . .. Let

𝑧
𝜇,𝑚
= [𝜇𝐻𝑅

−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼]

−1

[𝑈, 𝑉
𝑚+1
]
𝑇

𝑏; (28)

that is, 𝑧
𝜇,𝑚

satisfies the system of linear equations

[𝜇𝐻𝑅
−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼] 𝑧 = [𝑈,𝑉
𝑚+1
]
𝑇

𝑏. (29)

Note that the above linear system is the normal equations of
the least-squares problem

min
𝑧∈R𝑚+𝑘+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
𝜇
1/2

(𝐻𝑅
−1

)
𝑇

𝐼
] 𝑧 − [

0

(U, 𝑉
𝑚+1
)
𝑇

𝑏
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (30)

For numerical stability, we compute the vector 𝑧
𝜇,𝑚

by solving
the least-squares problem. Then, the 𝜙

𝑚
(𝜇) is evaluated by

computing

𝜙
𝑚
(𝜇) = 𝑧

𝑇

𝜇,𝑚
𝑧
𝜇,𝑚
+ ‖(𝐼 − 𝑃) 𝑏‖

2

. (31)

It is easy to show that the first derivative of 𝜙󸀠
𝑚
(𝜇) can be

written as

𝜙
󸀠

𝑚
(𝜇) = −2𝑧

𝑇

𝜇,𝑚
𝑤
𝜇,𝑚
, (32)

where

𝑤
𝜇,𝑚
= [𝜇𝐻𝑅

−1

(𝐻𝑅
−1

)
𝑇

+ 𝐼]

−1

𝐻𝑅
−1

(𝐻𝑅
−1

)
𝑇

𝑧
𝜇,𝑚
. (33)

Hence, we may compute 𝑤
𝜇,𝑚

by solving a least-squares
problem analogous to the above with the vector [𝑈, 𝑉

𝑚+1
]
𝑇

𝑏

replaced by𝐻𝑅−1(𝐻𝑅−1)𝑇𝑧
𝜇,𝑚

.
The algorithm for implementing the Newton iteration for

solving the nonlinear equation 𝜙
𝑚
(𝜇) = 𝜂

2

𝜀
2 is presented in

Algorithm 3.
Let 𝑥
𝑚
be the 𝑚th iterate produced by the augmented

RRGMRES in [16]. Then, 𝑥
𝑚
satisfies

󵄩󵄩󵄩󵄩𝐴𝑥𝑚 − 𝑏
󵄩󵄩󵄩󵄩

2

= min
𝑥∈K
𝑚
(𝐴,𝐴𝑏)+W

‖𝐴𝑥 − 𝑏‖
2

= min
𝑦∈R𝑚+𝑘

󵄩󵄩󵄩󵄩𝐴 [𝑊,𝑉𝑚] 𝑦 − 𝑏
󵄩󵄩󵄩󵄩

2

= min
𝑦∈R𝑚+𝑘

󵄩󵄩󵄩󵄩[𝑈, 𝑉𝑚+1]𝐻𝑦 − 𝑏
󵄩󵄩󵄩󵄩

2

= min
𝑦∈R𝑚+𝑘

󵄩󵄩󵄩󵄩󵄩
𝐻𝑦 − [𝑈,𝑉

𝑚+1
]
𝑇

𝑏
󵄩󵄩󵄩󵄩󵄩

2

+ ‖(𝐼 − 𝑃)𝑏‖
2

.

(34)

As 𝜇 → ∞, the reduced minimization problem (12) is the
same as the above minimization problem, which shows that

𝑥
𝑚
= lim
𝜇→∞

𝑥
𝜇,𝑚
. (35)

Therefore, we obtain the following result.

Theorem 3. Let 𝑥
𝑚

be the 𝑚th iterate determined by aug-
mented RRGMRES applied to (1) with initial iterate 𝑥

0
= 0.

Then
󵄩󵄩󵄩󵄩𝐴𝑥𝑚 − 𝑏

󵄩󵄩󵄩󵄩

2

= 𝜙
𝑚
(∞) . (36)

3. Numerical Experiments

In this section, we present some numerical examples
to illustrate the performance of the augmented Arnoldi-
Tikhonov regularization method for the solution of large-
scale linear ill-posed systems. We compare the augmented
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(1) Set 𝜇
0
= 0 and 𝑖 = 0.

(2) Solve the least-squares problem

min
𝑧∈R𝑚+𝑘+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
𝜇
1/2

𝑖
(𝐻𝑅
−1

)
𝑇

𝐼
] 𝑧 − [

0

(𝑈,𝑉
𝑚+1
)
𝑇

𝑏
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

to obtain 𝑧
𝜇
𝑖
,𝑚
.

(3) Compute 𝜙
𝑚
(𝜇
𝑖
) = 𝑧
𝑇

𝜇
𝑖
,𝑚
𝑧
𝜇
𝑖
,𝑚
+ ‖(𝐼 − 𝑃)𝑏‖

2.
(4) Solve the least-squares problem

min
𝑧∈R𝑚+𝑘+1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
𝜇
1/2

𝑖
(𝐻𝑅
−1

)
𝑇

𝐼
] 𝑧 − [

0

𝐻𝑅
−1

(𝐻𝑅
−1

)
𝑇

𝑧
𝜇
𝑖
,𝑚

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
to obtain 𝑤

𝜇
𝑖
,𝑚
.

(5) Compute 𝜙󸀠
𝑚
(𝜇
𝑖
) = −2𝑧

𝑇

𝜇
𝑖
,𝑚
𝑤
𝜇
𝑖
,𝑚
.

(6) Compute the new approximation

𝜇
𝑖+1
= 𝜇
𝑖
−
𝜙
𝑚
(𝜇
𝑖
) − 𝜂
2

𝜀
2

𝜙󸀠
𝑚
(𝜇
𝑖
)

.

(7) If |𝜇
𝑖+1
− 𝜇
𝑖
| < 10

−6, stop; else 𝜇
𝑖
:= 𝜇
𝑖+1
, 𝑖 := 𝑖 + 1, and go to 2.

Algorithm 3: Newton’s method for 𝜙
𝑚
(𝜇) = 𝜂

2

𝜀
2.

Arnoldi-Tikhonov regularization method implemented by
Algorithm 2 to the Arnoldi-Tikhonov regularization method
proposed in [11]. The Arnoldi-Tikhonov regularization
method is denoted by ATRM while the augmented Arnoldi-
Tikhonov regularization method is denoted by AATRM.
In all the following tables, we denote by MV the number
of matrix-vector products and by RERR the relative error
‖𝑥
𝜇,𝑚

− 𝑥‖/‖𝑥‖, where 𝑥 is the exact solution of the linear
error-free system of (2). Note that the number of matrix-
vector products in Algorithm 2 is 𝑘 + 𝑚min + 𝑚0. In all the
examples, 𝜂 = 1.01.

All the numerical experiments are performed in Matlab
on a PC with the usual double precision, where the floating
point relative accuracy is 2.22 ⋅ 10−16.

Example 4. The first example considered is the Fredholm
integral equation of the first kind, which takes the generic
form

∫

1

0

𝑘 (𝑠, 𝑡) 𝑥 (𝑡) 𝑑𝑡 = 𝑏 (𝑠) , 0 ≤ 𝑠 ≤ 1. (37)

Here, both the kernel 𝑘(𝑠, 𝑡) and the right-hand side 𝑏(𝑠) are
known functions, while 𝑥(𝑡) is the unknown function. For
test, the kernel 𝑘(𝑠, 𝑡) and the right-hand side 𝑏(𝑠) are chosen
as

𝑘 (𝑠, 𝑡) = {
𝑠 (𝑡 − 1) , 𝑠 < 𝑡,

𝑡 (𝑠 − 1) , 𝑠 ≥ 𝑡,
𝑏 (𝑠) =

𝑠
3

− 𝑠

6
. (38)

With this choice, the exact solution of (37) is 𝑡. We use the
Matlab program deriv2 from the regularization package [26]
to discretize the integral equation (37) and to generate a
system of linear equations (2) with the coefficient matrix 𝐴 ∈
R200×200 and the solution 𝑥 ∈ R200. The condition number of
𝐴 is 4.9 ⋅ 104. The right-hand side 𝑏 is given by 𝑏 = 𝐴𝑥 + 𝑒,
where the elements of the error vector 𝑒 are generated from
normal distribution with mean zero and the norm of 𝑒 is
10
−2

⋅ ‖ 𝐴𝑥 ‖.The augmentation subspace is one-dimensional

Table 1: Computational results of Example 4.

Method 𝑚
0

MV RERR
AATRM 0 2 1.95 ⋅ 10

−2

AATRM 1 3 1.17 ⋅ 10
−2

AATRM 2 4 6.25 ⋅ 10
−2

AATRM 3 5 1.19 ⋅ 10
−1

ATRM 0 4 3.14 ⋅ 10
−1

ATRM 1 5 2.94 ⋅ 10
−1

ATRM 2 6 2.87 ⋅ 10
−1

ATRM 3 7 2.89 ⋅ 10
−1

and is spanned by the vector 𝑤 = [1, 2, . . . , 200]𝑇. Numerical
results for the example are reported in Table 1 for several
choice of the number𝑚

0
of additional iterations.

FromTable 1, we can see that for 0 ≤ 𝑚
0
≤ 3, AATRMhas

smaller relative errors than ATRM, and the smallest relative
error is given by AATRM with 𝑚

0
= 1. The exact solution

𝑥 and the approximate solutions generated by AATRM and
ARTM with𝑚

0
= 1 are depicted in Figure 1.

Example 5. This example comes again from the regulariza-
tion package [26] and is the inversion of Laplace transform

∫

∞

0

𝑒
−𝑠𝑡

𝑥 (𝑠) 𝑑𝑠 = 𝑏 (𝑡) , 𝑡 ≥ 1, (39)

where the right-hand side 𝑏(𝑡) and the exact solution 𝑥(𝑡) are
given by

𝑏 (𝑡) =
1

𝑡 + 1/2
, 𝑥 (𝑡) = 𝑒

−𝑡/2

. (40)

The system of linear equations (2) with the coefficient matrix
𝐴 ∈ R250×250 and the solution 𝑥 ∈ R250 is obtained by
using the Matlab program ilaplace from the regularization
package [26]. In the same way as Example 4, we construct
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Figure 1: Example 4. Exact solution𝑥; approximation solutionswith
𝑚
0
= 1.

Table 2: Computational results of Example 5.

Method 𝑚
0

MV RERR
AATRM 1 5 3.3 ⋅ 10

−1

AATRM 2 6 9.1 ⋅ 10
−2

AATRM 3 7 2.7 ⋅ 10
−1

ATRM 1 6 5.7 ⋅ 10
−1

ATRM 2 7 3.1 ⋅ 10
−1

ATRM 3 8 4.5 ⋅ 10
−1

Table 3: Computational results of Example 6.

Method 𝑚
0

MV RERR
AATRM 1 10 2.2 ⋅ 10

−1

AATRM 2 11 1.1 ⋅ 10
−1

AATRM 3 12 2.1 ⋅ 10
−1

ATRM 1 10 4.9 ⋅ 10
−1

ATRM 2 11 1.2 ⋅ 10
−1

ATRM 3 12 2.3 ⋅ 10
−1

the right-hand side 𝑏 of the system of linear equations (1).
The augmentation subspace is also one-dimensional and is
spanned by the vector 𝑤 = [1, 1/2, . . . , 1/250]

𝑇. Numerical
results for the example are reported in Table 2 for𝑚

0
= 1, 2, 3.

Table 2 shows that AATRM with 𝑚
0
= 2 has the smallest

relative error, and AARTM works slightly better than ATRM
for this problem.

Example 6. This example considered here is the same as
Example 5 except that the right-hand side 𝑏(𝑡) and the exact
solution 𝑥(𝑡) are given by

𝑏 (𝑡) =
2

(𝑡 + 1/2)
3
, 𝑥 (𝑡) = 𝑡

2

𝑒
−𝑡/2

. (41)

By using the sameMatlab program as Example 5, we generate
a system with 𝐴 ∈ R1000×1000. The augmentation subspace

is one-dimensional and is spanned by the vector 𝑤 =

[1, 1, . . . , 1]
𝑇. In Table 3, we report numerical results for𝑚

0
=

1, 2, 3.

We observe from Table 3 that for this example AATRM
has almost the same relative errors as ATRM, and the approx-
imate solution can be slightly improved by the augmentation
space spanned by 𝑤 = [1, 1, . . . , 1]𝑇.

4. Conclusions

In this paper we propose an iterative method for solving
large-scale linear ill-posed systems. The method is based on
the Tikhonov regularization technique and the augmented
Arnoldi technique. The augmentation subspace is a user-
supplied low-dimensional subspace, which should contain
a rough approximation of the desired solution. Numerical
experiments show that the augmented method is effective for
some practical problems.
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[7] Å. Björck, “A bidiagonalization algorithm for solving large and
sparse ill-posed systems of linear equations,” BIT: Numerical
Mathematics, vol. 28, no. 3, pp. 659–670, 1988.

[8] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, “Tikhonov
regularization and the 𝐿-curve for large discrete ill-posed



8 Mathematical Problems in Engineering

problems,” Journal of Computational and Applied Mathematics,
vol. 123, no. 1-2, pp. 423–446, 2000.

[9] D. Calvetti and L. Reichel, “Tikhonov regularization of large
linear problems,” BIT: NumericalMathematics, vol. 43, no. 2, pp.
263–283, 2003.

[10] D. P. O’Leary and J. A. Simmons, “A bidiagonalization-
regularization procedure for large scale discretizations of ill-
posed problems,” SIAM Journal on Scientific and Statistical
Computing, vol. 2, no. 4, pp. 474–489, 1981.

[11] B. Lewis and L. Reichel, “Arnoldi-Tikhonov regularization
methods,” Journal of Computational and Applied Mathematics,
vol. 226, no. 1, pp. 92–102, 2009.

[12] T. F. Chan and K. R. Jackson, “Nonlinearly preconditioned
Krylov subspace methods for discrete Newton algorithms,”
SIAM Journal on Scientific and Statistical Computing, vol. 5, no.
3, pp. 533–542, 1984.

[13] L. Reichel, F. Sgallari, andQ. Ye, “Tikhonov regularization based
on generalized Krylov subspace methods,” Applied Numerical
Mathematics, vol. 62, no. 9, pp. 1215–1228, 2012.

[14] D. Calvetti, B. Lewis, and L. Reichel, “On the choice of subspace
for iterative methods for linear discrete ill-posed problems,”
International Journal of Applied Mathematics and Computer
Science, vol. 11, no. 5, pp. 1069–1092, 2001, Numerical analysis
and systems theory (Perpignan, 2000).

[15] L. Reichel and Q. Ye, “Breakdown-free GMRES for singular
systems,” SIAM Journal onMatrixAnalysis andApplications, vol.
26, no. 4, pp. 1001–1021, 2005.

[16] J. Baglama and L. Reichel, “Augmented GMRES-type methods,”
Numerical Linear Algebra with Applications, vol. 14, no. 4, pp.
337–350, 2007.

[17] K. Morikuni, L. Reichel, and K. Hayami, “FGMRES for linear
discrete problems,” Tech. Rep., NII, 2012.

[18] D. Calvetti, B. Lewis, and L. Reichel, “On the regularizing
properties of the GMRES method,” Numerische Mathematik,
vol. 91, no. 4, pp. 605–625, 2002.

[19] R. B. Morgan, “A restarted GMRES method augmented with
eigenvectors,” SIAM Journal on Matrix Analysis and Applica-
tions, vol. 16, no. 4, pp. 1154–1171, 1995.

[20] Y. Saad, “A flexible inner-outer preconditioned GMRES algo-
rithm,” SIAM Journal on Scientific Computing, vol. 14, no. 2, pp.
461–469, 1993.

[21] B. N. Parlett, The Symmetric Eigenvalue Problem, vol. 20 of
Classics in Applied Mathematics, SIAM, Philadelphia, Pa, USA,
1998.

[22] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method,
vol. 1 of Fundamentals of Algorithms, SIAM, Philadelphia, Pa,
USA, 2003.

[23] J. A. Ezquerro andM. A. Hernández, “On a convex acceleration
of Newton’s method,” Journal of Optimization Theory and
Applications, vol. 100, no. 2, pp. 311–326, 1999.

[24] W. Gander, “On Halley’s iteration method,” The American
Mathematical Monthly, vol. 92, no. 2, pp. 131–134, 1985.

[25] L. Reichel and A. Shyshkov, “A new zero-finder for Tikhonov
regularization,” BIT: Numerical Mathematics, vol. 48, no. 3, pp.
627–643, 2008.

[26] P. C. Hansen, “Regularization tools: a Matlab package for
analysis and solution of discrete ill-posed problems,”Numerical
Algorithms, vol. 6, no. 1-2, pp. 1–35, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


