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In this article, a compact narrow-bandpass filter with high selectivity and improved rejection level is presented. Forminiaturization,
a pair of double negative (DNG) cells consisting of quasi-planar chiral resonators are cascaded and electrically loaded to amicrostrip
transmission line; short ended stubs are introduced to expand upper rejection band. The structure is analyzed using equivalent
circuit models and simulated based on EM simulation software. For validation, the proposed filter is fabricated and measured. The
measured results are in good agreement with the simulated ones. By comparing to other filters in the references, it is shown that the
proposed filter has the advantage of skirt selectivity and compact size, so it can be integrated more conveniently in modern wireless
communication systems and microwave planar circuits.

1. Introduction

Design of very compact microwave devices compatible with
printed circuit board and monolithic-microwave integrated-
circuit fabrication technologies has gained great interest in
the last decades. The split-ring resonators (SRRs) and their
counterparts, complementary split-ring resonators (CSRRs),
are key aspects that propose new design strategies to minia-
turize planar microwave circuit [1]. It is demonstrated that,
by combining two metal levels at both sides of a dielectric
layer connected by vias with an appropriate topology, it is
possible to design new resonators with a higher level of
miniaturization [2]. These resonators which often exhibit
chirality [3] can be used to synthesize left handed structures
with neither severe degradation in the quality factor [2]
nor causing electromagnetic compatibility (EMC) problems
dealing with SRR and CSRR structures [3, 4].

Narrow-bandpass filters (NBPFs) with sharp selectivity
and high rejection are increasingly demanded in modern
microwave communications systems. In order to miniaturize
such filters for circuit integration, many research works

have been done. In [5], composite right/left-handed coplanar
waveguide (CRLH-CPW) resonators are used to create a
passband. But in general, the parasitic effects of CPW on
the coupling gaps usually cannot be neglected. Therefore,
the selectivity would be compromised. In [6], CSRRs have
been loaded on the top side of the substrate, but a good
deal of insertion loss of the passband is caused by the
coupling and fringing capacitance brought by this structure.
Also, unwanted spurious responses occur. In [7], multisec-
tion stepped-impedance resonators are cascaded to create a
relative wide passband. However, the resonant mode cannot
be easily controlled and the design process is compara-
tively complex. In [8], electromagnetic bandgap (EBG) is
introduced on the ground plane of the filter. Better out-of-
band rejection has been achieved and the design process
can be more flexible. But in most cases, the loss of the
in-band frequency response is inevitably increased by the
rejection effect of EBG. Therefore, some performances must
be balanced to make compromises. In [9], SRRs are coupled
together to create a single passband. Since the structures of
SRRs and CSRRs are quite the same, similar problems have
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Figure 1: (a) 3D layout of the DNG cell including quasi-planar chiral resonator (particle) electrically loaded to a microstrip line with series
gaps. (b) Lumped element equivalent circuit and equivalent T-model.

been encountered as that with CSRRs. Recently, other types
of structures have been proposed to overcome the afore-
mentioned disadvantages. In [10–17], composite right/left-
handed (CRLH) metamaterial structure is demonstrated.
CRLH resonators have positive, negative, and zeroth resonant
modes based on the working condition. At zeroth resonant
mode, the passband can achieve the highest selectivity with
the lowest insertion loss due to the low conductor loss at
this special resonant mode. In addition, CRLH resonators are
often designed in the form of interdigital or spiral geometric
structure, which makes the size more compact. In [18–
25], defected ground structure (DGS) has been proposed.
DGSs are etched at the bottom plane of the resonators and
band-stop frequency responses are achieved. Since DGS is
independent of the resonators on the upper layer, the design
process can be much more flexible. Out-of-band rejection
can be increased by the slow-wave effect of DGS. Moreover,
DGS are perfectly compatible with CRLH structures. In order
to further miniaturize the size of the microwave circuit,
in [26], multilayered quasi-planar structure is proposed.
Different electromagnetic structures are packed into different
layers of the substrate through weak coupling. Thus, more
compact size has been achieved without major influence on
the performances of the device. Inspired by these previous
literatures, in our work, a novel NBPF with good selectivity
and higher level of miniaturization using quasi-planar chiral
resonators is proposed. The corresponding equivalent circuit
has been analyzed and the results of full-wave simulation and
experimental measurement have been presented.

2. Filter Design

Figure 1(a) shows the topology of the double negative (DNG)
cell conceptually proposed in [4], consisting of a microstrip
line with series gaps and a quasi-planar chiral resonator,
electrically loaded to the transmission line. As illustrated in
Figure 1(a), this topology can be printed on the surfaces of
a three-layer substrate. The circuit model of the cell and its
transformed T-model are depicted in Figure 1(b) (the circuit
model is clearly described in [4]). In [4] it was demon-
strated that this resonator provides negative permittivity in
a narrow band after its resonant frequency. On the other
hand, series gaps (𝐶𝑔) between transmission lines expose
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Figure 2: The variation of the resonant frequency of the chiral
particle with respect to changing “𝑎” (depicted in Figure 1). Other
dimension parameters are set to𝑤 ≈ 𝑎/3,𝑊𝑠 = 5.5mm, 𝐶𝑙 = 10mm,
𝐶𝑤 = 11.4mm, and 𝐶𝑑 = 1.4mm.

negative permeability before their plasma frequency. Thus,
this subwave-length structure with appropriate topology
supports backward-wave propagation in a narrow frequency
band.Therefore, the main idea behind this work is to use this
DNG cell for implementing a compact NBPF.

Because the particle is excitedwith electrical field perpen-
dicular to the substrate, for better coupling, the transmission
line above the particle is widened. In addition, this widening
prevents gap size from being closer to the limits imposed by
the fabrication technology (approximately 0.1mm). The line
is tapered next to the widened section for a better matching.

Particle resonant frequency is determined by its dimen-
sions. Among the dimension parameters indicated in Fig-
ure 1(a), to the side length of the loop, “𝑎” is the most
important one on the resonant frequency. Figure 2 shows the
resonant frequency variation of the resonator with respect
to changing “𝑎.” In the simulation, three layers of Rogers
4003C substrate with relative dielectric constant (𝜀𝑟) of 3.55,
thickness (ℎ) of 0.813mm, and loss tangent 𝛿 of 0.0027 are
used and copper metallization thickness is 35 𝜇m. To realize
the passband at 1 GHz, the value of “𝑎” is set to be 12.9mm.

While setting the gap size (𝑔𝑠), it can be noticed that
larger 𝑔𝑠 provides more suitable rejection up to the plasma
frequency but results in a higher insertion loss within the
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Figure 3: Scattering parameters of the DNG cell. The elements of
the equivalent circuit are extracted as𝐶󸀠𝑝 = 4.396 pF, 𝐿󸀠𝑝 = 7.308 nH,
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Figure 4: Scattering parameters of two cascade DNG cells (𝑠 =
2.1mm).

passband. On the other hand, smaller 𝑔𝑠 decreases the
rejection level within the stopband. In this design 𝑔𝑠 is set
to be 0.2mm to lessen the influence caused by fabrication
uncertainties.

The results of full-wave electromagnetic and equivalent
circuit simulations of the structure shown in Figure 1(a)
are depicted in Figure 3, which clearly shows a narrow-
passband around 1GHz (the equivalent circuit parameters of
the topology are extracted from equations (14), (15), and (17)-
(19) of [4] and given in the caption).

To achieve a deeper rejection and also a sharper pass-
band, two DNG cells are cascaded as shown in Figure 4,
where cell I and cell II contain a left-handed and a right-
handed chiral resonator, respectively. Figure 4 also shows
the simulations results. Comparing to the results shown in
Figure 3, improvement in filter performance is obvious. Also,
the spurious response occurs far beyond twice the resonant
frequency of the resonators, and the out-of-band rejection
has been improved.

In addition, to expand upper rejection band and improve
selectivity, a transmission zero is placed at 2.6GHz using
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Figure 5: A DNG cell with loaded stubs; (a) layout and (b)
equivalent circuit.

short ended stubs coupled with gaps to the wide sections of
the transmission line as shown in Figure 5(a). In Figure 5(b)
the equivalent circuit of a cell loaded with short ended stubs
is depicted where the stubs (with coupling gaps) are modeled
by 𝐿𝐶 resonators (𝑍stub). Appendix describes how to extract
the elements of the equivalent circuit, that is, 𝐿 stub and 𝐶stub.
These capacitors and inductors can achieve different resonant
modes with the change of operating frequency.

3. Experimental Results and Discussions

Three layers of Rogers RO4003C are used to fabricate the
proposed filter. The transmission line with gaps and stubs
are printed on the top surface of the top layer. Two metal
rings are printed on each surface of the middle layer and
connected to each other using copper ribbons to form
quasi-planar resonators. The bottom layer is ground plane
(depicted in Figure 6). Then, the three layers are connected
using insulating gel. After gluing, the structure is punctured
and the vias of the stubs are soldered with tin. Then, by
using the substrate with less thickness, stronger coupling
between the upper and lower resonator rings can be obtained
with the reducing of resonant frequency, which indicates
that further miniaturization could be achieved. Moreover,
advanced monolithic fabrication method can mitigate some
problems due to the lack of complete alignment among the
layers (especially between the first and the second layers) and
the substrate loss of the gel.

The results obtained from equivalent circuit simula-
tion, full-wave simulation, and measurements are shown
in Figure 7, demonstrating good agreement between them;
however, use of copper ribbons instead of vias has effect
on the resonant frequency of the resonators which appears
by a slight frequency-shift in the measurement results. The
small differences between simulated and measured results
are mainly due to fabrication inaccuracy. But in general, the
measured results are in good agreement with the simulated
results.

Finally the proposed filter is compared with the other
compact NBPFs reported in the literature in terms of res-
onator type, center frequency (𝑓0), fractional bandwidth
(FBW), length (𝜆𝑔), and insertion loss (IL), where 𝜆𝑔 is
the guided wavelength of the electromagnetic waves in the
substrate at the resonant frequency.The comparison is shown
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Table 1: Comparison between this work and other published works.

Ref. Resonator 𝑓0 [GHz] FBW [%] Length [𝜆𝑔] IL [dB]
[9] SRR 4.6 1.7 0.53 5.2
[8] EBG 5 3.7 0.47 2.8
[5] CRLH-CPW 5 6 0.42 2.5
[6] CSRR 1 8 0.42 1.5
[7] Multisection SIR 2.4 10.8 0.24 5.8
This work Quasi-planar chiral 1 2.2 0.17 5.1

Top layer

(a)

Cell I Cell II
Middle layer

Top view

(b)

Cell I Cell II
Middle layer
Bottom view

(c)

Figure 6:The layers of the fabricated filter: (a) top layer, (b) top view of the middle layer, and (c) bottom view of the middle layer (notice that
the bottom layer (not shown in this figure) is ground plane).

in Table 1 (which is sorted by filter length in descending
order) indicating that the proposed filter with 0.17𝜆𝑔 length is
the most compact (the operating frequency of the proposed
filter is the lowest, but its size is the smallest), yet with FBW=
2.2% the second narrowest. On the other hand, the insertion
loss of the filter in this work is still acceptable.

4. Conclusion

In this article, a narrow bandwidth bandpass filter based on
the quasi-planar chiral resonators is presented.The proposed
filter has the merits of simple design, backward propagation,
compact size, and high selectivity. The results of equivalent
circuit simulation, full-wave simulation, and measurement
are in good agreement. Compared with other similar filters, it
could be observed that the proposed filter has the advantages
of better size integration and frequency selectivity. The pro-
posed filter is feasible and applicable in modern microwave
communication circuits.

Appendix

The input impedance (𝑍in) indicated in Figure 5(b) at the
resonant frequency of the quasi-planar resonator 𝜔0,𝑝 (where

𝑍𝑝 = ∞) can be written as 𝑍in = [(𝑍0 + 𝑍𝑠)//𝑍stub/2 + 𝑍𝑠].
Hence, 𝑍stub at 𝜔0,𝑝 is derived as

𝑍stub (𝜔0,𝑝)

= 2
[𝑍0 + 𝑍𝑠 (𝜔0,𝑝)] [𝑍in (𝜔0,𝑝) − 𝑍𝑠 (𝜔0,𝑝)]

𝑍0 + 2𝑍𝑠 (𝜔0,𝑝) − 𝑍in (𝜔0,𝑝)
.

(A.1)

𝑍stub is a complex amount whose real part describes losses
which is ignored here for simplicity. Considering Figure 5(b),
it can be obtained that

I (𝑍stub) = 𝑗𝜔𝐿 stub −
𝑗

𝜔𝐶stub
. (A.2)

And the resonant frequency of 𝐿𝐶 network is

𝜔0,𝑠 =
1

√𝐿 stub𝐶stub
. (A.3)

Then, 𝐿 stub and 𝐶stub can be extracted as

𝐿 stub =
𝜔0,𝑝I (𝑍stub (𝜔0,𝑝))

Δ𝜔20

𝐶stub =
Δ𝜔20

𝜔0,𝑝𝜔20,𝑠I (𝑍stub (𝜔0,𝑝))
,

(A.4)
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Figure 7: Measured, full-wave, and equivalent circuit simulations of (a) |𝑆11| and (b) |𝑆21|. Layout parameters are 𝑖𝑟 = 6.5mm, 𝑖𝑐 = 1mm, 𝑖𝑤
= 1mm, 𝑟via = 0.25mm, and 𝑔𝑝 = 0.2mm. Extracted values of circuit model elements are 𝐿 stub = 10.8 nH and 𝐶stub = 0.35 pF.

where

Δ𝜔20 = 𝜔20,𝑝 − 𝜔20,𝑠. (A.5)
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