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This paper deals with a kind of nonlinear Duffing equation with a deviating argument and time-varying delay. By using differential
inequality techniques, some very verifiable criteria on the existence and exponential stability of antiperiodic solutions for the
equation are obtained. Our results are new and complementary to previously known results. An example is given to illustrate
the feasibility and effectiveness of our main results.

1. Introduction

In recent years, Duffing equations have attracted much atten-
tion due to its wide range of applications in many practical
problems such as in physics, mechanics, and the engineering
fields.Many results on variousDuffing equations are available
(see [1–12]). However, to the best of our knowledge, there
are few results on the antiperiodic solutions of Duffing
equations. Many authors argue that in many applied science
fields the existence of antiperiodic solutions plays a key
role in characterizing the behavior of nonlinear differential
equations [13–36].This motivates us to focus on the existence
and stability of antiperiodic solutions for Duffing equations.
In 2010, Peng andWang [37] consider the existence of positive
almost periodic solutions for the following nonlinear Duffing
equation with a deviating argument:

𝑥
󸀠󸀠
+ 𝑐𝑥
󸀠
− 𝑎𝑥 (𝑡) + 𝑏𝑥

𝑚
(𝑡 − 𝜏 (𝑡)) = 𝑝 (𝑡) , (1)

where 𝜏(𝑡) and 𝑝(𝑡) are almost periodic functions on 𝑅, 𝑚 >

1, and 𝑎, 𝑏, and 𝑐 are constants. By applying some analysis
technique, Peng and Wang [37] obtained the results on the
existence of positive almost periodic solutions for system (1).

In this paper, we will consider the antiperiodic solutions
of the following more general Duffing equation with a

deviating argument and time-varying delay which takes the
form

𝑥
󸀠󸀠
+ 𝑐 (𝑡) 𝑥

󸀠
− 𝑎 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑡) 𝑥

𝑚
(𝑡 − 𝜏 (𝑡)) = 𝑝 (𝑡) ,

(2)

where 𝑐(𝑡), 𝑎(𝑡), 𝑏(𝑡), and 𝑝(𝑡) are continuous functions on 𝑅,
𝑚 > 1 is a constant, and 𝜏(𝑡) ≥ 0 is continuous functions
on 𝑅. There exists a constant 𝜏 such that 𝜏 = sup

𝑡∈𝑅
𝜏(𝑡).

By using differential inequality techniques, a series of new
sufficient conditions for the existence, uniqueness, and expo-
nential stability of antiperiodic solutions of system (2) are
established. In addition, an example is presented to illustrate
the effectiveness of our main results.

Let 𝑎
1
be a constant. Define

𝑦 (𝑡) =

𝑑𝑥 (𝑡)

𝑑𝑡

+ 𝑎
1
𝑥 (𝑡) . (3)

Then system (2) can be transformed into the following
equivalent system:

𝑑𝑥 (𝑡)

𝑑𝑡

= −𝑎
1
𝑥 (𝑡) + 𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

= − (𝑐 (𝑡) − 𝑎
1
) 𝑦 (𝑡) + [𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))] 𝑥 (𝑡)

− 𝑏 (𝑡) 𝑥
𝑚

(𝑡 − 𝜏 (𝑡)) + 𝑝 (𝑡) .

(4)
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Let BC((−∞, 0], 𝑅) denote the space of bounded continuous
functions 𝜑 : [−∞, 0] → 𝑅 with the supremum norm ‖ ⋅ ‖.
According to Burton [38], Hale [39], and Yoshizawa [40], we
know that for 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), and 𝑝(𝑡) continuous, given a
continuous initial function 𝜑 ∈ BC((−∞, 0], 𝑅) and a vector
𝑦
0

∈ 𝑅, there exists a solution of (4) on an interval [0, 𝑇)

satisfying the initial condition and satisfying (4) on [0, 𝑇). If
the solution remains bounded, then 𝑇 = +∞. We denote
such a solution by (𝑥(𝑡), 𝑦(𝑡)) = (𝑥(𝑡, 𝜑, 𝑦

0
), 𝑦(𝑡, 𝜑, 𝑦

0
)). Let

𝑦(𝑠) = 𝑦(0) for all 𝑠 ∈ [−𝜏, 0]. It follows that (𝑥(𝑡), 𝑦(𝑡)) can
be defined on [−𝜏, +∞].

Definition 1. Let 𝑢(𝑡) : 𝑅 → 𝑅 be continuous function in 𝑡.
𝑢(𝑡) is said to be 𝑇-antiperiodic on 𝑅 if

𝑢 (𝑡 + 𝑇) = −𝑢 (𝑡) , (5)

for all 𝑡 ∈ 𝑅.

Definition 2. Let 𝑍
∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡)) be an antiperiodic

solution of (4) with initial value (𝜑
∗
(𝑡), 𝑦
∗

0
) ∈ BC((−∞, 0],

𝑅) ×𝑅×𝑅. If there exist constants 𝜆 > 0 and𝑀 > 1 such that
for every solution 𝑍(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of (4) with an initial
value 𝜑 = (𝜑(𝑡), 𝑦

0
) ∈ BC((−∞, 0], 𝑅) × 𝑅,

max {
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡) − 𝑦

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
}

≤ 𝑀max {
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡) − 𝜑

∗

(𝑡)
󵄩
󵄩
󵄩
󵄩
,
󵄨
󵄨
󵄨
󵄨
𝑦
0
− 𝑦
∗

0

󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜆𝑡

(6)

for all 𝑡 > 0, where
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡) − 𝜑

∗

(𝑡)
󵄩
󵄩
󵄩
󵄩
= sup
𝑡∈(−∞,0]

󵄨
󵄨
󵄨
󵄨
𝜑 (𝑡) − 𝜑

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
. (7)

Then 𝑍
∗
(𝑡) is said to be globally exponentially stable.

Throughout this paper, we make the following assump-
tions.

(H1) There exists a constant 𝑇 > 0 such that

𝑎 (𝑡 + 𝑇) = 𝑎 (𝑡) , 𝑏 (𝑡 + 𝑇) = 𝑏 (𝑡) ,

𝑐 (𝑡 + 𝑇) = 𝑐 (𝑡) , 𝜏 (𝑡 + 𝑇) = 𝜏 (𝑡) ,

𝑝 (𝑡 + 𝑇) = −𝑝 (𝑡) ,

(8)

for all 𝑡, 𝑢 ∈ 𝑅.
(H2) There exists a constant 𝑝+ such that, for all 𝑡 > 0,

𝑝
+
= sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨
. (9)

(H3) There exists a constant 𝜆 > 0 such that 𝜆−(𝑎
1
−1) < 0

and

𝜆 − inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
) + sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨

+ 𝑏
+
[(𝑚 − 1) 𝛿

𝑚−1
+ 1] 𝑒

𝜆𝜏
< 0.

(10)

The organization of this paper is as follows. In
Section 2, we give some preliminary results. In
Section 3, we derive the existence of 𝑇-antiperiodic
solution, which is globally exponentially stable. An
example is provided to illustrate the effectiveness of
our main results in Section 4.

2. Preliminary Results

In this section, we will first present two important lemmas
which are used in what follows.

Lemma 3. Let (H1)-(H2) hold. Suppose that (𝑥(𝑡), 𝑦(𝑡)) is a
solution of (4) with initial conditions

𝑥 (𝑠) = 𝜑 (𝑠) , 𝑦 (𝑠) = 𝑦
0
, max {|𝑥 (𝑠)| ,

󵄨
󵄨
󵄨
󵄨
𝑦
0

󵄨
󵄨
󵄨
󵄨
} < 𝛿,

𝑠 ∈ [−𝜏, 0] ,

(11)

where 𝛿 satisfies

inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
) 𝛿 − sup

𝑡∈𝑅

[𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] 𝛿

− 𝑏
+
𝛿
𝑚

− 𝑝
+
> 0.

(12)

Then,

max {|𝑥 (𝑡)| ,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
} < 𝛿, (13)

for all 𝑡 ≥ 0.

Proof. By way of contradiction, we assume that (13) do not
hold. Then one of the following two cases must occur.

Case 1.There exists 𝑡
1
> 0 such that

max {
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
} =

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
= 𝛿,

max {|𝑥 (𝑡)| ,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
} < 𝛿,

(14)

where 𝑡 ∈ [−𝜏, 𝑡
1
).

Case 2.There exists 𝑡
2
> 0 such that

max {
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨
} =

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨
= 𝛿,

max {|𝑥 (𝑡)| ,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨
} < 𝛿,

(15)

where 𝑡 ∈ [−𝜏, 𝑡
2
).

If Case 1 holds true, we can calculate the upper left
derivative of |𝑥(𝑡)| as follows:

0 ≤ 𝐷
+
(
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
) ≤ −𝑎

1

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
1
)
󵄨
󵄨
󵄨
󵄨
≤ − (𝑎

1
− 1) 𝛿 < 0,

(16)

which is a contradiction. Then (13) holds.
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If Case 2 holds true, we can calculate the upper left
derivative of |𝑦(𝑡)| as follows:

0 ≤ 𝐷
+
(
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨
)

≤ − (𝑐 (𝑡
2
) − 𝑎
1
)
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
[𝑎 (𝑡
2
) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡
2
))] 𝑥 (𝑡

2
)

−𝑏 (𝑡) 𝑥
𝑚

(𝑡
2
− 𝜏 (𝑡
2
)) + 𝑝 (𝑡

2
)
󵄨
󵄨
󵄨
󵄨

≤ −inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
)
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨

+ sup
𝑡∈𝑅

[𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))]

󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
2
)
󵄨
󵄨
󵄨
󵄨

+ 𝑏
+ 󵄨
󵄨
󵄨
󵄨
𝑥
𝑚

(𝑡
2
− 𝜏 (𝑡
2
))

󵄨
󵄨
󵄨
󵄨
+ 𝑝
+

≤ −[inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
) 𝛿 − sup

𝑡∈𝑅

[𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] 𝛿

−𝑏
+
𝛿
𝑚

− 𝑝
+
] < 0,

(17)

which is a contradiction. Then (13) holds.

Remark 4. It follows from the boundedness of this solution
and the theory of functional differential equations in [36] that
(𝑥(𝑡), 𝑦(𝑡)) can be defined on [0, +∞).

Lemma 5. Suppose that (H1)–(H3) hold. Let 𝑍∗(𝑡) = (𝑥
∗
(𝑡),

𝑦
∗
(𝑡)) be the solution of (4) with initial values (𝜑

∗
(𝑠), 𝑦
∗

0
) ∈

𝐶([−𝜏, 0], 𝑅) × 𝑅, and let 𝑍(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be the solution of
(4) with initial value (𝜑(𝑠), 𝑦

0
) ∈ 𝐶([−𝜏, 0], 𝑅) × 𝑅. Then there

exists a constant 𝑀 > 1 such that

max {
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡) − 𝑦

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
}

≤ 𝑀max {
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡) − 𝜑

∗

(𝑡)
󵄩
󵄩
󵄩
󵄩
,
󵄨
󵄨
󵄨
󵄨
𝑦
0
− 𝑦
∗

0

󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜆𝑡

(18)

for all 𝑡 > 0.

Proof. Let 𝑢(𝑡) = {𝑥(𝑡) − 𝑥
∗
(𝑡)}, V(𝑡) = {𝑦(𝑡) − 𝑦

∗
(𝑡)}. Then,

𝑑𝑢 (𝑡)

𝑑𝑡

= −𝑎
1
𝑢 (𝑡) + V (𝑡) ,

𝑑V (𝑡)

𝑑𝑡

= − (𝑐 (𝑡) − 𝑎
1
) V (𝑡)

+ [𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] 𝑢 (𝑡)

− 𝑏 (𝑡) [𝑥
𝑚

(𝑡 − 𝜏 (𝑡)) − 𝑥
∗𝑚

(𝑡 − 𝜏 (𝑡))] .

(19)

In the sequel, we define the Lyapunov functional as follows:

𝑉
1
(𝑡) = |𝑢 (𝑡)| 𝑒

𝜆𝑡
, 𝑉

2
(𝑡) = |V (𝑡)| 𝑒

𝜆𝑡
. (20)

Calculating the upper left derivative of 𝑉
𝑖
(𝑡) ( 𝑖 = 1, 2) along

the solution (𝑢(𝑡), V(𝑡)) of system (20) with the initial value
(𝜑(𝑡) − 𝜑

∗
(𝑡), 𝑦
0
− 𝑦
∗

0
), we have

𝐷
+
(𝑉
1
(𝑡))

≤ 𝜆 |𝑢 (𝑡)| 𝑒
𝜆𝑡

+ 𝐷
+

(|𝑢 (𝑡)|) 𝑒
𝜆𝑡

≤ 𝜆 |𝑢 (𝑡)| 𝑒
𝜆𝑡

+ 𝑒
𝜆𝑡 sign (𝑢 (𝑡)) [−𝑎

1
𝑢 (𝑡) + V (𝑡)]

≤ 𝑒
𝜆𝑡

[(𝜆 − 𝑎
1
) |𝑢 (𝑡)| + |V (𝑡)|] ,

(21)

𝐷
+
(𝑉
2
(𝑡))

≤ 𝜆 |V (𝑡)| 𝑒
𝜆𝑡

+ 𝐷
+

(|V (𝑡)|) 𝑒
𝜆𝑡

≤ 𝜆 |V (𝑡)| 𝑒
𝜆𝑡

+ 𝑒
𝜆𝑡 sign (V (𝑡))

× {− (𝑐 (𝑡) − 𝑎
1
) V (𝑡)

+ [𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] 𝑢 (𝑡) − 𝑏 (𝑡)

× [𝑥
𝑚

(𝑡 − 𝜏 (𝑡)) − 𝑥
∗𝑚

(𝑡 − 𝜏 (𝑡))]}

≤ 𝑒
𝜆𝑡

{[𝜆 − (𝑐 (𝑡) − 𝑎
1
)] |V (𝑡)|

+ sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨
|𝑢 (𝑡)|

+𝑏
+
[𝑚𝛿
𝑚−1

+ 1] |𝑢 (𝑡 − 𝜏 (𝑡))|} .

(22)

Let 𝑀 > 1 be an arbitrary real number and set
󰜚 = max {

󵄩
󵄩
󵄩
󵄩
𝜑 − 𝜑
∗󵄩
󵄩
󵄩
󵄩
,
󵄨
󵄨
󵄨
󵄨
𝑦
0
− 𝑦
∗

0

󵄨
󵄨
󵄨
󵄨
} > 0. (23)

Then by (21), we have

𝑉
1
(𝑡) = |𝑢 (𝑡)| 𝑒

𝜆𝑡
< 𝑀󰜚, 𝑉

2
(𝑡) = |V (𝑡)| 𝑒

𝜆𝑡
< 𝑀󰜚,

∀𝑡 ∈ [−𝜏, 0] .

(24)
Thus we can claim that
𝑉
1
(𝑡) = |𝑢 (𝑡)| 𝑒

𝜆𝑡
< 𝑀󰜚, 𝑉

2
(𝑡) = |V (𝑡)| 𝑒

𝜆𝑡
< 𝑀󰜚,

∀𝑡 > 0.

(25)

Otherwise, one of the following cases must occur.

Case (a). There exists 𝑇
1
> 0 such that

𝑉
1
(𝑇
1
) = 𝑀󰜚, 𝑉

𝑖
(𝑡) < 𝑀󰜚, ∀𝑡 ∈ (−𝜏, 𝑇

1
) , 𝑖 = 1, 2.

(26)

Case (b). There exists 𝑇
2
> 0 such that

𝑉
2
(𝑇
2
) = 𝑀󰜚, 𝑉

𝑖
(𝑡) < 𝑀󰜚, ∀𝑡 ∈ (−𝜏, 𝑇

2
) , 𝑖 = 1, 2.

(27)
If Case (a) holds, then it follows from (21) and (26) that

0 ≤ 𝐷
+
(𝑉
1
(𝑇
1
))

≤ (𝜆 − 𝑎
1
)
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑇
1
)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑇
1
+

󵄨
󵄨
󵄨
󵄨
V (𝑇
1
)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑇
1

≤ [𝜆 − (𝑎
1
− 1)]𝑀󰜚.

(28)
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Then,

0 ≤ 𝜆 − (𝑎
1
− 1) , (29)

which contradicts (H3). Then (25) holds.
If Case (b) holds, then it follows from (22) and (27) that

0 ≤ 𝐷
+
(𝑉
2
(𝑇
2
))

≤ [𝜆 − inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
)]

󵄨
󵄨
󵄨
󵄨
V (𝑇
2
)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑇
2

+ sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑇
2
)
󵄨
󵄨
󵄨
󵄨
𝑒
𝜆𝑇
2

+ 𝑏
+
[𝑚𝛿
𝑚−1

+ 1]
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑇
2
− 𝜏 (𝑇

2
))

󵄨
󵄨
󵄨
󵄨
𝑒
𝜆(𝑇
2
−𝜏(𝑇
2
))
𝑒
𝜆𝜏(𝑇
2
)

≤ [𝜆 − inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
)]𝑀󰜚

+ sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨
𝑀󰜚

+ 𝑏
+
[𝑚𝛿
𝑚−1

+ 1]𝑀󰜚𝑒
𝜆𝜏(𝑇
2
)

≤ {𝜆 − inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
) + sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨

+ 𝑏
+
[𝑚𝛿
𝑚−1

+ 1] 𝑒
𝜆𝜏

}𝑀󰜚.

(30)

Then,

0 ≤ 𝜆 − inf
𝑡∈𝑅

(𝑐 (𝑡) − 𝑎
1
) + sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡) − 𝑎

1
(𝑎
1
− 𝑐 (𝑡))

󵄨
󵄨
󵄨
󵄨

+ 𝑏
+
[𝑚𝛿
𝑚−1

+ 1] 𝑒
𝜆𝜏

,

(31)

which contradicts (H3). Then (25) holds. It follows that

max {
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡) − 𝑥

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡) − 𝑦

∗

(𝑡)
󵄨
󵄨
󵄨
󵄨
}

≤ 𝑀max {
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡) − 𝜑

∗

(𝑡)
󵄩
󵄩
󵄩
󵄩
,
󵄨
󵄨
󵄨
󵄨
𝑦
0
− 𝑦
∗

0

󵄨
󵄨
󵄨
󵄨
} 𝑒
−𝜆𝑡

(32)

for all 𝑡 > 0. This completes the proof of Lemma 5.

Remark 6. If 𝑍
∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡)) is a 𝑇-antiperiodic

solution of (4), it follows fromLemma 5 andDefinition 2 that
𝑍
∗
(𝑡) is globally exponentially stable.

3. Main Results

In this section, we present ourmain result that there exists the
exponentially stable antiperiodic solution of (1).

Theorem 7. Assume that (H1)–(H3) are fulfilled. Then (4)
with the initial condition (11) has exactly one 𝑇-antiperiodic
solution 𝑍

∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡)). Moreover, this solution is

globally exponentially stable.

Proof. Let V(𝑡) = (V
1
(𝑡), V
2
(𝑡)) = (𝑥(𝑡), 𝑦(𝑡)) be a solution of

(4) with initial conditions (11). Thus according to Lemma 3,

the solution V(𝑡) is bounded and (13) holds. From (4), for any
natural number 𝑝, we derive

((−1)
𝑝+1

𝑥 (𝑡 + (𝑝 + 1) 𝑇))

󸀠

= (−1)
𝑝+1

𝑥
󸀠
(𝑡 + (𝑝 + 1) 𝑇)

= (−1)
𝑝+1

[−𝑎
1
𝑥 (𝑡 + (𝑝 + 1) 𝑇) + 𝑦 (𝑡 + (𝑝 + 1) 𝑇)]

= −𝑎
1
(−1)
𝑝+1

𝑥 (𝑡 + (𝑝 + 1) 𝑇)

+ (−1)
𝑝+1

𝑦 (𝑡 + (𝑝 + 1) 𝑇) ,

((−1)
𝑝+1

𝑦 (𝑡 + (𝑝 + 1) 𝑇))

󸀠

= (−1)
𝑝+1

𝑦
󸀠
(𝑡 + (𝑝 + 1) 𝑇)

= (−1)
𝑝+1

{− (𝑐 (𝑡 + (𝑝 + 1) 𝑇) − 𝑎
1
) 𝑦 (𝑡 + (𝑝 + 1) 𝑇)

+ [𝑎 (𝑡 + (𝑝 + 1) 𝑇) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡 + (𝑝 + 1) 𝑇))]

× 𝑥 (𝑡 + (𝑝 + 1) 𝑇)

− 𝑏 (𝑡 + (𝑝 + 1)T) 𝑥𝑚

× (𝑡 + (𝑝 + 1) 𝑇 − 𝜏 (𝑡 + (𝑝 + 1) 𝑇))

+𝑝 (𝑡 + (𝑝 + 1) 𝑇) }

= − (𝑐 (𝑡) − 𝑎
1
) (−1)

𝑝+1
𝑦 (𝑡 + (𝑝 + 1) 𝑇)

+ [𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] (−1)

𝑝+1
𝑥 (𝑡 + (𝑝 + 1) 𝑇)

− 𝑏 (𝑡) (−1)
𝑝+1

𝑥
𝑚

(𝑡 + (𝑝 + 1) 𝑇 − 𝜏 (𝑡)) + 𝑝 (𝑡) .

(33)

Thus (−1)
𝑝+1V(𝑡 + (𝑝 + 1)𝑇) are the solutions of (4) on 𝑅 for

any natural number 𝑝. Then, from Lemma 5, there exists a
constant 𝑀 > 1 such that

󵄨
󵄨
󵄨
󵄨
󵄨
(−1)
𝑝+1V
𝑖
(𝑡 + (𝑝 + 1) 𝑇) − (−1)

𝑘V
𝑖
(𝑡 + 𝑝𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀𝑒
−𝜆(𝑡+𝑝𝑇) sup

−𝜏≤𝑠≤0

max
1≤𝑖≤2

󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑠 + 𝑇) + V

𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨

≤ 2𝑒
−𝜆(𝑡+𝑝𝑇)

𝑀𝛿, ∀𝑡 + 𝑝𝑇 > 0, 𝑖 = 1, 2.

(34)

Thus, for any natural number 𝑞, we have

(−1)
𝑞+1V
𝑖
(𝑡 + (𝑞 + 1) 𝑇)

= V
𝑖
(𝑡) +

𝑞

∑

𝑘=0

[(−1)
𝑘+1V
𝑖
(𝑡 + (𝑘 + 1) 𝑇)

−(−1)
𝑘V
𝑖
(𝑡 + 𝑘𝑇)] .

(35)
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Hence,
󵄨
󵄨
󵄨
󵄨
󵄨
(−1)
𝑞+1V
𝑖
(𝑡 + (𝑞 + 1) 𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
+

𝑞

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
(−1)
𝑘+1V
𝑖
(𝑡 + (𝑘 + 1) 𝑇)

−(−1)
𝑘V
𝑖
(𝑡 + 𝑘𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(36)

where 𝑖 = 1, 2. By (35), we can choose a sufficiently large
constant 𝑁 > 0 and a positive constant 𝛾 such that

󵄨
󵄨
󵄨
󵄨
󵄨
(−1)
𝑝+1V
𝑖
(𝑡 + (𝑝 + 1) 𝑇) − (−1)

𝑘V
𝑖
(𝑡 + 𝑝𝑇)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝛾(𝑒
−𝜆𝑇

)

𝑘

,

∀𝑘 > 𝑁, 𝑖 = 1, 2,

(37)

on any compact set of 𝑅. It follows from (36) and (37) that
{(−1)
𝑞V(𝑡+𝑞𝑇)}uniformly converges to a continuous function

𝑍
∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡)) on any compact set of 𝑅.

Nowwe show that𝑍∗(𝑡) is𝑇-antiperiodic solution of (4).
Firstly, 𝑍∗(𝑡) is 𝑇-antiperiodic, since

𝑍
∗

(𝑡 + 𝑇) = lim
𝑞→∞

(−1)
𝑞V (𝑡 + 𝑇 + 𝑞𝑇)

= − lim
(𝑞+1)→∞

(−1)
𝑞+1V (𝑡 + (𝑞 + 1) 𝑇) = −𝑍

∗

(𝑡) .

(38)

In the sequel, we prove that 𝑍
∗
(𝑡) is a solution of (4).

Noting that the right-hand side of (4) is continuous, (33)
shows that {((−1)

𝑞+1V(𝑡 + (𝑞 + 1)𝑇))

󸀠

} uniformly converges to
a continuous function on any compact subset of 𝑅. Thus,
letting 𝑞 → ∞ on both sides of (33), we can easily obtain

𝑑𝑥
∗
(𝑡)

𝑑𝑡

= −𝑎
1
𝑥
∗

(𝑡) + 𝑦
∗

(𝑡) ,

𝑑𝑦
∗
(𝑡)

𝑑𝑡

= − (𝑐 (𝑡) − 𝑎
1
) 𝑦
∗

(𝑡)

+ [𝑎 (𝑡) − 𝑎
1
(𝑎
1
− 𝑐 (𝑡))] 𝑥

∗

(𝑡)

− 𝑏 (𝑡) 𝑥
∗𝑚

(𝑡 − 𝜏 (𝑡)) + 𝑝 (𝑡) .

(39)

Therefore, 𝑍∗(𝑡) is a solution of (4). Applying Lemma 5, we
can easily check that 𝑍

∗
(𝑡) is globally exponentially stable.

The proof of Theorem 7 is completed.

4. An Example

In this section, we give an example to illustrate our main
results obtained in previous sections.

Example 1. The following two-order Duffing equation with
two deviating arguments,

𝑥
󸀠󸀠
+ (10 + |sin 𝑡|) 𝑥

󸀠
− (0.5 + |cos 𝑡|) 𝑥 (t)

+ 0.2 sin 𝑡𝑥
2

(𝑡 − 0.01 |sin 𝑡|) = 0.2 sin 𝑡,

(40)

has exactly one 𝜋-antiperiodic solution.
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Figure 1: Time response of state variables 𝑥 and 𝑦.

Proof. Let

𝑦 (𝑡) =

𝑑𝑥 (𝑡)

𝑑𝑡

+ 0.5𝑥 (𝑡) . (41)

Then system (40) can be transformed into the following
equivalent system:

𝑑𝑥 (𝑡)

𝑑𝑡

= −0.5𝑥 (𝑡) + 𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡

= − (10 + |sin 𝑡| − 0.5) 𝑦 (𝑡)

+ [0.5 + |cos 𝑡| − 0.5 (0.5 − (10 + |sin 𝑡|))] 𝑥 (𝑡)

− 0.2 sin 𝑡𝑥
2

(𝑡 − 0.01 |sin 𝑡|) + 0.2 sin 𝑡.

(42)

Corresponding to system (3) and (4), we have

𝑎
1
= 0.5, 𝑎 (𝑡) = 0.5 + |cos 𝑡| , 𝑏 (𝑡) = 0.2 sin 𝑡,

𝑐 (𝑡) = 10 + |sin 𝑡| , 𝑚 = 2, 𝑝 (𝑡) = 0.2 sin 𝑡,

𝜏 (𝑡) = 0.01 |sin 𝑡| .

(43)

Let 𝛿 = 0.5, 𝜆 = 0.02. Then 𝜏 = 0.01, 𝑝+ = 0.2. It is easy
to check that all the conditions in Theorem 7 are fulfilled.
Hence we can conclude that system (42) has exactly one 𝜋-
antiperiodic solution. Moreover, this 𝜋-periodic solution is
globally exponentially stable. Thus system (40) has exactly
one 𝜋-antiperiodic solution, and all solutions of system (40)
exponentially converge to this 𝜋-antiperiodic solution. This
result is illustrated in Figure 1.
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