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This paper introduces the global dynamics of an SIS model with bilinear incidence rate and saturated treatment function. The
treatment function is a continuous and differential function which shows the effect of delayed treatment when the rate of treatment
is lower and the number of infected individuals is getting larger. Sufficient conditions for the existence and global asymptotic stability
of the disease-free and endemic equilibria are given in this paper. The first Lyapunov coefficient is computed to determine various
types of Hopf bifurcation, such as subcritical or supercritical. By some complex algebra, the Bogdanov-Takens normal form and
the three types of bifurcation curves are derived. Finally, mathematical analysis and numerical simulations are given to support our
theoretical results.

1. Introduction

In the mathematical modeling of epidemic transmission,
there are several factors that substantially affect the dynamical
behavior of the models. Incidence rate functions are seen as
a major factor in producing the rich dynamics of epidemic
models in many literatures (see [1–25]). In most classical
models of epidemics, the incidence rate is taken to be mass
action incidence with bilinear interaction, that is, 𝛽𝐼𝑆, where
𝛽 is the probability of transmission per contact and 𝑆 and 𝐼
represent the number of susceptible and infected individuals,
respectively. Epidemic models with such bilinear incidence
rates usually have at most one endemic equilibrium, and
then the diseases will be eradicated if the basic reproduction
number is less than one and will persist otherwise. Besides,
there are also many other types of incidence rate func-
tions, such as nonlinear incidence rate, standard incidence
rate, and saturated incidence rate. Recently, there are many
studies that have demonstrated the nonlinear incidence rate
which is one of the key factors that induce periodic oscil-
lations in epidemic models (see [1, 2, 9, 10, 15]). Moreover,

Liu et al. [12] introduced a nonlinear incidence rate of the
form

𝑓 (𝐼) 𝑆 =
𝛽𝐼𝑝𝑆

1 + 𝛼𝐼𝑞
, (1)

where 𝛽𝐼𝑝 means the infection force of the disease and
1/(1+𝛼𝐼𝑞)measures the inhibition effect from the behavioral
change of the susceptible individuals when the number of
infective individuals increases. So we can see that the bilinear
incidence rate 𝛽𝑆𝐼 is a special case of (1) with 𝑝 = 1
and 𝛼 = 0 or 𝑞 = 0. Furthermore, Wang and Ruan in
[16] studied the global dynamics of an SIRS model with
the incidence function 𝑓(𝐼) = 𝛽𝐼2/(1 + 𝛼𝐼2); that is, 𝑝 =
𝑞 = 2; they also showed that the SIRS epidemic model
undergoes a Bogdanov-Takens bifurcation, that is, saddle-
node, Hopf, and homoclinic bifurcations. To have a better
understanding of the dynamics of the system, Tang et al. [17]
calculated higher order Lyapunov values of the weak focus
and reduced the system to a universal unfolding form for a
cusp of codimension 3, and they gave the bifurcation surfaces
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and displayed all limit cycles and monoclinic loops of order
up to 2. Wei and Cui explored an SIS epidemic model with
standard incidence rate in [19]. They took the incidence rate
form 𝑓(𝐼)𝑆 = 𝛽𝐼𝑆/(𝐼 + 𝑆) and showed the dynamics and
backward bifurcation of the SIS epidemic model.

Recently, in order to prevent and control the spread of
the infectious diseases such as measles, tuberculosis, and
flu, many mathematicians (see [7, 11, 16, 20, 23, 25–29])
have begun to investigate the role of treatment functions in
epidemiological models. In some classical epidemic models,
the treatment function is an important method to decrease
the spread of the epidemiological diseases. Generally speak-
ing, the treatment function of the infective individuals is
assumed to be proportional to the number of the infective
individuals. But every community should have a maximal
capacity for the treatment of a disease and the resources for
treatment should be very large.Therefore, it is very important
to adopt a suitable treatment function. In [16], Wang and
Ruan introduced a constant treatment function of diseases in
an SIR model; that is,

𝑇 (𝐼) = {
𝑟, 𝐼 > 0,

0, 𝐼 = 0.
(2)

This means that they use the maximal treatment capacity
to cure infective individuals so that the disease can be
eradicated.They also found that themodel undergoes saddle-
node bifurcation, Hopf bifurcation, and Bogdanov-Takens
bifurcation. Further, a piecewise linear treatment function
was considered in [20]; that is,

𝑇 (𝐼) = {
𝑘𝐼, 0 ≤ 𝐼 ≤ 𝐼0,

𝑚, 𝐼 > 𝐼0,
(3)

where 𝑚 = 𝑘𝐼0 and 𝑘 and 𝐼0 are positive constants. This
means that the treatment rate is proportional to the number
of the infective individuals when the capacity of treatment has
not been reached; otherwise it takes the maximal capacity of
treatment 𝑘𝐼0. By considering the above treatment function,
Wang [20] found that a backward bifurcation takes place in an
SIR epidemicmodel. In [30], J. C. Eckalbar andW. L. Eckalbar
constructed an SIR epidemic model with a quadratic treat-
ment function; that is,𝑇(𝐼) = max{𝑟𝐼−𝑔𝐼2, 0}, 𝑟, 𝑔 > 0.They
found that the system has as many as four equilibria, with
possible bistability, backward bifurcations, and limit cycles.

Recently, saturated treatment function has been widely
applied inmany epidemicmodels. In particular, in paper [23],
Zhang and Liu took a continuous and differentiable saturated
treatment function 𝑇(𝐼) = 𝑟𝐼/(1 + 𝛼𝐼), where 𝑟 > 0, 𝛼 ≥ 0.
𝑟 stands for the cure rate and 𝛼 measures the extent of the
effect of the infected being delayed for treatment. We can
see that the treatment function 𝑇(𝐼) ∼ 𝑟𝐼 when 𝐼 is small
enough,whereas𝑇(𝐼) ∼ 𝑟/𝛼when 𝐼 is large enough. It ismore
realistic and it has the convenience of being continuous and
differential compared to the previous ones. Furthermore, the
authors in [23] found that 𝑅0 = 1 is a critical threshold for
disease eradication when this delayed effect for treatment is
weak and a backward bifurcation will take place when this
effect is strong. So, it is really important to adequately stress

the interesting connection recently established between the
choice of saturated treatment functions in epidemic models
and the occurrence of backward bifurcation in the related
system dynamics. In fact, recently, saturated-type treatment
functions have been indicated as responsible for the occur-
rence of backward bifurcations for SIR [20, 23], for SIS [19,
21], and for SEIR [28, 29] models, supporting the general
circumstance that saturated-type treatments can be one of
the causes of backward bifurcations in epidemic models. In
particular, in [29], such connection has also been shown and
validated in a specific concrete disease-control setting.

In the real world, some infectious diseases do not confer
immunity. Such infections do not have a recovered state and
individuals become susceptible again after infection. This
type of disease can be modeled by the SIS type. So the SIS
epidemic model has been adopted by many mathematicians
(see [8, 11, 18, 19, 21, 25]). And SIS models are appropriate
for some bacterial agent diseases such as meningitis, plague,
and venereal diseases and for protozoan agent diseases such
as malaria and sleeping sickness.

Motivated by the above points, we will consider the fol-
lowing SIS model with bilinear incidence rate and saturated
treatment function:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 + 𝜀𝐼 +

𝑟𝐼

1 + 𝛼𝐼
,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 − (𝑑 + 𝜀 + 𝜇) 𝐼 −

𝑟𝐼

1 + 𝛼𝐼
,

(4)

where 𝑆 and 𝐼 denote the numbers of susceptible and infective
individuals, respectively. Positive constant 𝐴 is the recruit-
ment rate of the population. Positive constant 𝑑 is the nature
death rate of population. The bilinear incidence rate is 𝜆𝑆𝐼,
where 𝜆 is positive. Positive constant 𝜀 is the natural recovery
rate of infective individuals. Positive constant 𝜇 is the disease-
related death rate. The saturated treatment function ℎ(𝐼) ≜
𝑟𝐼/(1 + 𝛼𝐼), where 𝑟 is positive and 𝛼 is nonnegative.

This paper focuses on the detailed dynamics analysis
of the model (4). The local stability of these equilibria is
investigated, which enables us to classify the types of model
equilibria (e.g., attractor, saddle, or repeller). We show that
the system has backward bifurcation and Bogdanov-Takens
bifurcation (i.e., Hopf bifurcation, saddle-node bifurcation,
and homoclinic bifurcation) under some certain conditions.
Finally, the three bifurcation curves and the complicated
global bifurcation phase portraits are derived by applying
the Bogdanov-Takens normal form and the correspond-
ing parameters which satisfy the conditions that ensure
Bogdanov-Takens bifurcation exists.

The organization of this paper is as follows. In Section 2,
we study the existence and local stability of equilibria and
backward bifurcation. In Section 3, we investigate the global
stability of the model. In Section 4, we give the supercritical
and subcritical bifurcation under two different conditions
in system (4). In Section 5, we show that the system (4)
undergoes Bogdanov-Takens bifurcation under some certain
conditions. In Section 6, some numerical simulations are
displayed in detail. We close with a discussion in Section 7 on
our mathematical results and epidemiological implications.
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Figure 1: The disease-free equilibrium 𝐸0 is locally asymptotically
stable when 𝑅0 < 1, with the parameter values 𝐴 = 2, 𝑑 = 0.1,
𝑘 = 0.1, 𝜇 = 0.01, 𝜆 = 0.01, 𝛼 = 1, 𝑟 = 2, and 𝜀 = 0.1.

2. Equilibria and Backward Bifurcation

2.1. Disease-Free Equilibrium. Obviously, system (4) has a
disease-free equilibrium 𝐸0 = (𝐴/𝑑, 0). The Jacobian matrix
of (4) at 𝐸0 is

𝑀(𝐸0) = (
−𝑑

−𝜆𝐴

𝑑
+ 𝜀 + 𝑟

0
𝜆𝐴

𝑑
− (𝑑 + 𝜀 + 𝜇) − 𝑟

) . (5)

By using the next generation matrix of (4), we get the basic
reproduction number 𝑅0 = 𝜆𝐴/𝑑(𝑑 + 𝜀 + 𝑟 + 𝜇).𝑀(𝐸0) has
negative eigenvalues if 𝜆𝐴/𝑑 − (𝑑 + 𝜀 + 𝜇) − 𝑟 < 0. Then we
have the following result.

Theorem 1. The disease-free equilibrium 𝐸0 is locally asymp-
totically stable when 𝑅0 < 1 (see Figure 1) and is unstable when
𝑅0 > 1 (see Figure 2).

2.2. Endemic Equilibria. An endemic equilibrium always
satisfies

𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 + 𝜀𝐼 +
𝑟𝐼

1 + 𝛼𝐼
= 0,

𝜆𝑆𝐼 − (𝑑 + 𝜀 + 𝜇) 𝐼 −
𝑟𝐼

1 + 𝛼𝐼
= 0.

(6)

In view of 𝑑𝑆 + (𝑑 + 𝜇)𝐼 = 𝐴, we get 𝑆 = (𝐴 − (𝑑 + 𝜇)𝐼)/𝑑 and
substitute it into the second equation of (6). When 𝐼 ̸= 0, we
obtain

𝜆[
𝐴 − (𝑑 + 𝜇) 𝐼

𝑑
] − (𝑑 + 𝜀 + 𝜇) −

𝑟

1 + 𝛼𝐼
= 0. (7)

Then we have an equation of the form

𝑎𝐼2 + 𝑏𝐼 + 𝑐 = 0, (8)
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Figure 2: The disease-free equilibrium is unstable when 𝑅0 > 1,
with the parameter values 𝐴 = 15, 𝑑 = 0.1, 𝑘 = 0.1, 𝜇 = 0.01,
𝜆 = 0.01, 𝛼 = 1, 𝑟 = 0.8, and 𝜀 = 0.1.

with

𝑎 = 𝛼𝜆 (𝑑 + 𝜇) ,

𝑏 = 𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) − 𝛼𝜆𝐴,

𝑐 = 𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇) − 𝜆𝐴.

(9)

This equation may admit positive solution

𝐼1 =
−𝑏 − √𝑏2 − 4𝑎𝑐

2𝑎
, 𝐼2 =

−𝑏 + √𝑏2 − 4𝑎𝑐

2𝑎
. (10)

Obviously, if 𝑅0 = 1, then 𝑐 = 0, if 𝑅0 > 1, then 𝑐 < 0, and
if 𝑅0 < 1, then 𝑐 > 0. From (8), it is obvious that we have the
following results.

Theorem 2. The following results hold.

(𝐻1) Let 𝛼 = 0. Equation (8) is a linear equation with a
unique solution 𝐼 = −𝑐/𝑏. Then the system (4) has a
unique endemic equilibrium when 𝑅0 > 1 and has no
endemic equilibrium when 𝑅0 ≤ 1.

(𝐻2) Let 𝛼 > 0. If 𝑏 > 0, system (4) has a unique endemic
equilibrium when 𝑅0 > 1 and no endemic equilibrium
when 𝑅0 ≤ 1.

(𝐻3) Let 𝛼 > 0. If 𝑏 < 0, system (4) has a unique endemic
equilibrium when 𝑅0 ≥ 1, no endemic equilibrium
when 𝑅0 < 𝑅∗0 , and two endemic equilibria 𝐸1 and 𝐸2
when 𝑅∗

0
≤ 𝑅0 < 1. When 𝑅0 = 𝑅∗0 and 𝐸1 = 𝐸2, one

has 𝑏2 − 4𝑎𝑐 = 0 which is equivalent to

𝑅0 =
4𝑎𝜆𝐴

𝑏2 + 4𝑎𝜆𝐴

=
4𝜆2𝛼 (𝑑 + 𝜇)𝐴

[𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) − 𝛼𝜆𝐴]
2
+ 4𝜆2𝛼 (𝑑 + 𝜇)𝐴

.

(11)
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Figure 3: The figure of infective sizes at equilibria versus 𝑅0 when
𝛼 = 1, 𝑑 = 0.1, 𝜇 = 0.01, 𝜆 = 0.05, 𝑟 = 2, and 𝜀 = 0.1.

We define the right-hand side of (11) as

𝑅∗
0
≜

4𝜆2𝛼 (𝑑 + 𝜇)𝐴

[𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) − 𝛼𝜆𝐴]
2
+ 4𝜆2𝛼 (𝑑 + 𝜇)𝐴

.

(12)

Therefore, according to the qualitative approach recently
proposed by [31] which is based on the analysis of the
equilibria curve in the neighboring of the critical threshold
𝑅0 = 1, we have the following theorem.

Theorem 3. If 𝛼 > 0, 𝑏 < 0, then system (4) has a backward
bifurcation at 𝑅0 = 1 (see Figure 3).

In order to verify the bifurcation curve (the graph of 𝐼
as a function of 𝑅0) in Figure 3, we think of 𝑟 as a variable
with the other parameters as constant. Through implicit
differentiation of (8) with respect to 𝑟, we get

(2𝑎𝐼 + 𝑏)
𝑑𝐼

𝑑𝑟
= −𝑑 < 0. (13)

From (13), we know that the sign of 𝑑𝐼/𝑑𝑟 is opposite to that
of 2𝑎𝐼 + 𝑏. And from the definition of 𝑅0 we know that 𝑅0
decreases when 𝑟 increases. It implies that the bifurcation
curve has positive slope at equilibrium values with 2𝑎𝐼+𝑏 > 0
and negative slope at equilibrium values with 2𝑎𝐼 + 𝑏 < 0. If
there is no backward bifurcation at 𝑅0 = 1, then the unique
endemic equilibrium for 𝑅0 > 1 satisfies

2𝑎𝐼 + 𝑏 = √𝑏2 − 4𝑎𝑐 > 0, (14)

and the bifurcation curve has positive slope at all pointswhere
𝐼 > 0. If there is a backward bifurcation at 𝑅0 = 1, then there
is an interval onwhich there are two endemic equilibria given
by

2𝑎𝐼 + 𝑏 = ±√𝑏2 − 4𝑎𝑐. (15)

The bifurcation curve has negative slope at the smaller one
andpositive slope at the larger one.Thus the bifurcation curve
is as shown in Figure 3.

Under the conditions of Theorem 3, if a backward bifur-
cation takes place, we can see from Figure 3 that there is a
critical value 𝑅∗

0
at the turning point. In this case, the disease

will not die out when𝑅0 < 1. However, the diseasewill die out
when 𝑅0 < 𝑅

∗

0
. Therefore, the critical value 𝑅∗

0
can be taken

as a new threshold for the control of the disease.
In the following, we give an explicit criterion of a

backward bifurcation at 𝑅0 = 1.
For convenience, we define

𝛼0 :=
𝜆 (𝑑 + 𝜇)

𝑑𝑟
. (16)

Corollary 4. When 𝛼 > 𝛼0, system (4) has a backward bifur-
cation at 𝑅0 = 1.

Proof. When 𝑅0 ≤ 1 ⇔ 𝑐 ≥ 0,

𝜆𝐴 ≤ 𝑑 (𝑑 + 𝜀 + 𝜇 + 𝑟) . (17)

The condition 𝑏 < 0 is equivalent to

𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) < 𝛼𝜆𝐴. (18)

From (17) and (18), we get 𝜆(𝑑 + 𝜇) + 𝛼𝑑(𝑑 + 𝜀 + 𝜇) < 𝛼𝑑(𝑑 +
𝜀 + 𝑟 + 𝜇), which reduces to

𝛼 >
𝜆 (𝑑 + 𝜇)

𝑑𝑟
≜ 𝛼0. (19)

It means that 𝛼 is big enough to lead a backward bifurcation
with two endemic equilibria when 𝑅0 < 1. Therefore, the
proof is complete.

Next, we consider the local stability of the unique
endemic equilibrium when 𝑅0 > 1.

Theorem 5. When 𝑅0 > 1 and 0 ≤ 𝛼 < 𝜆/𝑟, the unique
endemic equilibrium 𝐸∗ is locally asymptotically stable.

Proof. Firstly, from Theorem 2, we can know that system
(4) has a unique endemic equilibrium 𝐸∗ when 𝑅0 > 1.
Moreover, the Jacobian matrix of system (4) is

𝑀 =(

−𝑑 − 𝜆𝐼 −𝜆𝑆 + 𝜀 +
𝑟

1 + 𝛼𝐼
−

𝑟𝛼𝐼

(1 + 𝛼𝐼)2

𝜆𝐼 𝜆𝑆 − (𝑑 + 𝜀 + 𝜇) −
𝑟

1 + 𝛼𝐼
+

𝑟𝛼𝐼

(1 + 𝛼𝐼)2

).

(20)

From the second equation of (6), we have

−𝜆𝑆 + 𝜀 +
𝑟

1 + 𝛼𝐼
= −𝑑 − 𝜇. (21)

From (21), the Jacobian matrix𝑀 reduces to

𝑀 =(

−𝑑 − 𝜆𝐼 −𝑑 − 𝜇 −
𝑟𝛼𝐼

(1 + 𝛼𝐼)2

𝜆𝐼
𝑟𝛼𝐼

(1 + 𝛼𝐼)2

). (22)
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We obtain

det (𝑀) = 𝐼

(1 + 𝛼𝐼)2
[𝜆 (𝑑 + 𝜇) (1 + 𝛼𝐼)

2 − 𝑟𝛼𝑑] . (23)

In fact, there is 𝜆(𝑑 + 𝜇)(1 + 𝛼𝐼)2 > 𝜆𝑑. Since 𝑅0 > 1 and
0 ≤ 𝛼 < 𝜆/𝑟, we have

𝜆 (𝑑 + 𝜇) (1 + 𝛼𝐼)
2 − 𝑟𝛼𝑑 > 𝜆𝑑 − 𝑟𝛼𝑑 > 0. (24)

So we get det(𝑀) > 0. The trace of𝑀 is given by

tr (𝑀) = 1

(1 + 𝛼𝐼)2
[− (𝑑 + 𝜆𝐼) (1 + 𝛼𝐼)

2 + 𝑟𝛼𝐼] . (25)

In the same way as the above calculation of (24), we have

− (𝑑 + 𝜆𝐼) (1 + 𝛼𝐼)
2 + 𝑟𝛼𝐼 < −𝜆𝐼 + 𝑟𝛼𝐼 < 0. (26)

So we get tr(𝑀) < 0. The proof is complete.

Now we consider the case that there are two endemic
equilibria 𝐸1 and 𝐸2; let 𝑀𝑖 be the Jacobian matrix at 𝐸𝑖,
𝑖 = 1, 2.

Theorem 6. The endemic equilibrium 𝐸1 is a saddle whenever
it exists.

Proof. Since 𝐼1 = (−𝑏 − √𝑏2 − 4𝑎𝑐)/2𝑎 and Δ = 𝑏2 − 4𝑎𝑐, we
have 𝐼1 = (−𝑏 − √Δ)/2𝑎. Thus

det (𝑀1)

=
𝐼1

(1 + 𝛼𝐼1)
2
[𝜆 (𝑑 + 𝜇) (1 + 𝛼𝐼1)

2
− 𝑟𝛼𝑑]

≜
𝐼1

(1 + 𝛼𝐼1)
2
𝜓 (𝐼1) .

(27)

From (𝐻3) of Theorem 2, we can know that if 𝛼 > 0, 𝑏 < 0,
and 𝑅∗

0
< 𝑅0 < 1, then 𝐸1 exists. Hence, we can get 𝜓(0) =

𝜆(𝑑 + 𝜇) − 𝑟𝛼𝑑 < 0 and 𝜓(𝐼1) = 2𝜆(𝑑 + 𝜇)(1 + 𝛼𝐼1)𝛼 > 0. It
follows that there exists a unique 𝐼∗ > 0 such that

𝜓 (𝐼1) = 0, when 𝐼1 = 𝐼
∗,

𝜓 (𝐼1) < 0, when 0 < 𝐼1 < 𝐼
∗,

𝜓 (𝐼1) > 0, when 𝐼1 > 𝐼
∗,

(28)

where

𝐼∗ = √
𝑟𝑑

𝛼𝜆 (𝑑 + 𝜇)
−
1

𝛼
. (29)

On the other hand,

𝐼1 = −
𝑏

2𝑎
−
√Δ

2𝑎

=
𝛼𝜆𝐴 − 𝜆 (𝑑 + 𝜇) − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)

2𝛼𝜆 (𝑑 + 𝜇)
−
√Δ

2𝑎

= √
𝑟𝑑

𝛼𝜆 (𝑑 + 𝜇)
−
1

𝛼
+
1

𝛼
− √

𝑟𝑑

𝛼𝜆 (𝑑 + 𝜇)

+
𝛼𝜆𝐴 − 𝜆 (𝑑 + 𝜇) − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)

2𝛼𝜆 (𝑑 + 𝜇)
−
√Δ

2𝑎

= 𝐼∗ + ([𝜆 (𝑑 + 𝜇) + 𝛼𝜆𝐴 − 2√𝑟𝑑𝛼𝜆 (𝑑 + 𝜇)

− 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)] − √Δ)× (2𝛼𝜆 (𝑑 + 𝜇))
−1
,

(30)

Δ = {𝜆 (𝑑 + 𝜇) − [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]}
2

− 4𝛼𝜆 (𝑑 + 𝜇) [𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇) − 𝜆𝐴]

= {𝜆 (𝑑 + 𝜇) + [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]

− 2√𝑟𝑑𝛼𝜆(𝑑 + 𝜇)}
2

− 4𝑟𝑑𝛼𝜆 (𝑑 + 𝜇)

− 4𝜆 (𝑑 + 𝜇) [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]

+ 4√𝑟𝑑𝛼𝜆 (𝑑 + 𝜇) {𝜆 (𝑑 + 𝜇) + [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]}

− 4𝛼𝜆 (𝑑 + 𝜇) [−𝜆𝐴 + 𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇)]

≜ {𝜆 (𝑑 + 𝜇) + [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]

− 2√𝑟𝑑𝛼𝜆 (𝑑 + 𝜇)}
2

+ 𝑃,

(31)

where

𝑃 = −8𝑟𝑑𝛼𝜆 (𝑑 + 𝜇) + 4√𝑟𝑑𝛼𝜆 (𝑑 + 𝜇)

× {𝜆 (𝑑 + 𝜇) + [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]} .

(32)

In the following we will show that 𝑃 > 0. Since 𝑅∗
0
< 𝑅0, we

have

4𝛼𝜆 (𝑑 + 𝜇)

[𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) − 𝛼𝜆𝐴]
2
+ 4𝛼𝜆2 (𝑑 + 𝜇)𝐴

<
1

𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇)
;

(33)
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that is,

[𝜆 (𝑑 + 𝜇) + 𝛼𝑑 (𝑑 + 𝜀 + 𝜇) − 𝛼𝜆𝐴]
2

> 4𝛼𝜆 (𝑑 + 𝜇) 𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇) − 4𝛼𝜆2 (𝑑 + 𝜇)𝐴.
(34)

Therefore,

{𝜆 (𝑑 + 𝜇) + [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]}
2

= {𝜆 (𝑑 + 𝜇) − [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]}
2

+ 4𝜆 (𝑑 + 𝜇) [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]

> 4𝛼𝜆 (𝑑 + 𝜇) 𝑑 (𝑑 + 𝜀 + 𝑟 + 𝜇) − 4𝛼𝜆2 (𝑑 + 𝜇)𝐴

+ 4𝜆 (𝑑 + 𝜇) [𝛼𝜆𝐴 − 𝛼𝑑 (𝑑 + 𝜀 + 𝜇)]

= 4𝑟𝑑𝛼𝜆 (𝑑 + 𝜇) .

(35)

Obviously, we have 𝑃 > 0. From (30), one has 𝐼1 < 𝐼
∗. So

we get det(𝑀1) < 0. Hence the endemic equilibrium 𝐸1 is a
saddle. The proof is complete.

In order to explore the stability of the endemic equilib-
rium 𝐸2, define

𝑚1 := (2𝑑𝛼𝑎
2 + 𝜆𝑎2 − 𝜀𝛼𝑎2 − 𝑎𝑐𝜆𝛼2)

− 𝑏 (2𝜆𝛼𝑎 + 𝑑𝛼2𝑎 − 𝑏𝜆𝛼2) ,

𝑚2 := 𝑎
2𝑑 − 𝑐 (2𝜆𝛼𝑎 + 𝑑𝛼2𝑎 − 𝑏𝜆𝛼2) .

(36)

Theorem 7. If 𝜂 > 0, then endemic equilibrium 𝐸2 is locally
asymptotically stable; if 𝜂 < 0, then endemic equilibrium 𝐸2 is
unstable, where 𝜂 := 2𝑎𝑚2 + 𝑚1(√𝑏2 − 4𝑎𝑐 − 𝑏).

Proof. Consider

det (𝑀2) =
𝐼2

(1 + 𝛼𝐼2)
2
[𝜆 (𝑑 + 𝜇) (1 + 𝛼𝐼2)

2
− 𝜀𝛼𝑑]

=
𝐼2

(1 + 𝛼𝐼2)
2
× 𝜓 (𝐼2) .

(37)

By carrying out arguments similar to that of Theorem 6, we
have 𝐼2 > 𝐼

∗. Therefore, det(𝑀2) > 0. In addition, we have

tr (𝑀2) = −
(𝑑 + 𝜆𝐼2) (1 + 𝛼𝐼2)

2
− 𝜀𝛼𝐼2

(1 + 𝛼𝐼2)
2

= −
𝜆𝛼2𝐼3
2
+ (2𝜆𝛼 + 𝑑𝛼2) 𝐼2

2
+ (2𝑑𝛼 + 𝜆 − 𝜀𝛼) 𝐼2 + 𝑑

(1 + 𝛼𝐼2)
2

,

(38)

and then sgn(tr(𝑀2)) = − sgn(𝐺(𝐼2)), where

𝐺 (𝑥) = 𝜆𝛼
2𝑥3 + (2𝜆𝛼 + 𝑑𝛼2) 𝑥2 + (2𝑑𝛼 + 𝜆 − 𝜀𝛼) 𝑥 + 𝑑.

(39)
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Figure 4: One region of disease persistence and one region of
disease extinction when 𝐴 = 10, 𝛼 = 1, 𝑑 = 0.1, 𝜇 = 0.01, 𝜆 = 0.01,
𝑟 = 0.1, and 𝜀 = 0.1.

Using the expression of𝑚1 = (2𝑑𝛼𝑎
2 +𝜆𝑎2 − 𝜀𝛼𝑎2 −𝑎𝑐𝜆𝛼2) −

𝑏(2𝜆𝛼𝑎+𝑑𝛼2𝑎−𝑏𝜆𝛼2) and𝑚2 = 𝑎
2𝑑−𝑐(2𝜆𝛼𝑎+𝑑𝛼2𝑎−𝑏𝜆𝛼2),

one has

𝐺 (𝐼2) = (𝑎𝐼
2

2
+ 𝑏𝐼2 + 𝑐) 𝜑0 +

𝑚1𝐼2 + 𝑚2
𝑎2

, (40)

where𝜑0 is a first degree polynomial of 𝐼2. Since 𝑎𝐼
2

2
+𝑏𝐼2+𝑐 =

0, sgn(tr(𝑀2)) = − sgn(𝐺(𝐼2)) = − sgn(𝑚1𝐼2 + 𝑚2). From the
expression of 𝐼2, we have

sgn (𝑚1𝐼2 + 𝑚2)

= sgn (2𝑎𝑚2 + 𝑚1 (√𝑏2 − 4𝑎𝑐 − 𝑏)) ≜ sgn (𝜂) .
(41)

Thus, 𝐸2 is locally asymptotically stable if 𝜂 > 0 and 𝐸2 is
unstable if 𝜂 < 0. The proof is complete.

From the above discussion, we have the following con-
clusion. If two endemic equilibria 𝐸1 and 𝐸2 exist, the stable
manifolds of the saddle 𝐸1 split 𝑅

2

+
into two regions. The

disease is persistent in the upper region and dies out in the
lower region (see Figure 4).

3. Global Analysis

Firstly, we consider the global stability of the disease-free
equilibrium 𝐸0. Let 𝑁 = 𝑆 + 𝐼 be the total population size.
Now we note that the equation for total population is given
by 𝑑𝑁/𝑑𝑡 = 𝐴 − 𝑑𝑆 − (𝑑 + 𝜇)𝐼 ≤ 𝐴 − 𝑑𝑁. It follows that
lim𝑡→+∞𝑁(𝑡) ≤ 𝐴/𝑑. Let

R = {(𝑆, 𝐼) ∈ 𝑅
2

+
: 𝑆 + 𝐼 ≤

𝐴

𝑑
} (42)

which is positive invariant with respect to system (4).

Theorem 8. If 𝑅0 < 𝑅∗0 , the disease-free equilibrium 𝐸0(𝐴/
𝑑, 0) is globally asymptotically stable; that is, the disease dies
out.
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Proof. Suppose 𝑅0 < 𝑅∗0 . From the (𝐻3) of Theorem 2, we
know that the model has no endemic equilibrium. From
the corollary of Poincaré-Bendixson theorem [32], we know
that there is no periodic orbit in R as there is a disease-
free equilibrium in R. Since R is a bounded positively
invariant region and 𝐸0 is the only equilibrium in R, the
local stability of 𝐸0 implies that every solution initiating in
R approaches 𝐸0. Thus, the disease-free equilibrium 𝐸0 is
globally asymptotically stable. The proof is complete.

Now we analyze the global dynamics of the endemic
equilibrium when 𝑅0 > 1.

Theorem 9. If 𝑅0 > 1 and 0 ≤ 𝛼 < 𝜆/𝑟, the system (4) has no
limit cycles.

Proof. We use Dulac theorem to exclude the limit cycle. Let

𝑃 (𝑆, 𝐼) = 𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 + 𝜀𝐼 +
𝑟𝐼

1 + 𝛼𝐼
,

𝑄 (𝑆, 𝐼) = 𝜆𝑆𝐼 − (𝑑 + 𝜀 + 𝜇) 𝐼 −
𝑟𝐼

1 + 𝛼𝐼
,

(43)

and take the Dulac function

𝐷 =
1

𝐼
. (44)

According to 0 ≤ 𝛼 < 𝜆/𝑟, we can get

𝜕 (𝑃𝐷)

𝜕𝑆
+
𝜕 (𝑄𝐷)

𝜕𝐼

= −
𝑑

𝐼
− 𝜆 +

𝛼𝑟

(1 + 𝛼𝐼)2

< −
𝑑

𝐼
− 𝜆 +

𝜆

(1 + 𝛼𝐼)2

=
1

𝐼 (1 + 𝛼𝐼)2
{−𝑑 (1 + 𝛼𝐼)

2 − 𝜆𝐼 [(1 + 𝛼𝐼)
2 − 1]}

< 0.

(45)

Hence, the system (4) has no limit cycles. The proof is
complete.

Therefore, we obtain the global result of the unique
endemic equilibrium.

Theorem 10. If 𝑅0 > 1 and 0 ≤ 𝛼 < 𝜆/𝑟, the unique endemic
equilibrium 𝐸∗ is globally asymptotically stable (see Figure 5).

4. Hopf Bifurcation

In this section, we study the Hopf bifurcation of system (4).
From the above discussion, we know that there is no closed
orbit surrounding𝐸0 or𝐸1 because the 𝑆-axis is invariantwith

0 50 100 150
0

50

100

150

S

I E
∗

Figure 5:The unique endemic equilibrium 𝐸∗ is globally asymptot-
ically stable when 𝐴 = 15, 𝛼 = 0.01, 𝑑 = 0.1, 𝜇 = 0.01, 𝜆 = 0.01,
𝑟 = 0.8, and 𝜀 = 0.1.

respect to system (4) and 𝐸1 is always a saddle. Therefore,
Hopf bifurcation can only occur at 𝐸2. Set

𝜎 = [−𝜆𝛼 −
𝑐1 (𝑐2 + 2𝑐4)

𝑎12
]𝐷4

+ [− 𝜆𝛼𝑎2
11
− 2𝜆𝛼𝑎11𝑎12 + (𝑐2 −

2𝑎11𝑐1
𝑎12
)

× (𝑎11𝑐2 −
𝑎2
11
𝑐1
𝑎12
)

− (
2𝑎2
11
𝑐1

𝑎12
− 𝑎11𝑐2 + 2𝑐4𝑎11 − 𝑐3𝑎12)

× (𝑐4 −
𝑎11𝑐1
𝑎12
)]𝐷2

+ 𝑎11 (
𝑎2
11
𝑐1
𝑎12
− 𝑎11𝑐2 + 𝑐4𝑎11 − 𝑐3𝑎12)

× (𝑎12𝑐3 − 2𝑎11𝑐4 − 𝑎11𝑐2) ,

(46)

where 𝑎𝑖𝑗 (𝑖, 𝑗 = 1, 2), 𝑐𝑘 (𝑘 = 1, 2, 3, 4), and 𝐷 are defined by
(50) and (52).

Theorem 11. System (4) undergoes a Hopf bifurcation if 𝜂 = 0.
Moreover, if 𝜎 < 0, there is a family of stable period orbits of
system (4) as 𝜂 decreases from 0; that is, a supercritical Hopf
bifurcation occurs; if 𝜎 > 0, there is a family of unstable period
orbits of system (4) as 𝜂 increases from 0; that is, a subcritical
Hopf bifurcation occurs.

Proof. The proof of Theorem 7 shows that tr(𝑀2) = 0 if and
only if 𝜂 = 0, and det(𝑀2) > 0 when 𝐸2 exists. Therefore, the
eigenvalues of 𝑀2 are a pair of pure imaginary roots if and
only if 𝜂 = 0. The direct calculations show that

𝑑 (tr (𝑀2))
𝑑𝜂

𝜂=0
= −

1

2𝑎3 (1 + 𝛼𝐼2)
2
< 0. (47)
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ByTheorem 3.4.2 in [24], 𝜂 = 0 is the Hopf bifurcation point
for system (4).

To be concise in notations, rescale (4) by 𝜏 = 𝑡/(1 + 𝛼𝐼).
For simplicity, we still use 𝑡 instead of 𝜏. Then we obtain

𝑑𝑆

𝑑𝑡
= (𝐴 − 𝑑𝑆 − 𝜆𝑆𝐼 + 𝜀𝐼) (1 + 𝛼𝐼) + 𝑟𝐼,

𝑑𝐼

𝑑𝑡
= 𝜆𝑆𝐼 (1 + 𝛼𝐼) − (𝑑 + 𝜀 + 𝜇) 𝐼 (1 + 𝛼𝐼) − 𝑟𝐼.

(48)

Let 𝑥 = 𝑆 − 𝑆2 and 𝑦 = 𝐼 − 𝐼2; then (48) becomes

𝑑𝑥

𝑑𝑡
= 𝑎11𝑥 + 𝑎12𝑦 + 𝑐1𝑦

2 + 𝑐2𝑥𝑦 − 𝜆𝛼𝑥𝑦
2,

𝑑𝑦

𝑑𝑡
= 𝑎21𝑥 + 𝑎22𝑦 + 𝑐3𝑥𝑦 + 𝑐4𝑦

2 + 𝜆𝛼𝑥𝑦2,

(49)

where

𝑎11 = − (𝑑 + 𝜆𝐼2) (1 + 𝛼𝐼2) ,

𝑎12 = (−𝜆𝑆2 + 𝑟) (1 + 𝛼𝐼2)

+ 𝛼 (𝐴 − 𝑑𝑆2 − 𝜆𝑆2𝐼2 + 𝑟𝐼2) + 𝜀,

𝑎21 = 𝜆𝐼2 (1 + 𝛼𝐼2) ,

𝑎22 = [𝜆𝑆2 − (𝑑 + 𝑟 + 𝜇)] (1 + 𝛼𝐼2)

+ 𝛼 [𝜆𝑆2𝐼2 − (𝑑 + 𝑟 + 𝜇) 𝐼2] − 𝜀,

𝑐1 = 𝛼 (−𝜆𝑆2 + 𝑟) ,

𝑐2 = 𝛼 (−𝑑 − 𝜆𝐼2) − 𝜆 (1 + 𝛼𝐼2) ,

𝑐3 = 𝜆 (1 + 𝛼𝐼2) + 𝜆𝐼2𝛼,

𝑐4 = [𝜆𝑆2 − (𝑑 + 𝑟 + 𝜇)] 𝛼.

(50)

Let 𝐸∗ denote the origin of 𝑥-𝑦 plane. Since 𝐸2 = (𝑆2, 𝐼2)
satisfies (6), we obtain

det (𝑀 (𝐸∗))

= − (𝑑 + 𝜆𝐼2) 𝛼𝜀𝐼2 + (𝑑 + 𝜇) (1 + 𝛼𝐼
2

2
)
2

𝜆𝐼2 + 𝛼𝜆𝜀𝐼
2

2

= 𝐼2 × 𝜓 (𝐼2) .

(51)

From the proof of Theorem 7, it follows that 𝜓(𝐼2) is always
positive. It is easy to verify that 𝑎11 + 𝑎22 = 0 if and only if
𝜂 = 0. Set

𝐷 = √det (𝑀 (𝐸∗)) (52)

and let 𝑢 = −𝑥 and V = (𝑎11/𝐷)𝑥+(𝑎12/𝐷)𝑦; then the normal
form of (48) for Hopf bifurcation reads

𝑑𝑢

𝑑𝑡
= −𝐷V + 𝑓 (𝑢, V) ,

𝑑V
𝑑𝑡
= 𝐷𝑢 + 𝑔 (𝑢, V) ,

(53)

where

𝑓 (𝑢, V) = (
𝑎11
𝑎12
𝑐2 −
𝑎2
11

𝑎2
12

𝑐1)𝑢
2 −
𝐷2𝑐1
𝑎2
12

V2

+ (
𝐷𝑐2
𝑎12
− 2
𝐷𝑎11𝑐1
𝑎2
12

)𝑢V −
𝜆𝛼𝑎2
11

𝑎2
12

𝑢3

− 2
𝐷𝑎11𝜆𝛼

𝑎2
12

𝑢2V −
𝐷2𝜆𝛼

𝑎2
12

𝑢V2,

𝑔 (𝑢, V) =
𝑎11
𝐷
(
𝑎2
11

𝑎2
12

𝑐1 −
𝑎11
𝑎12
𝑐2 +
𝑎11
𝑎12
𝑐4 − 𝑐3)𝑢

2

+ (
𝐷𝑎11𝑐1
𝑎2
12

+
𝐷𝑐4
𝑎12
) V2

+ (2
𝑎2
11

𝑎2
12

𝑐1 −
𝑎11
𝑎12
𝑐2 + 2

𝑎11
𝑎12
𝑐4 − 𝑐3)𝑢V

+
𝜆𝛼𝑎2
11

𝑎12𝐷
(
1

𝑎12
− 1)𝑢3 +

2𝜆𝛼𝑎11
𝑎12

(
𝑎11
𝑎12
− 1)𝑢2V

+
𝐷𝜆𝛼

𝑎12
(
𝑎11
𝑎12
− 1)𝑢V2.

(54)

Now, we evaluate the first Lyapunov coefficient Γ of system
(4) as follows:

Γ =
1

16
[𝑓𝑢𝑢𝑢 + 𝑓𝑢VV + 𝑔𝑢𝑢V + 𝑔VVV] +

1

16𝐷

× [𝑓𝑢V (𝑓𝑢𝑢 + 𝑓VV) − 𝑔𝑢V (𝑔𝑢𝑢 + 𝑔VV) − 𝑓𝑢𝑢𝑔𝑢𝑢 + 𝑓VV𝑔VV] ,

(55)

where 𝑓𝑢V denotes (𝜕
2𝑓/𝜕𝑢𝜕V)(0, 0) and so forth. Then

Γ =
1

8𝑎2
12
𝐷2
{[−𝜆𝛼 −

𝑐1 (𝑐2 + 2𝑐4)

𝑎12
]𝐷4

+ [− 𝜆𝛼𝑎2
11
− 2𝜆𝛼𝑎11𝑎12 + (𝑐2 −

2𝑎11𝑐1
𝑎12
)

× (𝑎11𝑐2 −
𝑎2
11
𝑐1
𝑎12
)

− (
2𝑎2
11
𝑐1

𝑎12
− 𝑎11𝑐2 + 2𝑐4𝑎11 − 𝑐3𝑎12)

× (𝑐4 −
𝑎11𝑐1
𝑎12
)]𝐷2

+ 𝑎11 (
𝑎2
11
𝑐1
𝑎12
− 𝑎11𝑐2 + 𝑐4𝑎11 − 𝑐3𝑎12)

× (𝑎12𝑐3 − 2𝑎11𝑐4 − 𝑎11𝑐2)}

=
𝜎

8𝑎2
12
𝐷2
.

(56)
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Obviously, the sign of Γ is determined by 𝜎. ByTheorem 3.4.2
and (3.4.11) in [24], the rest of the claims in Theorem 11 are
valid. The proof is complete.

5. Bogdanov-Takens Bifurcations

The purpose of this section is to study the Bogdanov-Takens
bifurcation of (4). Now, we assume the following:

(𝐴1) 𝑏
2 − 4𝑎𝑐 = 0,

(𝐴2) 2𝑎𝑑
2 + 𝑏𝜆𝜇 = 0.

Then (6) admits a unique positive equilibrium 𝐸∗ = (𝑆∗, 𝐼∗),
where

𝐼∗ = −
𝑏

2𝑎
, 𝑆∗ =

𝐴 − (𝑑 + 𝜇) 𝐼∗

𝑑
. (57)

The Jacobian matrix of system (4) at 𝐸∗ is

𝑀∗ = (

−𝑑 − 𝜆𝐼∗ −𝜆𝑆∗ + 𝜀 +
𝑟

(1 + 𝛼𝐼∗)2

𝜆𝐼∗ 𝜆𝑆∗ − (𝑑 + 𝜀 + 𝜇) −
𝑟

(1 + 𝛼𝐼∗)2
).

(58)

By (58), we have

det (𝑀∗) = 𝐼∗

(1 + 𝛼𝐼∗)2
[(𝑑 + 𝜇) 𝜆 (1 + 𝛼𝐼∗)

2
− 𝑟𝑑𝛼]

= 0,

(59)

because of

(1 + 𝛼𝐼∗)
2
=
4𝑎2 − 4𝑎𝛼𝑏 + 𝛼2𝑏2

4𝑎2

=
4𝑎2 − 4𝑎𝛼𝑏 + 𝛼24𝑎𝑐

4𝑎2

=
𝑎 − 𝛼𝑏 + 𝛼2𝑐

𝑎

=
𝛼2𝑟𝑑

𝑎
.

(60)

Furthermore, (𝐴2) implies that

tr (𝑀∗) = 0. (61)

Thus, (𝐴1) and (𝐴2) imply that the Jacobian matrix has a
zero eigenvalue withmultiplicity 2.This suggests that (4)may
admit a Bogdanov-Takens singularity.

Theorem 12. Suppose that (𝐴1), (𝐴2), and 2𝑏1 + 𝑏4 ̸= 0 hold.
Then the endemic equilibrium 𝐸∗ = (𝑆∗, 𝐼∗) of (4) is a cusp
of codimension 2; that is, it is a Bogdanov-Takens singularity.
Here, 𝑏1 and 𝑏4 are defined by (65).

Proof. Using the transformation of 𝑥 = 𝐼− 𝐼∗ and 𝑦 = 𝑆− 𝑆∗,
system (4) becomes

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥 + 𝑎2𝑦 + 𝜆𝑥𝑦 + 𝑎11𝑥

2 − 𝑃1 (𝑥) ,

𝑑𝑦

𝑑𝑡
= −
𝑎2
1

𝑎2
𝑥 − 𝑎1𝑦 − 𝜆𝑥𝑦 − 𝑎11𝑥

2 + 𝑃1 (𝑥) ,

(62)

where 𝑃1(𝑥) is a smooth function of 𝑥 at least of the third
order and

𝑎1 = 𝜆𝑆
∗ − (𝑑 + 𝜀 + 𝜇) −

𝑟

(1 + 𝛼𝐼∗)2
> 0,

𝑎2 = 𝜆𝐼
∗ > 0,

𝑎11 =
𝑟𝛼

(1 + 𝛼𝐼∗)3
> 0.

(63)

Set𝑋 = 𝑥, 𝑌 = 𝑎1𝑥 + 𝑎2𝑦. Then (62) is transformed into

𝑑𝑋

𝑑𝑡
= 𝑌 + 𝑏1𝑋

2 + 𝑏2𝑋𝑌 + 𝑄1 (𝑋) ,

𝑑𝑌

𝑑𝑡
= 𝑏3𝑋

2 + 𝑏4𝑋𝑌 + 𝑄2 (𝑋) ,

(64)

where 𝑄𝑖(𝑋) are smooth functions of 𝑋 at least of the third
order and

𝑏1 = 𝑎11 −
𝜆𝑎1
𝑎2
,

𝑏2 =
𝜆

𝑎2
,

𝑏3 = 𝑎1𝑎11 −
𝜆𝑎2
1

𝑎2
+ 𝑎1𝜆 − 𝑎2𝑎11,

𝑏4 =
𝜆𝑎1
𝑎2
− 𝜆.

(65)

In order to obtain the canonical normal form, we perform the
transformation of variables by

𝑢 = 𝑋 −
𝑏2
2
𝑋2, V = 𝑌 + 𝑏1𝑋

2. (66)

Then, we obtain

𝑑𝑢

𝑑𝑡
= V + 𝑅1 (𝑢) ,

𝑑V
𝑑𝑡
= 𝑏3𝑢
2 + (2𝑏1 + 𝑏4) 𝑢V + 𝑅2 (𝑢) ,

(67)

where 𝑅𝑖(𝑢) are smooth functions of 𝑢 at least of the third
order. Note that 𝑏3 < 0 and 2𝑏1 + 𝑏4 ̸= 0. It follows from [33–
35] that (4) admits a Bogdanov-Takens bifurcation.

In the following, wewill find the versal unfolding in terms
of the original parameters in (4). In this way, we will know the
approximate saddle-node, Hopf, and homoclinic bifurcation
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curves.We choose𝐴 and 𝑑 as bifurcation parameters. Fix 𝜆 =
𝜆0, 𝜀 = 𝜀0, 𝑟 = 𝑟0, 𝛼 = 𝛼0, and 𝜇 = 𝜇0. Let 𝐴 = 𝐴0 + 𝜃1 and
𝑑 = 𝑑0 + 𝜃2, where 𝜃1 and 𝜃2 are parameters which vary in a
small neighborhood of the origin.

Suppose that 𝐴 = 𝐴0, 𝑑 = 𝑑0, 𝜆 = 𝜆0, 𝜀 = 𝜀0, 𝑟 = 𝑟0, 𝛼 =
𝛼0, and 𝜇 = 𝜇0 satisfy (𝐴1) and (𝐴2). Consider the following
system:

𝑑𝐼

𝑑𝑡
= 𝜆0𝑆𝐼 − (𝑑0 + 𝜃2 + 𝜀0 + 𝜇0) 𝐼 −

𝑟0𝐼

1 + 𝛼0𝐼
,

𝑑𝑆

𝑑𝑡
= 𝐴0 + 𝜃1 − (𝑑0 + 𝜃2) 𝑆 − 𝜆0𝑆𝐼 + 𝜀0𝐼 +

𝑟0𝐼

1 + 𝛼0𝐼
.

(68)

By the transformations of 𝑥 = 𝐼 − 𝐼∗ and 𝑦 = 𝑆 − 𝑆∗, system
(68) becomes

𝑑𝑥

𝑑𝑡
= − 𝜃2𝐼

∗ + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐11𝑥
2 + 𝜆0𝑥𝑦 − 𝑤1 (𝑥) ,

𝑑𝑦

𝑑𝑡
= (𝜃1 − 𝜃2𝑆

∗) + 𝑐3𝑥 + 𝑐4𝑦 − 𝑐11𝑥
2 − 𝜆0𝑥𝑦 + 𝑤1 (𝑥) ,

(69)

where 𝑤1(𝑥) is a smooth function of 𝑥 at least of the third
order and

𝑐1 = 𝜆0𝑆
∗ − (𝑑0 + 𝜃2 + 𝜀0 + 𝜇0) −

𝑟0

(1 + 𝛼0𝐼
∗)
2
,

𝑐2 = 𝜆0𝐼
∗,

𝑐3 = − 𝜆0𝑆
∗ + 𝜀0 +

𝑟0

(1 + 𝛼0𝐼
∗)
2
,

𝑐4 = − (𝑑0 + 𝜃2) − 𝜆0𝐼
∗,

𝑐11 =
𝑟0𝛼0

(1 + 𝛼0𝐼
∗)
3
.

(70)

Making the change of variables 𝑋 = 𝑥, 𝑌 = −𝜃2𝐼
∗ + 𝑐1𝑥 +

𝑐2𝑦 + 𝑐11𝑥
2 + 𝜆0𝑥𝑦 − 𝑤1(𝑥) and rewriting 𝑋, 𝑌 as 𝑥 and 𝑦,

respectively, we have

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑒0+ 𝑒1𝑥 + 𝑒2𝑦 + 𝑒11𝑥

2+ 𝑒12𝑥𝑦 + 𝑒22𝑦
2+ 𝑤2 (𝑥, 𝑦, 𝜃) ,

(71)

where 𝜃 = (𝜃1, 𝜃2), 𝑤2(𝑥, 𝑦, 𝜃) is a smooth function of 𝑥, 𝑦,
𝜃1, and 𝜃2 at least of the third order, and

𝑒0 = 𝑐2 (𝜃1 − 𝜃2𝑆
∗) + 𝑐4𝜃2𝐼

∗,

𝑒1 = 𝜆0 (𝜃1 − 𝜃2𝑆
∗) + 𝑐2𝑐3 − 𝑐1𝑐4 − 𝜆0𝜃2𝐼

∗,

𝑒2 = 𝑐1 + 𝑐4 + 𝜆0
𝜃2𝐼
∗

𝑐2
,

𝑒11 = 𝜆0𝑐3 − 𝑐4𝑐11 − 𝑐11𝑐2 + 𝑐1𝜆0,

𝑒12 = − 𝜆0 + 2𝑐11 + 𝜆0
−𝑐1𝑐2 − 𝜆0𝜃2𝐼

∗

𝑐2
2

,

𝑒22 =
𝜆0
𝑐2
.

(72)

Next, introduce a new time variable 𝜏 by 𝑑𝑡 = (1 −
(𝜆0/𝑐2)𝑥)𝑑𝜏. Rewriting 𝜏 as 𝑡, we obtain

𝑑𝑥

𝑑𝑡
= 𝑦(1 −

𝜆0
𝑐2
𝑥) ,

𝑑𝑦

𝑑𝑡
= (1 −

𝜆0
𝑐2
𝑥)

× (𝑒0 + 𝑒1𝑥 + 𝑒2𝑦 + 𝑒11𝑥
2

+ 𝑒12𝑥𝑦 + 𝑒22𝑦
2 + 𝑤2 (𝑥, 𝑦, 𝜃)) .

(73)

Let𝑋 = 𝑥, 𝑌 = 𝑦(1−(𝜆0/𝑐2)𝑥) and rename𝑋 and𝑌 as 𝑥 and
𝑦; we have

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑒0 + 𝑔1𝑥 + 𝑒2𝑦 + 𝑔11𝑥

2 + 𝑔12𝑥𝑦 + 𝑤3 (𝑥, 𝑦, 𝜃) ,

(74)

where 𝜃 = (𝜃1, 𝜃2), 𝑤3(𝑥, 𝑦, 𝜃) is a smooth function of 𝑥, 𝑦,
𝜃1, and 𝜃2 at least of the third order, and

𝑔1 = − 2𝑒0
𝜆0
𝑐2
+ 𝑒1,

𝑔11 = 𝑒11 − 2
𝑒1𝜆0
𝑐2
+
𝑒0𝜆
2

0

𝑐2
2

,

𝑔12 = 𝑒12 −
𝑒2𝜆0
𝑐2
.

(75)

Now, we assume that 𝑔11 ̸= 0 and 𝑔12 ̸= 0 when 𝜆𝑖 are small.
Set 𝑥 = 𝑋 − 𝑒2/𝑔12 and rewrite𝑋 as 𝑥; we can get

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝑓0 + 𝑓1𝑥 + 𝑔11𝑥

2 + 𝑔12𝑥𝑦 + 𝑤4 (𝑥, 𝑦, 𝜃) ,

(76)

where 𝜃 = (𝜃1, 𝜃2), 𝑤4(𝑥, 𝑦, 𝜃) is a smooth function of 𝑥, 𝑦,
𝜃1, and 𝜃2 at least of the third order, and

𝑓0 = 𝑒0 −
𝑔1𝑒2
𝑔12
+
𝑔11𝑒
2

2

𝑔2
12

,

𝑓1 = 𝑔1 −
2𝑔11𝑒2
𝑔12

.

(77)
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Making the final change of variables by 𝑋 = 𝑔2
12
𝑥/𝑔11, 𝑌 =

𝑔3
12
𝑦/𝑔2
11
, and 𝜏 = 𝑔11𝑡/𝑔12 and then denoting them again by

𝑥, 𝑦, and 𝑡, respectively, we obtain

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝜏1 (𝜃1, 𝜃2) + 𝜏2 (𝜃1, 𝜃2) 𝑥 + 𝑥

2 + 𝑥𝑦 + 𝑤5 (𝑥, 𝑦, 𝜃) ,

(78)

where 𝜃 = (𝜃1, 𝜃2) and 𝑤5(𝑥, 𝑦, 𝜃) is a smooth function of 𝑥,
𝑦, 𝜃1, and 𝜃2 at least of the third order.

We substitute values of 𝛼0 = 1, 𝜆0 = 1/4, 𝑑0 = 1/10,
𝜀0 = 1/10, 𝜇0 = 1/100, 𝐴0 = 537/500, and 𝑟0 = 55/8 for
the above system and these values satisfy conditions (𝐴1) and
(𝐴2). And we obtain the following equations:

𝜏1 (𝜃1, 𝜃2) =
𝑓0𝑔
4

12

𝑔3
11

= −
237291605

85184
𝜃1 +

25485118377

851840
𝜃2

+ 𝑂 (
𝜃1, 𝜃2


2
) ,

𝜏2 (𝜃1, 𝜃2) =
𝑓1𝑔
2

12

𝑔2
11

= −
172225

1936
𝜃1 +

3983253

3872
𝜃2 + 𝑂 (

𝜃1, 𝜃2

2
) ,

(79)

where 𝑔11 = −11/500 − (1/16)𝜃1 + (341/800)𝜃2 + (1/4)𝜃
2

2
< 0

and 𝑔12 = −83/200 + (1/4)𝜃2 < 0 in a small neighborhood of
(𝜃1, 𝜃2) = (0, 0). Let

𝐽 = (

𝜕𝜏1
𝜕𝜃1

𝜕𝜏1
𝜕𝜃2

𝜕𝜏2
𝜕𝜃1

𝜕𝜏2
𝜕𝜃2

). (80)

And after simple calculation we obtain that

det(𝐽)|𝜆=0 = −
16839398748825

82458112
̸= 0. (81)

Thus, 𝜏1 and 𝜏2 are regular maps in a small neighborhood
of (𝜃1, 𝜃2) = (0, 0). By the Bogdanov and Takens bifurcation
theorems [36], we obtain the following conclusion.

Theorem 13. Suppose that𝐴0, 𝑑0, 𝜆0, 𝜀0, 𝑟0, 𝛼0, and 𝜇0 satisfy
(𝐴1), (𝐴2), 𝑔11 ̸= 0, and 𝑔12 ̸= 0 when 𝜃𝑖 are small. Then (4)
admits the following bifurcation behavior.

(1) There is a saddle-node bifurcation curve 𝑆𝑁 =

{(𝜃1, 𝜃2) : 4𝑓0𝑔11 = 𝑓2
1
+ 𝑜(|(𝜃1, 𝜃2)|

2), 𝑓1 ̸=
0} = {(𝜃1, 𝜃2) : (5907/6250)𝜃2 − (11/125)𝜃1 +
(2313/400)𝜃1𝜃2 − (5/16)𝜃

2

1
− (1028637/40000)𝜃2

2
+

𝑜(|(𝜃1, 𝜃2)|
2) = 0, (47991/16600)𝜃2 − (1/4)𝜃1 + (25/

83)𝜃1𝜃2 − (13645/13778)𝜃
2

2
+ 𝑜(|(𝜃1, 𝜃2)|

2) ̸= 0}.

I

I

O

O 𝜃1

𝜃2

SN+

SN+

SN−

SN−

II, H

III HL

IVIV
HL

III
II

H

Figure 6:The bifurcation set and the corresponding phase portraits
for system (68).

(2) There is a Hopf bifurcation curve 𝐻 = {(𝜃1, 𝜃2) :

𝑓0 + 𝑜(|(𝜃1, 𝜃2)|
2) = 0, 𝑓1 < 0} = {(𝜃1, 𝜃2) : −(537/

50)𝜃2+𝜃1 + (50/83)𝜃1𝜃2 − (74667/6889)𝜃22 + 𝑜(|(𝜃1,
𝜃2)|
2) = 0, (47991/16600)𝜃2 − (1/4)𝜃1+(25/83)𝜃1𝜃2 −

(13645/13778)𝜃2
2
+ 𝑜(|(𝜃1, 𝜃2)|

2) < 0}.

(3) There is a homoclinic bifurcation curve𝐻𝐿 = {(𝜃1, 𝜃2) :
25𝑔11𝑓0 + 6𝑓

2

1
= 𝑜(|(𝜃1, 𝜃2)|

2), 𝑓1 < 0} = {(𝜃1, 𝜃2) :
(5907/1000)𝜃2 − (11/20)𝜃1 + (611979/ 33200)𝜃1𝜃2 −
(19/16)𝜃2

1
− (16075834839/275560000)𝜃2

2
+ 𝑜(|(𝜃1,

𝜃2)|
2) = 0, (47991/16600)𝜃2−(1/4)𝜃1+(25/83)𝜃1𝜃2−

(13645/13778)𝜃2
2
+ 𝑜(|(𝜃1, 𝜃2)|

2) < 0}.

6. Numerical Simulations

When 𝛼 = 1, 𝜆 = 1/4, 𝑑 = 1/10, 𝜀 = 1/10, 𝜇 = 1/100,
𝐴 = 537/500, and 𝑟 = 55/8, 𝜎 > 0. By applying PPLANE8
and Photoshop software, the (𝜃1, 𝜃2)-plane near the origin is
divided into 4 regions by these bifurcation curves as shown in
Figure 6. Fix 𝜃1 < 0 and decrease 𝜃2 from 0; our conclusions
are summarized as follows.

(a) When (𝜃1, 𝜃2) lies in region I, there is no positive
equilibrium, which implies that the positive orbits
of (4) meet the positive 𝑆-axis in finite time, and
therefore the disease disappears.

(b) There is a saddle-node point when (𝜃1, 𝜃2) lies on
curve SN.

(c) When (𝜃1, 𝜃2) crosses SN into region II, two positive
equilibria which are an unstable focus and a saddle
appear.

(d) When the parameters lie on the curve H, there is also
a saddle and an unstable focus. An unstable limit cycle
appears with the parameters crossing H into III.

(e) A homoclinic cycle appears as the parameters passing
III into HL through the homoclinic bifurcation.
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Figure 7: When (𝜃1, 𝜃2) = (0, 0), the unique positive equilibrium is
a cusp of codimension 2.
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Figure 8: When (𝜃1, 𝜃2) = (−0.1, −0.0093) lies in region I, there is
no positive equilibrium.

(f) The homoclinic loop breakswith the parameter cross-
ing HL into IV, and a saddle and a stable focus appear.

Furthermore, using PPLANE8, some numerical simu-
lations of system (68) are depicted in Figures 7–10. When
(𝜃1, 𝜃2) = (0, 0), that is (𝐴0, 𝑑0) = (537/500, 1/10), there is
a unique positive equilibrium (𝑆∗, 𝐼∗) = (317/50, 4), which
is a cusp of codimension 2 (Figure 7). When (𝜃1, 𝜃2) =
(−0.1, −0.0093) lies in region I, there is no positive equi-
librium (Figure 8). When (𝜃1, 𝜃2) = (−0.02, −0.001863798),
there is a homoclinic loop (Figure 9). When (𝜃1, 𝜃2) =
(−0.02, −0.0020) lies in region IV, the homoclinic loop
is broken, and there is a stable focus and a saddle
(Figure 10).
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Figure 9: When (𝜃1, 𝜃2) = (−0.02, −0.001863798), there is a
homoclinic loop.
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Figure 10: When (𝜃1, 𝜃2) = (−0.02, −0.0020) lies in region IV, there
is a stable focus and a saddle.

7. Discussion

In this paper, we focus on the bifurcation analysis of an SIS
epidemic model with bilinear incidence rate and saturated
treatment. Generally speaking, in many epidemic models,
the basic reproduction number, which is the key concept
in epidemiology, can be decreased below unity to eradicate
the disease. However, in our model, the basic reproduction
number below 1 is not enough to eradicate the disease.
According to our analysis in this paper, we demonstrate not
only the global stability of the disease-free equilibrium when
𝑅0 < 𝑅

∗

0
and the local asymptotic stability of the endemic

equilibrium 𝐸2 when 𝑅
∗

0
< 𝑅0 < 1, but also the global

stability of the unique endemic equilibrium 𝐸∗ when 𝑅0 > 1.
Moreover, it has been shown in Corollary 4 that backward
bifurcations occur if the effect of the infected being delayed
for treatment is strong. That is to say, we should get prompt
treatment for patients. Through Figure 4, we can see that
there is a region such that the disease will persist if the initial
position lies in the region and disappear if the initial position
lies outside this region. So, in order to restrain the spread
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of the disease, governments should take timely measures to
control the initial infected individuals in a lower level. In
addition, fromTheorem 8, we can see that the disease will die
out if 𝑅0 is small enough. Therefore, from the definition of
𝑅0, one knows that we can decrease the incidence rate 𝜆 and
increase the cure rate 𝑟 so as to eradicate the diseases or to
make them controlled in a lower endemic steady state.

The stability analysis of the model equilibria enables us
to completely analyze their local bifurcation behavior, such
as Hopf, saddle-node, and Bogdanov-Takens bifurcation. By
computing the first Lyapunov coefficient, we can determine
that the Hopf bifurcation is a supercritical Hopf bifurca-
tion or a subcritical Hopf bifurcation. We also show that,
under assumptions (𝐴1) and (𝐴2), the model undertakes
Bogdanov-Takens bifurcation; that is, there are saddle-node
bifurcation, Hopf bifurcation, and homoclinic bifurcation
in the system. The normal norm of the Bogdanov-Takens
bifurcation is derived in Section 5 which is very helpful to
obtain the three kinds of bifurcation curves. By analytical
techniques, 𝐴 and 𝑑 are chosen as bifurcation parameters
and other parameters are fixed, and we easily get a clear
picture about the rich dynamics behaviors of our model.
Through studying the bifurcations of the SIS epidemicmodel,
we are suggesting that, in order to eradicate the disease,
more medical facilities as well as medical professionals are
needed and the medical standard needs to be improved as
well.
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