Stability and Bogdanov-Takens Bifurcation of an SIS Epidemic Model with Saturated Treatment Function

Yanju Xiao, ${ }^{1}$ Weipeng Zhang, ${ }^{1}$ Guifeng Deng, ${ }^{2}$ and Zhehua Liu ${ }^{1}$
${ }^{1}$ School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China
${ }^{2}$ School of Mathematics and Information, Shanghai Lixin University of Commerce, Shanghai 201620, China
Correspondence should be addressed to Weipeng Zhang; wpzhang808@163.com

Received 11 July 2014; Revised 18 October 2014; Accepted 28 October 2014
Academic Editor: Shifei Ding
Copyright © 2015 Yanju Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper introduces the global dynamics of an SIS model with bilinear incidence rate and saturated treatment function. The treatment function is a continuous and differential function which shows the effect of delayed treatment when the rate of treatment is lower and the number of infected individuals is getting larger. Sufficient conditions for the existence and global asymptotic stability of the disease-free and endemic equilibria are given in this paper. The first Lyapunov coefficient is computed to determine various types of Hopf bifurcation, such as subcritical or supercritical. By some complex algebra, the Bogdanov-Takens normal form and the three types of bifurcation curves are derived. Finally, mathematical analysis and numerical simulations are given to support our theoretical results.

1. Introduction

In the mathematical modeling of epidemic transmission, there are several factors that substantially affect the dynamical behavior of the models. Incidence rate functions are seen as a major factor in producing the rich dynamics of epidemic models in many literatures (see [1-25]). In most classical models of epidemics, the incidence rate is taken to be mass action incidence with bilinear interaction, that is, $\beta I S$, where β is the probability of transmission per contact and S and I represent the number of susceptible and infected individuals, respectively. Epidemic models with such bilinear incidence rates usually have at most one endemic equilibrium, and then the diseases will be eradicated if the basic reproduction number is less than one and will persist otherwise. Besides, there are also many other types of incidence rate functions, such as nonlinear incidence rate, standard incidence rate, and saturated incidence rate. Recently, there are many studies that have demonstrated the nonlinear incidence rate which is one of the key factors that induce periodic oscillations in epidemic models (see [1, 2, 9, 10, 15]). Moreover,

Liu et al. [12] introduced a nonlinear incidence rate of the form

$$
\begin{equation*}
f(I) S=\frac{\beta I^{p} S}{1+\alpha I^{q}} \tag{1}
\end{equation*}
$$

where βI^{p} means the infection force of the disease and $1 /\left(1+\alpha I^{q}\right)$ measures the inhibition effect from the behavioral change of the susceptible individuals when the number of infective individuals increases. So we can see that the bilinear incidence rate $\beta S I$ is a special case of (1) with $p=1$ and $\alpha=0$ or $q=0$. Furthermore, Wang and Ruan in [16] studied the global dynamics of an SIRS model with the incidence function $f(I)=\beta I^{2} /\left(1+\alpha I^{2}\right)$; that is, $p=$ $q=2$; they also showed that the SIRS epidemic model undergoes a Bogdanov-Takens bifurcation, that is, saddlenode, Hopf, and homoclinic bifurcations. To have a better understanding of the dynamics of the system, Tang et al. [17] calculated higher order Lyapunov values of the weak focus and reduced the system to a universal unfolding form for a cusp of codimension 3, and they gave the bifurcation surfaces
and displayed all limit cycles and monoclinic loops of order up to 2. Wei and Cui explored an SIS epidemic model with standard incidence rate in [19]. They took the incidence rate form $f(I) S=\beta I S /(I+S)$ and showed the dynamics and backward bifurcation of the SIS epidemic model.

Recently, in order to prevent and control the spread of the infectious diseases such as measles, tuberculosis, and flu , many mathematicians (see $[7,11,16,20,23,25-29]$) have begun to investigate the role of treatment functions in epidemiological models. In some classical epidemic models, the treatment function is an important method to decrease the spread of the epidemiological diseases. Generally speaking, the treatment function of the infective individuals is assumed to be proportional to the number of the infective individuals. But every community should have a maximal capacity for the treatment of a disease and the resources for treatment should be very large. Therefore, it is very important to adopt a suitable treatment function. In [16], Wang and Ruan introduced a constant treatment function of diseases in an SIR model; that is,

$$
T(I)= \begin{cases}r, & I>0 \tag{2}\\ 0, & I=0\end{cases}
$$

This means that they use the maximal treatment capacity to cure infective individuals so that the disease can be eradicated. They also found that the model undergoes saddlenode bifurcation, Hopf bifurcation, and Bogdanov-Takens bifurcation. Further, a piecewise linear treatment function was considered in [20]; that is,

$$
T(I)= \begin{cases}k I, & 0 \leq I \leq I_{0} \tag{3}\\ m, & I>I_{0}\end{cases}
$$

where $m=k I_{0}$ and k and I_{0} are positive constants. This means that the treatment rate is proportional to the number of the infective individuals when the capacity of treatment has not been reached; otherwise it takes the maximal capacity of treatment $k I_{0}$. By considering the above treatment function, Wang [20] found that a backward bifurcation takes place in an SIR epidemic model. In [30], J. C. Eckalbar and W. L. Eckalbar constructed an SIR epidemic model with a quadratic treatment function; that is, $T(I)=\max \left\{r I-g I^{2}, 0\right\}, r, g>0$. They found that the system has as many as four equilibria, with possible bistability, backward bifurcations, and limit cycles.

Recently, saturated treatment function has been widely applied in many epidemic models. In particular, in paper [23], Zhang and Liu took a continuous and differentiable saturated treatment function $T(I)=r I /(1+\alpha I)$, where $r>0, \alpha \geq 0$. r stands for the cure rate and α measures the extent of the effect of the infected being delayed for treatment. We can see that the treatment function $T(I) \sim r I$ when I is small enough, whereas $T(I) \sim r / \alpha$ when I is large enough. It is more realistic and it has the convenience of being continuous and differential compared to the previous ones. Furthermore, the authors in [23] found that $R_{0}=1$ is a critical threshold for disease eradication when this delayed effect for treatment is weak and a backward bifurcation will take place when this effect is strong. So, it is really important to adequately stress
the interesting connection recently established between the choice of saturated treatment functions in epidemic models and the occurrence of backward bifurcation in the related system dynamics. In fact, recently, saturated-type treatment functions have been indicated as responsible for the occurrence of backward bifurcations for SIR [20, 23], for SIS [19, 21], and for SEIR [28, 29] models, supporting the general circumstance that saturated-type treatments can be one of the causes of backward bifurcations in epidemic models. In particular, in [29], such connection has also been shown and validated in a specific concrete disease-control setting.

In the real world, some infectious diseases do not confer immunity. Such infections do not have a recovered state and individuals become susceptible again after infection. This type of disease can be modeled by the SIS type. So the SIS epidemic model has been adopted by many mathematicians (see [8, 11, 18, 19, 21, 25]). And SIS models are appropriate for some bacterial agent diseases such as meningitis, plague, and venereal diseases and for protozoan agent diseases such as malaria and sleeping sickness.

Motivated by the above points, we will consider the following SIS model with bilinear incidence rate and saturated treatment function:

$$
\begin{align*}
& \frac{d S}{d t}=A-d S-\lambda S I+\varepsilon I+\frac{r I}{1+\alpha I} \\
& \frac{d I}{d t}=\lambda S I-(d+\varepsilon+\mu) I-\frac{r I}{1+\alpha I} \tag{4}
\end{align*}
$$

where S and I denote the numbers of susceptible and infective individuals, respectively. Positive constant A is the recruitment rate of the population. Positive constant d is the nature death rate of population. The bilinear incidence rate is $\lambda S I$, where λ is positive. Positive constant ε is the natural recovery rate of infective individuals. Positive constant μ is the diseaserelated death rate. The saturated treatment function $h(I) \triangleq$ $r I /(1+\alpha I)$, where r is positive and α is nonnegative.

This paper focuses on the detailed dynamics analysis of the model (4). The local stability of these equilibria is investigated, which enables us to classify the types of model equilibria (e.g., attractor, saddle, or repeller). We show that the system has backward bifurcation and Bogdanov-Takens bifurcation (i.e., Hopf bifurcation, saddle-node bifurcation, and homoclinic bifurcation) under some certain conditions. Finally, the three bifurcation curves and the complicated global bifurcation phase portraits are derived by applying the Bogdanov-Takens normal form and the corresponding parameters which satisfy the conditions that ensure Bogdanov-Takens bifurcation exists.

The organization of this paper is as follows. In Section 2, we study the existence and local stability of equilibria and backward bifurcation. In Section 3, we investigate the global stability of the model. In Section 4, we give the supercritical and subcritical bifurcation under two different conditions in system (4). In Section 5, we show that the system (4) undergoes Bogdanov-Takens bifurcation under some certain conditions. In Section 6, some numerical simulations are displayed in detail. We close with a discussion in Section 7 on our mathematical results and epidemiological implications.

Figure 1: The disease-free equilibrium E_{0} is locally asymptotically stable when $R_{0}<1$, with the parameter values $A=2, d=0.1$, $k=0.1, \mu=0.01, \lambda=0.01, \alpha=1, r=2$, and $\varepsilon=0.1$.

2. Equilibria and Backward Bifurcation

2.1. Disease-Free Equilibrium. Obviously, system (4) has a disease-free equilibrium $E_{0}=(A / d, 0)$. The Jacobian matrix of (4) at E_{0} is

$$
M\left(E_{0}\right)=\left(\begin{array}{cc}
-d & \frac{-\lambda A}{d}+\varepsilon+r \tag{5}\\
0 & \frac{\lambda A}{d}-(d+\varepsilon+\mu)-r
\end{array}\right)
$$

By using the next generation matrix of (4), we get the basic reproduction number $R_{0}=\lambda A / d(d+\varepsilon+r+\mu) . M\left(E_{0}\right)$ has negative eigenvalues if $\lambda A / d-(d+\varepsilon+\mu)-r<0$. Then we have the following result.

Theorem 1. The disease-free equilibrium E_{0} is locally asymptotically stable when $R_{0}<1$ (see Figure 1) and is unstable when $R_{0}>1$ (see Figure 2).
2.2. Endemic Equilibria. An endemic equilibrium always satisfies

$$
\begin{align*}
& A-d S-\lambda S I+\varepsilon I+\frac{r I}{1+\alpha I}=0 \tag{6}\\
& \lambda S I-(d+\varepsilon+\mu) I-\frac{r I}{1+\alpha I}=0
\end{align*}
$$

In view of $d S+(d+\mu) I=A$, we get $S=(A-(d+\mu) I) / d$ and substitute it into the second equation of (6). When $I \neq 0$, we obtain

$$
\begin{equation*}
\lambda\left[\frac{A-(d+\mu) I}{d}\right]-(d+\varepsilon+\mu)-\frac{r}{1+\alpha I}=0 \tag{7}
\end{equation*}
$$

Then we have an equation of the form

$$
\begin{equation*}
a I^{2}+b I+c=0 \tag{8}
\end{equation*}
$$

Figure 2: The disease-free equilibrium is unstable when $R_{0}>1$, with the parameter values $A=15, d=0.1, k=0.1, \mu=0.01$, $\lambda=0.01, \alpha=1, r=0.8$, and $\varepsilon=0.1$.
with

$$
\begin{align*}
& a=\alpha \lambda(d+\mu) \\
& b=\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)-\alpha \lambda A, \tag{9}\\
& c=d(d+\varepsilon+r+\mu)-\lambda A .
\end{align*}
$$

This equation may admit positive solution

$$
\begin{equation*}
I_{1}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}, \quad I_{2}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} . \tag{10}
\end{equation*}
$$

Obviously, if $R_{0}=1$, then $c=0$, if $R_{0}>1$, then $c<0$, and if $R_{0}<1$, then $c>0$. From (8), it is obvious that we have the following results.

Theorem 2. The following results hold.
$\left(H_{1}\right)$ Let $\alpha=0$. Equation (8) is a linear equation with a unique solution $I=-c / b$. Then the system (4) has a unique endemic equilibrium when $R_{0}>1$ and has no endemic equilibrium when $R_{0} \leq 1$.
$\left(H_{2}\right)$ Let $\alpha>0$. If $b>0$, system (4) has a unique endemic equilibrium when $R_{0}>1$ and no endemic equilibrium when $R_{0} \leq 1$.
$\left(H_{3}\right)$ Let $\alpha>0$. If $b<0$, system (4) has a unique endemic equilibrium when $R_{0} \geq 1$, no endemic equilibrium when $R_{0}<R_{0}^{*}$, and two endemic equilibria E_{1} and E_{2} when $R_{0}^{*} \leq R_{0}<1$. When $R_{0}=R_{0}^{*}$ and $E_{1}=E_{2}$, one has $b^{2}-4 a c=0$ which is equivalent to

$$
\begin{align*}
R_{0} & =\frac{4 a \lambda A}{b^{2}+4 a \lambda A} \\
& =\frac{4 \lambda^{2} \alpha(d+\mu) A}{[\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)-\alpha \lambda A]^{2}+4 \lambda^{2} \alpha(d+\mu) A} \tag{11}
\end{align*}
$$

Figure 3: The figure of infective sizes at equilibria versus R_{0} when $\alpha=1, d=0.1, \mu=0.01, \lambda=0.05, r=2$, and $\varepsilon=0.1$.

We define the right-hand side of (11) as

$$
\begin{equation*}
R_{0}^{*} \triangleq \frac{4 \lambda^{2} \alpha(d+\mu) A}{[\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)-\alpha \lambda A]^{2}+4 \lambda^{2} \alpha(d+\mu) A} \tag{12}
\end{equation*}
$$

Therefore, according to the qualitative approach recently proposed by [31] which is based on the analysis of the equilibria curve in the neighboring of the critical threshold $R_{0}=1$, we have the following theorem.

Theorem 3. If $\alpha>0, b<0$, then system (4) has a backward bifurcation at $R_{0}=1$ (see Figure 3).

In order to verify the bifurcation curve (the graph of I as a function of R_{0}) in Figure 3, we think of r as a variable with the other parameters as constant. Through implicit differentiation of (8) with respect to r, we get

$$
\begin{equation*}
(2 a I+b) \frac{d I}{d r}=-d<0 \tag{13}
\end{equation*}
$$

From (13), we know that the sign of $d I / d r$ is opposite to that of $2 a I+b$. And from the definition of R_{0} we know that R_{0} decreases when r increases. It implies that the bifurcation curve has positive slope at equilibrium values with $2 a I+b>0$ and negative slope at equilibrium values with $2 a I+b<0$. If there is no backward bifurcation at $R_{0}=1$, then the unique endemic equilibrium for $R_{0}>1$ satisfies

$$
\begin{equation*}
2 a I+b=\sqrt{b^{2}-4 a c}>0 \tag{14}
\end{equation*}
$$

and the bifurcation curve has positive slope at all points where $I>0$. If there is a backward bifurcation at $R_{0}=1$, then there is an interval on which there are two endemic equilibria given by

$$
\begin{equation*}
2 a I+b= \pm \sqrt{b^{2}-4 a c} \tag{15}
\end{equation*}
$$

The bifurcation curve has negative slope at the smaller one and positive slope at the larger one. Thus the bifurcation curve is as shown in Figure 3.

Under the conditions of Theorem 3, if a backward bifurcation takes place, we can see from Figure 3 that there is a critical value R_{0}^{*} at the turning point. In this case, the disease will not die out when $R_{0}<1$. However, the disease will die out when $R_{0}<R_{0}^{*}$. Therefore, the critical value R_{0}^{*} can be taken as a new threshold for the control of the disease.

In the following, we give an explicit criterion of a backward bifurcation at $R_{0}=1$.

For convenience, we define

$$
\begin{equation*}
\alpha_{0}:=\frac{\lambda(d+\mu)}{d r} \tag{16}
\end{equation*}
$$

Corollary 4. When $\alpha>\alpha_{0}$, system (4) has a backward bifurcation at $R_{0}=1$.

Proof. When $R_{0} \leq 1 \Leftrightarrow c \geq 0$,

$$
\begin{equation*}
\lambda A \leq d(d+\varepsilon+\mu+r) \tag{17}
\end{equation*}
$$

The condition $b<0$ is equivalent to

$$
\begin{equation*}
\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)<\alpha \lambda A \tag{18}
\end{equation*}
$$

From (17) and (18), we get $\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)<\alpha d(d+$ $\varepsilon+r+\mu)$, which reduces to

$$
\begin{equation*}
\alpha>\frac{\lambda(d+\mu)}{d r} \triangleq \alpha_{0} \tag{19}
\end{equation*}
$$

It means that α is big enough to lead a backward bifurcation with two endemic equilibria when $R_{0}<1$. Therefore, the proof is complete.

Next, we consider the local stability of the unique endemic equilibrium when $R_{0}>1$.

Theorem 5. When $R_{0}>1$ and $0 \leq \alpha<\lambda / r$, the unique endemic equilibrium E^{*} is locally asymptotically stable.

Proof. Firstly, from Theorem 2, we can know that system (4) has a unique endemic equilibrium E^{*} when $R_{0}>1$. Moreover, the Jacobian matrix of system (4) is

$$
M=\left(\begin{array}{cc}
-d-\lambda I & -\lambda S+\varepsilon+\frac{r}{1+\alpha I}-\frac{r \alpha I}{(1+\alpha I)^{2}} \tag{20}\\
\lambda I & \lambda S-(d+\varepsilon+\mu)-\frac{r}{1+\alpha I}+\frac{r \alpha I}{(1+\alpha I)^{2}}
\end{array}\right) .
$$

From the second equation of (6), we have

$$
\begin{equation*}
-\lambda S+\varepsilon+\frac{r}{1+\alpha I}=-d-\mu \tag{21}
\end{equation*}
$$

From (21), the Jacobian matrix M reduces to

$$
M=\left(\begin{array}{cc}
-d-\lambda I & -d-\mu-\frac{r \alpha I}{(1+\alpha I)^{2}} \tag{22}\\
\lambda I & \frac{r \alpha I}{(1+\alpha I)^{2}}
\end{array}\right)
$$

We obtain

$$
\begin{equation*}
\operatorname{det}(M)=\frac{I}{(1+\alpha I)^{2}}\left[\lambda(d+\mu)(1+\alpha I)^{2}-r \alpha d\right] \tag{23}
\end{equation*}
$$

In fact, there is $\lambda(d+\mu)(1+\alpha I)^{2}>\lambda d$. Since $R_{0}>1$ and $0 \leq \alpha<\lambda / r$, we have

$$
\begin{equation*}
\lambda(d+\mu)(1+\alpha I)^{2}-r \alpha d>\lambda d-r \alpha d>0 \tag{24}
\end{equation*}
$$

So we get $\operatorname{det}(M)>0$. The trace of M is given by

$$
\begin{equation*}
\operatorname{tr}(M)=\frac{1}{(1+\alpha I)^{2}}\left[-(d+\lambda I)(1+\alpha I)^{2}+r \alpha I\right] \tag{25}
\end{equation*}
$$

In the same way as the above calculation of (24), we have

$$
\begin{equation*}
-(d+\lambda I)(1+\alpha I)^{2}+r \alpha I<-\lambda I+r \alpha I<0 \tag{26}
\end{equation*}
$$

So we get $\operatorname{tr}(M)<0$. The proof is complete.

Now we consider the case that there are two endemic equilibria E_{1} and E_{2}; let M_{i} be the Jacobian matrix at E_{i}, $i=1,2$.

Theorem 6. The endemic equilibrium E_{1} is a saddle whenever it exists.

Proof. Since $I_{1}=\left(-b-\sqrt{b^{2}-4 a c}\right) / 2 a$ and $\Delta=b^{2}-4 a c$, we have $I_{1}=(-b-\sqrt{\Delta}) / 2 a$. Thus

$$
\begin{align*}
& \operatorname{det}\left(M_{1}\right) \\
& \quad=\frac{I_{1}}{\left(1+\alpha I_{1}\right)^{2}}\left[\lambda(d+\mu)\left(1+\alpha I_{1}\right)^{2}-r \alpha d\right] \tag{27}\\
& \quad \triangleq \frac{I_{1}}{\left(1+\alpha I_{1}\right)^{2}} \psi\left(I_{1}\right) .
\end{align*}
$$

From $\left(H_{3}\right)$ of Theorem 2, we can know that if $\alpha>0, b<0$, and $R_{0}^{*}<R_{0}<1$, then E_{1} exists. Hence, we can get $\psi(0)=$ $\lambda(d+\mu)-r \alpha d<0$ and $\psi^{\prime}\left(I_{1}\right)=2 \lambda(d+\mu)\left(1+\alpha I_{1}\right) \alpha>0$. It follows that there exists a unique $I^{*}>0$ such that

$$
\begin{array}{ll}
\psi\left(I_{1}\right)=0, & \text { when } I_{1}=I^{*}, \\
\psi\left(I_{1}\right)<0, & \text { when } 0<I_{1}<I^{*} \tag{28}\\
\psi\left(I_{1}\right)>0, & \text { when } I_{1}>I^{*}
\end{array}
$$

where

$$
\begin{equation*}
I^{*}=\sqrt{\frac{r d}{\alpha \lambda(d+\mu)}}-\frac{1}{\alpha} \tag{29}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
I_{1}= & -\frac{b}{2 a}-\frac{\sqrt{\Delta}}{2 a} \\
= & \frac{\alpha \lambda A-\lambda(d+\mu)-\alpha d(d+\varepsilon+\mu)}{2 \alpha \lambda(d+\mu)}-\frac{\sqrt{\Delta}}{2 a} \\
= & \sqrt{\frac{r d}{\alpha \lambda(d+\mu)}}-\frac{1}{\alpha}+\frac{1}{\alpha}-\sqrt{\frac{r d}{\alpha \lambda(d+\mu)}} \\
& +\frac{\alpha \lambda A-\lambda(d+\mu)-\alpha d(d+\varepsilon+\mu)}{2 \alpha \lambda(d+\mu)}-\frac{\sqrt{\Delta}}{2 a} \\
= & I^{*}+([\lambda(d+\mu)+\alpha \lambda A-2 \sqrt{r d \alpha \lambda(d+\mu)} \\
& \quad-\alpha d(d+\varepsilon+\mu)]-\sqrt{\Delta}) \times(2 \alpha \lambda(d+\mu))^{-1}
\end{aligned}
$$

$$
\begin{align*}
\Delta= & \{\lambda(d+\mu)-[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)]\}^{2} \tag{30}\\
& -4 \alpha \lambda(d+\mu)[d(d+\varepsilon+r+\mu)-\lambda A] \\
= & \{\lambda(d+\mu)+[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)] \\
& -2 \sqrt{r d \alpha \lambda(d+\mu)}\}^{2}-4 r d \alpha \lambda(d+\mu) \\
& -4 \lambda(d+\mu)[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)] \\
& +4 \sqrt{r d \alpha \lambda(d+\mu)}\{\lambda(d+\mu)+[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)]\} \\
& -4 \alpha \lambda(d+\mu)[-\lambda A+d(d+\varepsilon+r+\mu)] \\
\triangleq & \{\lambda(d+\mu)+[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)] \\
& -2 \sqrt{r d \alpha \lambda(d+\mu)}\}^{2}+P, \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
P= & -8 r d \alpha \lambda(d+\mu)+4 \sqrt{r d \alpha \lambda(d+\mu)} \tag{32}\\
& \times\{\lambda(d+\mu)+[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)]\}
\end{align*}
$$

In the following we will show that $P>0$. Since $R_{0}^{*}<R_{0}$, we have

$$
\begin{align*}
& \frac{4 \alpha \lambda(d+\mu)}{[\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)-\alpha \lambda A]^{2}+4 \alpha \lambda^{2}(d+\mu) A} \tag{33}\\
& \quad<\frac{1}{d(d+\varepsilon+r+\mu)}
\end{align*}
$$

that is,

$$
\begin{align*}
& {[\lambda(d+\mu)+\alpha d(d+\varepsilon+\mu)-\alpha \lambda A]^{2}} \\
& \quad>4 \alpha \lambda(d+\mu) d(d+\varepsilon+r+\mu)-4 \alpha \lambda^{2}(d+\mu) A \tag{34}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\{\lambda & (d+\mu)+[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)]\}^{2} \\
= & \{\lambda(d+\mu)-[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)]\}^{2} \\
& +4 \lambda(d+\mu)[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)] \\
> & 4 \alpha \lambda(d+\mu) d(d+\varepsilon+r+\mu)-4 \alpha \lambda^{2}(d+\mu) A \tag{35}\\
& +4 \lambda(d+\mu)[\alpha \lambda A-\alpha d(d+\varepsilon+\mu)] \\
= & 4 r d \alpha \lambda(d+\mu) .
\end{align*}
$$

Obviously, we have $P>0$. From (30), one has $I_{1}<I^{*}$. So we get $\operatorname{det}\left(M_{1}\right)<0$. Hence the endemic equilibrium E_{1} is a saddle. The proof is complete.

In order to explore the stability of the endemic equilibrium E_{2}, define

$$
\begin{align*}
m_{1}:= & \left(2 d \alpha a^{2}+\lambda a^{2}-\varepsilon \alpha a^{2}-a c \lambda \alpha^{2}\right) \\
& -b\left(2 \lambda \alpha a+d \alpha^{2} a-b \lambda \alpha^{2}\right) \tag{36}\\
m_{2}:= & a^{2} d-c\left(2 \lambda \alpha a+d \alpha^{2} a-b \lambda \alpha^{2}\right) .
\end{align*}
$$

Theorem 7. If $\eta>0$, then endemic equilibrium E_{2} is locally asymptotically stable; if $\eta<0$, then endemic equilibrium E_{2} is unstable, where $\eta:=2 a m_{2}+m_{1}\left(\sqrt{b^{2}-4 a c}-b\right)$.

Proof. Consider

$$
\begin{align*}
\operatorname{det}\left(M_{2}\right) & =\frac{I_{2}}{\left(1+\alpha I_{2}\right)^{2}}\left[\lambda(d+\mu)\left(1+\alpha I_{2}\right)^{2}-\varepsilon \alpha d\right] \\
& =\frac{I_{2}}{\left(1+\alpha I_{2}\right)^{2}} \times \psi\left(I_{2}\right) . \tag{37}
\end{align*}
$$

By carrying out arguments similar to that of Theorem 6, we have $I_{2}>I^{*}$. Therefore, $\operatorname{det}\left(M_{2}\right)>0$. In addition, we have

$$
\begin{align*}
\operatorname{tr}\left(M_{2}\right) & =-\frac{\left(d+\lambda I_{2}\right)\left(1+\alpha I_{2}\right)^{2}-\varepsilon \alpha I_{2}}{\left(1+\alpha I_{2}\right)^{2}} \\
& =-\frac{\lambda \alpha^{2} I_{2}^{3}+\left(2 \lambda \alpha+d \alpha^{2}\right) I_{2}^{2}+(2 d \alpha+\lambda-\varepsilon \alpha) I_{2}+d}{\left(1+\alpha I_{2}\right)^{2}} \tag{38}
\end{align*}
$$

and then $\operatorname{sgn}\left(\operatorname{tr}\left(M_{2}\right)\right)=-\operatorname{sgn}\left(G\left(I_{2}\right)\right)$, where

$$
\begin{equation*}
G(x)=\lambda \alpha^{2} x^{3}+\left(2 \lambda \alpha+d \alpha^{2}\right) x^{2}+(2 d \alpha+\lambda-\varepsilon \alpha) x+d \tag{39}
\end{equation*}
$$

Figure 4: One region of disease persistence and one region of disease extinction when $A=10, \alpha=1, d=0.1, \mu=0.01, \lambda=0.01$, $r=0.1$, and $\varepsilon=0.1$.

Using the expression of $m_{1}=\left(2 d \alpha a^{2}+\lambda a^{2}-\varepsilon \alpha a^{2}-a c \lambda \alpha^{2}\right)-$ $b\left(2 \lambda \alpha a+d \alpha^{2} a-b \lambda \alpha^{2}\right)$ and $m_{2}=a^{2} d-c\left(2 \lambda \alpha a+d \alpha^{2} a-b \lambda \alpha^{2}\right)$, one has

$$
\begin{equation*}
G\left(I_{2}\right)=\left(a I_{2}^{2}+b I_{2}+c\right) \varphi_{0}+\frac{m_{1} I_{2}+m_{2}}{a^{2}} \tag{40}
\end{equation*}
$$

where φ_{0} is a first degree polynomial of I_{2}. Since $a I_{2}^{2}+b I_{2}+c=$ $0, \operatorname{sgn}\left(\operatorname{tr}\left(M_{2}\right)\right)=-\operatorname{sgn}\left(G\left(I_{2}\right)\right)=-\operatorname{sgn}\left(m_{1} I_{2}+m_{2}\right)$. From the expression of I_{2}, we have

$$
\begin{align*}
& \operatorname{sgn}\left(m_{1} I_{2}+m_{2}\right) \\
& \quad=\operatorname{sgn}\left(2 a m_{2}+m_{1}\left(\sqrt{b^{2}-4 a c}-b\right)\right) \triangleq \operatorname{sgn}(\eta) . \tag{41}
\end{align*}
$$

Thus, E_{2} is locally asymptotically stable if $\eta>0$ and E_{2} is unstable if $\eta<0$. The proof is complete.

From the above discussion, we have the following conclusion. If two endemic equilibria E_{1} and E_{2} exist, the stable manifolds of the saddle E_{1} split R_{+}^{2} into two regions. The disease is persistent in the upper region and dies out in the lower region (see Figure 4).

3. Global Analysis

Firstly, we consider the global stability of the disease-free equilibrium E_{0}. Let $N=S+I$ be the total population size. Now we note that the equation for total population is given by $d N / d t=A-d S-(d+\mu) I \leq A-d N$. It follows that $\lim _{t \rightarrow+\infty} N(t) \leq A / d$. Let

$$
\begin{equation*}
\mathfrak{R}=\left\{(S, I) \in R_{+}^{2}: S+I \leq \frac{A}{d}\right\} \tag{42}
\end{equation*}
$$

which is positive invariant with respect to system (4).
Theorem 8. If $R_{0}<R_{0}^{*}$, the disease-free equilibrium $E_{0}(A /$ $d, 0)$ is globally asymptotically stable; that is, the disease dies out.

Proof. Suppose $R_{0}<R_{0}^{*}$. From the $\left(\mathrm{H}_{3}\right)$ of Theorem 2, we know that the model has no endemic equilibrium. From the corollary of Poincaré-Bendixson theorem [32], we know that there is no periodic orbit in \mathfrak{R} as there is a diseasefree equilibrium in \Re. Since \Re is a bounded positively invariant region and E_{0} is the only equilibrium in \Re, the local stability of E_{0} implies that every solution initiating in \Re approaches E_{0}. Thus, the disease-free equilibrium E_{0} is globally asymptotically stable. The proof is complete.

Now we analyze the global dynamics of the endemic equilibrium when $R_{0}>1$.

Theorem 9. If $R_{0}>1$ and $0 \leq \alpha<\lambda / r$, the system (4) has no limit cycles.

Proof. We use Dulac theorem to exclude the limit cycle. Let

$$
\begin{align*}
& P(S, I)=A-d S-\lambda S I+\varepsilon I+\frac{r I}{1+\alpha I}, \tag{43}\\
& Q(S, I)=\lambda S I-(d+\varepsilon+\mu) I-\frac{r I}{1+\alpha I},
\end{align*}
$$

and take the Dulac function

$$
\begin{equation*}
D=\frac{1}{I} \tag{44}
\end{equation*}
$$

According to $0 \leq \alpha<\lambda / r$, we can get

$$
\begin{aligned}
& \frac{\partial(P D)}{\partial S}+\frac{\partial(Q D)}{\partial I} \\
& \quad=-\frac{d}{I}-\lambda+\frac{\alpha r}{(1+\alpha I)^{2}} \\
& \quad<-\frac{d}{I}-\lambda+\frac{\lambda}{(1+\alpha I)^{2}} \\
& \quad=\frac{1}{I(1+\alpha I)^{2}}\left\{-d(1+\alpha I)^{2}-\lambda I\left[(1+\alpha I)^{2}-1\right]\right\} \\
& \quad<0
\end{aligned}
$$

Hence, the system (4) has no limit cycles. The proof is complete.

Therefore, we obtain the global result of the unique endemic equilibrium.

Theorem 10. If $R_{0}>1$ and $0 \leq \alpha<\lambda / r$, the unique endemic equilibrium E^{*} is globally asymptotically stable (see Figure 5).

4. Hopf Bifurcation

In this section, we study the Hopf bifurcation of system (4). From the above discussion, we know that there is no closed orbit surrounding E_{0} or E_{1} because the S-axis is invariant with

Figure 5: The unique endemic equilibrium E^{*} is globally asymptotically stable when $A=15, \alpha=0.01, d=0.1, \mu=0.01, \lambda=0.01$, $r=0.8$, and $\varepsilon=0.1$.
respect to system (4) and E_{1} is always a saddle. Therefore, Hopf bifurcation can only occur at E_{2}. Set

$$
\begin{align*}
\sigma= & {\left[-\lambda \alpha-\frac{c_{1}\left(c_{2}+2 c_{4}\right)}{a_{12}}\right] D^{4} } \\
& +\left[-\lambda \alpha a_{11}^{2}-2 \lambda \alpha a_{11} a_{12}+\left(c_{2}-\frac{2 a_{11} c_{1}}{a_{12}}\right)\right. \\
& \times\left(a_{11} c_{2}-\frac{a_{11}^{2} c_{1}}{a_{12}}\right) \\
& -\left(\frac{2 a_{11}^{2} c_{1}}{a_{12}}-a_{11} c_{2}+2 c_{4} a_{11}-c_{3} a_{12}\right) \tag{46}\\
& \left.\times\left(c_{4}-\frac{a_{11} c_{1}}{a_{12}}\right)\right] D^{2} \\
& +a_{11}\left(\frac{a_{11}^{2} c_{1}}{a_{12}}-a_{11} c_{2}+c_{4} a_{11}-c_{3} a_{12}\right) \\
& \times\left(a_{12} c_{3}-2 a_{11} c_{4}-a_{11} c_{2}\right)
\end{align*}
$$

where $a_{i j}(i, j=1,2), c_{k}(k=1,2,3,4)$, and D are defined by (50) and (52).

Theorem 11. System (4) undergoes a Hopf bifurcation if $\eta=0$. Moreover, if $\sigma<0$, there is a family of stable period orbits of system (4) as η decreases from 0 ; that is, a supercritical Hopf bifurcation occurs; if $\sigma>0$, there is a family of unstable period orbits of system (4) as η increases from 0 ; that is, a subcritical Hopf bifurcation occurs.

Proof. The proof of Theorem 7 shows that $\operatorname{tr}\left(M_{2}\right)=0$ if and only if $\eta=0$, and $\operatorname{det}\left(M_{2}\right)>0$ when E_{2} exists. Therefore, the eigenvalues of M_{2} are a pair of pure imaginary roots if and only if $\eta=0$. The direct calculations show that

$$
\begin{equation*}
\left.\frac{d\left(\operatorname{tr}\left(M_{2}\right)\right)}{d \eta}\right|_{\eta=0}=-\frac{1}{2 a^{3}\left(1+\alpha I_{2}\right)^{2}}<0 \tag{47}
\end{equation*}
$$

By Theorem 3.4.2 in [24], $\eta=0$ is the Hopf bifurcation point for system (4).

To be concise in notations, rescale (4) by $\tau=t /(1+\alpha I)$. For simplicity, we still use t instead of τ. Then we obtain

$$
\begin{align*}
& \frac{d S}{d t}=(A-d S-\lambda S I+\varepsilon I)(1+\alpha I)+r I, \\
& \frac{d I}{d t}=\lambda S I(1+\alpha I)-(d+\varepsilon+\mu) I(1+\alpha I)-r I . \tag{48}
\end{align*}
$$

Let $x=S-S_{2}$ and $y=I-I_{2}$; then (48) becomes

$$
\begin{align*}
& \frac{d x}{d t}=a_{11} x+a_{12} y+c_{1} y^{2}+c_{2} x y-\lambda \alpha x y^{2} \\
& \frac{d y}{d t}=a_{21} x+a_{22} y+c_{3} x y+c_{4} y^{2}+\lambda \alpha x y^{2} \tag{49}
\end{align*}
$$

where

$$
\begin{align*}
a_{11}= & -\left(d+\lambda I_{2}\right)\left(1+\alpha I_{2}\right), \\
a_{12}= & \left(-\lambda S_{2}+r\right)\left(1+\alpha I_{2}\right) \\
& +\alpha\left(A-d S_{2}-\lambda S_{2} I_{2}+r I_{2}\right)+\varepsilon, \\
a_{21}= & \lambda I_{2}\left(1+\alpha I_{2}\right), \\
a_{22}= & {\left[\lambda S_{2}-(d+r+\mu)\right]\left(1+\alpha I_{2}\right) } \\
& +\alpha\left[\lambda S_{2} I_{2}-(d+r+\mu) I_{2}\right]-\varepsilon, \tag{50}\\
c_{1}= & \alpha\left(-\lambda S_{2}+r\right), \\
c_{2}= & \alpha\left(-d-\lambda I_{2}\right)-\lambda\left(1+\alpha I_{2}\right), \\
c_{3}= & \lambda\left(1+\alpha I_{2}\right)+\lambda I_{2} \alpha, \\
c_{4}= & {\left[\lambda S_{2}-(d+r+\mu)\right] \alpha . }
\end{align*}
$$

Let E^{*} denote the origin of $x-y$ plane. Since $E_{2}=\left(S_{2}, I_{2}\right)$ satisfies (6), we obtain

$$
\begin{align*}
\operatorname{det} & \left(M\left(E^{*}\right)\right) \\
\quad= & \left(d+\lambda I_{2}\right) \alpha \varepsilon I_{2}+(d+\mu)\left(1+\alpha I_{2}^{2}\right)^{2} \lambda I_{2}+\alpha \lambda \varepsilon I_{2}^{2} \tag{51}\\
\quad= & I_{2} \times \psi\left(I_{2}\right)
\end{align*}
$$

From the proof of Theorem 7, it follows that $\psi\left(I_{2}\right)$ is always positive. It is easy to verify that $a_{11}+a_{22}=0$ if and only if $\eta=0$. Set

$$
\begin{equation*}
D=\sqrt{\operatorname{det}\left(M\left(E^{*}\right)\right)} \tag{52}
\end{equation*}
$$

and let $u=-x$ and $v=\left(a_{11} / D\right) x+\left(a_{12} / D\right) y$; then the normal form of (48) for Hopf bifurcation reads

$$
\begin{align*}
& \frac{d u}{d t}=-D v+f(u, v) \tag{53}\\
& \frac{d v}{d t}=D u+g(u, v)
\end{align*}
$$

where

$$
\begin{align*}
f(u, v)= & \left(\frac{a_{11}}{a_{12}} c_{2}-\frac{a_{11}^{2}}{a_{12}^{2}} c_{1}\right) u^{2}-\frac{D^{2} c_{1}}{a_{12}^{2}} v^{2} \\
& +\left(\frac{D c_{2}}{a_{12}}-2 \frac{D a_{11} c_{1}}{a_{12}^{2}}\right) u v-\frac{\lambda \alpha a_{11}^{2}}{a_{12}^{2}} u^{3} \\
& -2 \frac{D a_{11} \lambda \alpha}{a_{12}^{2}} u^{2} v-\frac{D^{2} \lambda \alpha}{a_{12}^{2}} u v^{2}, \\
g(u, v)= & \frac{a_{11}}{D}\left(\frac{a_{11}^{2}}{a_{12}^{2}} c_{1}-\frac{a_{11}}{a_{12}} c_{2}+\frac{a_{11}}{a_{12}} c_{4}-c_{3}\right) u^{2} \\
& +\left(\frac{D a_{11} c_{1}}{a_{12}^{2}}+\frac{D c_{4}}{a_{12}}\right) v^{2} \\
& +\left(2 \frac{a_{11}^{2}}{a_{12}^{2}} c_{1}-\frac{a_{11}}{a_{12}} c_{2}+2 \frac{a_{11}}{a_{12}} c_{4}-c_{3}\right) u v \\
& +\frac{\lambda \alpha a_{11}^{2}}{a_{12} D}\left(\frac{1}{a_{12}}-1\right) u^{3}+\frac{2 \lambda \alpha a_{11}}{a_{12}}\left(\frac{a_{11}}{a_{12}}-1\right) u^{2} v \\
& +\frac{D \lambda \alpha}{a_{12}}\left(\frac{a_{11}}{a_{12}}-1\right) u v^{2} . \tag{54}
\end{align*}
$$

Now, we evaluate the first Lyapunov coefficient Γ of system (4) as follows:

$$
\begin{align*}
\Gamma= & \frac{1}{16}\left[f_{u u u}+f_{u v v}+g_{u u v}+g_{v v v}\right]+\frac{1}{16 D} \\
& \times\left[f_{u v}\left(f_{u u}+f_{v v}\right)-g_{u v}\left(g_{u u}+g_{v v}\right)-f_{u u} g_{u u}+f_{v v} g_{v v}\right] \tag{55}
\end{align*}
$$

where $f_{u v}$ denotes $\left(\partial^{2} f / \partial u \partial v\right)(0,0)$ and so forth. Then

$$
\begin{align*}
\Gamma=\frac{1}{8 a_{12}^{2} D^{2}}\{ & {\left[-\lambda \alpha-\frac{c_{1}\left(c_{2}+2 c_{4}\right)}{a_{12}}\right] D^{4} } \\
& +\left[-\lambda \alpha a_{11}^{2}-2 \lambda \alpha a_{11} a_{12}+\left(c_{2}-\frac{2 a_{11} c_{1}}{a_{12}}\right)\right. \\
& \times\left(a_{11} c_{2}-\frac{a_{11}^{2} c_{1}}{a_{12}}\right) \\
& \quad-\left(\frac{2 a_{11}^{2} c_{1}}{a_{12}}-a_{11} c_{2}+2 c_{4} a_{11}-c_{3} a_{12}\right) \\
& \left.\times\left(c_{4}-\frac{a_{11} c_{1}}{a_{12}}\right)\right] D^{2} \\
& +a_{11}\left(\frac{a_{11}^{2} c_{1}}{a_{12}}-a_{11} c_{2}+c_{4} a_{11}-c_{3} a_{12}\right) \\
& \left.\times\left(a_{12} c_{3}-2 a_{11} c_{4}-a_{11} c_{2}\right)\right\}
\end{align*}
$$

Obviously, the sign of Γ is determined by σ. By Theorem 3.4.2 and (3.4.11) in [24], the rest of the claims in Theorem 11 are valid. The proof is complete.

5. Bogdanov-Takens Bifurcations

The purpose of this section is to study the Bogdanov-Takens bifurcation of (4). Now, we assume the following:

$$
\begin{aligned}
& \left(A_{1}\right) b^{2}-4 a c=0 \\
& \left(A_{2}\right) 2 a d^{2}+b \lambda \mu=0
\end{aligned}
$$

Then (6) admits a unique positive equilibrium $E^{*}=\left(S^{*}, I^{*}\right)$, where

$$
\begin{equation*}
I^{*}=-\frac{b}{2 a}, \quad S^{*}=\frac{A-(d+\mu) I^{*}}{d} \tag{57}
\end{equation*}
$$

The Jacobian matrix of system (4) at E^{*} is

$$
M^{*}=\left(\begin{array}{cc}
-d-\lambda I^{*} & -\lambda S^{*}+\varepsilon+\frac{r}{\left(1+\alpha I^{*}\right)_{r}^{2}} \tag{58}\\
\lambda I^{*} & \lambda S^{*}-(d+\varepsilon+\mu)-\frac{r}{\left(1+\alpha I^{*}\right)^{2}}
\end{array}\right)
$$

By (58), we have

$$
\begin{aligned}
\operatorname{det}\left(M^{*}\right) & =\frac{I^{*}}{\left(1+\alpha I^{*}\right)^{2}}\left[(d+\mu) \lambda\left(1+\alpha I^{*}\right)^{2}-r d \alpha\right] \\
& =0
\end{aligned}
$$

because of

$$
\begin{align*}
\left(1+\alpha I^{*}\right)^{2} & =\frac{4 a^{2}-4 a \alpha b+\alpha^{2} b^{2}}{4 a^{2}} \\
& =\frac{4 a^{2}-4 a \alpha b+\alpha^{2} 4 a c}{4 a^{2}} \\
& =\frac{a-\alpha b+\alpha^{2} c}{a} \tag{60}\\
& =\frac{\alpha^{2} r d}{a}
\end{align*}
$$

Furthermore, $\left(A_{2}\right)$ implies that

$$
\begin{equation*}
\operatorname{tr}\left(M^{*}\right)=0 \tag{61}
\end{equation*}
$$

Thus, $\left(A_{1}\right)$ and $\left(A_{2}\right)$ imply that the Jacobian matrix has a zero eigenvalue with multiplicity 2 . This suggests that (4) may admit a Bogdanov-Takens singularity.

Theorem 12. Suppose that $\left(A_{1}\right),\left(A_{2}\right)$, and $2 b_{1}+b_{4} \neq 0$ hold. Then the endemic equilibrium $E^{*}=\left(S^{*}, I^{*}\right)$ of (4) is a cusp of codimension 2; that is, it is a Bogdanov-Takens singularity. Here, b_{1} and b_{4} are defined by (65).

Proof. Using the transformation of $x=I-I^{*}$ and $y=S-S^{*}$, system (4) becomes

$$
\begin{align*}
\frac{d x}{d t} & =a_{1} x+a_{2} y+\lambda x y+\widehat{a}_{11} x^{2}-P_{1}(x) \\
\frac{d y}{d t} & =-\frac{a_{1}^{2}}{a_{2}} x-a_{1} y-\lambda x y-\widehat{a}_{11} x^{2}+P_{1}(x) \tag{62}
\end{align*}
$$

where $P_{1}(x)$ is a smooth function of x at least of the third order and

$$
\begin{align*}
& a_{1}=\lambda S^{*}-(d+\varepsilon+\mu)-\frac{r}{\left(1+\alpha I^{*}\right)^{2}}>0, \\
& a_{2}=\lambda I^{*}>0, \tag{63}\\
& \hat{a}_{11}=\frac{r \alpha}{\left(1+\alpha I^{*}\right)^{3}}>0 .
\end{align*}
$$

Set $X=x, Y=a_{1} x+a_{2} y$. Then (62) is transformed into

$$
\begin{align*}
& \frac{d X}{d t}=Y+b_{1} X^{2}+b_{2} X Y+Q_{1}(X) \\
& \frac{d Y}{d t}=b_{3} X^{2}+b_{4} X Y+Q_{2}(X) \tag{64}
\end{align*}
$$

where $Q_{i}(X)$ are smooth functions of X at least of the third order and

$$
\begin{align*}
& b_{1}=\widehat{a}_{11}-\frac{\lambda a_{1}}{a_{2}}, \\
& b_{2}=\frac{\lambda}{a_{2}}, \\
& b_{3}=a_{1} \hat{a}_{11}-\frac{\lambda a_{1}^{2}}{a_{2}}+a_{1} \lambda-a_{2} \hat{a}_{11}, \tag{65}\\
& b_{4}=\frac{\lambda a_{1}}{a_{2}}-\lambda .
\end{align*}
$$

In order to obtain the canonical normal form, we perform the transformation of variables by

$$
\begin{equation*}
u=X-\frac{b_{2}}{2} X^{2}, \quad v=Y+b_{1} X^{2} \tag{66}
\end{equation*}
$$

Then, we obtain

$$
\begin{align*}
& \frac{d u}{d t}=v+R_{1}(u) \tag{67}\\
& \frac{d v}{d t}=b_{3} u^{2}+\left(2 b_{1}+b_{4}\right) u v+R_{2}(u)
\end{align*}
$$

where $R_{i}(u)$ are smooth functions of u at least of the third order. Note that $b_{3}<0$ and $2 b_{1}+b_{4} \neq 0$. It follows from [3335] that (4) admits a Bogdanov-Takens bifurcation.

In the following, we will find the versal unfolding in terms of the original parameters in (4). In this way, we will know the approximate saddle-node, Hopf, and homoclinic bifurcation
curves. We choose A and d as bifurcation parameters. Fix $\lambda=$ $\lambda_{0}, \varepsilon=\varepsilon_{0}, r=r_{0}, \alpha=\alpha_{0}$, and $\mu=\mu_{0}$. Let $A=A_{0}+\theta_{1}$ and $d=d_{0}+\theta_{2}$, where θ_{1} and θ_{2} are parameters which vary in a small neighborhood of the origin.

Suppose that $A=A_{0}, d=d_{0}, \lambda=\lambda_{0}, \varepsilon=\varepsilon_{0}, r=r_{0}, \alpha=$ α_{0}, and $\mu=\mu_{0}$ satisfy $\left(A_{1}\right)$ and $\left(A_{2}\right)$. Consider the following system:

$$
\begin{align*}
& \frac{d I}{d t}=\lambda_{0} S I-\left(d_{0}+\theta_{2}+\varepsilon_{0}+\mu_{0}\right) I-\frac{r_{0} I}{1+\alpha_{0} I}, \\
& \frac{d S}{d t}=A_{0}+\theta_{1}-\left(d_{0}+\theta_{2}\right) S-\lambda_{0} S I+\varepsilon_{0} I+\frac{r_{0} I}{1+\alpha_{0} I} . \tag{68}
\end{align*}
$$

By the transformations of $x=I-I^{*}$ and $y=S-S^{*}$, system (68) becomes

$$
\begin{align*}
& \frac{d x}{d t}=-\theta_{2} I^{*}+\widehat{c}_{1} x+\widehat{c}_{2} y+c_{11} x^{2}+\lambda_{0} x y-w_{1}(x) \\
& \frac{d y}{d t}=\left(\theta_{1}-\theta_{2} S^{*}\right)+\widehat{c}_{3} x+\widehat{c}_{4} y-c_{11} x^{2}-\lambda_{0} x y+w_{1}(x), \tag{69}
\end{align*}
$$

where $w_{1}(x)$ is a smooth function of x at least of the third order and

$$
\begin{align*}
& \widehat{c}_{1}=\lambda_{0} S^{*}-\left(d_{0}+\theta_{2}+\varepsilon_{0}+\mu_{0}\right)-\frac{r_{0}}{\left(1+\alpha_{0} I^{*}\right)^{2}}, \\
& \widehat{c}_{2}=\lambda_{0} I^{*} \\
& \widehat{c}_{3}=-\lambda_{0} S^{*}+\varepsilon_{0}+\frac{r_{0}}{\left(1+\alpha_{0} I^{*}\right)^{2}}, \tag{70}\\
& \widehat{c}_{4}=-\left(d_{0}+\theta_{2}\right)-\lambda_{0} I^{*} \\
& c_{11}=\frac{r_{0} \alpha_{0}}{\left(1+\alpha_{0} I^{*}\right)^{3}} .
\end{align*}
$$

Making the change of variables $X=x, Y=-\theta_{2} I^{*}+\widehat{c}_{1} x+$ $\widehat{c}_{2} y+c_{11} x^{2}+\lambda_{0} x y-w_{1}(x)$ and rewriting X, Y as x and y, respectively, we have

$$
\begin{align*}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=e_{0}+e_{1} x+e_{2} y+e_{11} x^{2}+e_{12} x y+e_{22} y^{2}+w_{2}(x, y, \theta) \tag{71}
\end{align*}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right), w_{2}(x, y, \theta)$ is a smooth function of x, y, θ_{1}, and θ_{2} at least of the third order, and

$$
\begin{aligned}
& e_{0}=\widehat{c}_{2}\left(\theta_{1}-\theta_{2} S^{*}\right)+\widehat{c}_{4} \theta_{2} I^{*}, \\
& e_{1}=\lambda_{0}\left(\theta_{1}-\theta_{2} S^{*}\right)+\widehat{c}_{2} \widehat{c}_{3}-\widehat{c}_{1} \widehat{c}_{4}-\lambda_{0} \theta_{2} I^{*}, \\
& e_{2}=\widehat{c}_{1}+\widehat{c}_{4}+\lambda_{0} \frac{\theta_{2} I^{*}}{\widehat{c_{2}}},
\end{aligned}
$$

$$
\begin{align*}
& e_{11}=\lambda_{0} \widehat{c}_{3}-\widehat{c}_{4} c_{11}-c_{11} \widehat{c}_{2}+\widehat{c}_{1} \lambda_{0} \\
& e_{12}=-\lambda_{0}+2 c_{11}+\lambda_{0} \frac{-\widehat{c}_{1} \widehat{c}_{2}-\lambda_{0} \theta_{2} I^{*}}{\widehat{c}_{2}^{2}} \\
& e_{22}=\frac{\lambda_{0}}{\widehat{c}_{2}} \tag{72}
\end{align*}
$$

Next, introduce a new time variable τ by $d t=$ (1$\left.\left(\lambda_{0} / \widehat{c}_{2}\right) x\right) d \tau$. Rewriting τ as t, we obtain

$$
\begin{align*}
\frac{d x}{d t}= & y\left(1-\frac{\lambda_{0}}{\widehat{c}_{2}} x\right) \\
\frac{d y}{d t}= & \left(1-\frac{\lambda_{0}}{\widehat{c}_{2}} x\right) \tag{73}\\
& \times\left(e_{0}+e_{1} x+e_{2} y+e_{11} x^{2}\right. \\
& \left.+e_{12} x y+e_{22} y^{2}+w_{2}(x, y, \theta)\right)
\end{align*}
$$

Let $X=x, Y=y\left(1-\left(\lambda_{0} / \widehat{\mathcal{c}}_{2}\right) x\right)$ and rename X and Y as x and y; we have

$$
\begin{align*}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=e_{0}+g_{1} x+e_{2} y+g_{11} x^{2}+g_{12} x y+w_{3}(x, y, \theta), \tag{74}
\end{align*}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right), w_{3}(x, y, \theta)$ is a smooth function of x, y, θ_{1}, and θ_{2} at least of the third order, and

$$
\begin{align*}
& g_{1}=-2 e_{0} \frac{\lambda_{0}}{\widehat{c}_{2}}+e_{1} \\
& g_{11}=e_{11}-2 \frac{e_{1} \lambda_{0}}{\widehat{c}_{2}}+\frac{e_{0} \lambda_{0}^{2}}{\widehat{c}_{2}^{2}} \tag{75}\\
& g_{12}=e_{12}-\frac{e_{2} \lambda_{0}}{\widehat{c}_{2}}
\end{align*}
$$

Now, we assume that $g_{11} \neq 0$ and $g_{12} \neq 0$ when λ_{i} are small. Set $x=X-e_{2} / g_{12}$ and rewrite X as x; we can get

$$
\begin{align*}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=f_{0}+f_{1} x+g_{11} x^{2}+g_{12} x y+w_{4}(x, y, \theta) \tag{76}
\end{align*}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right), w_{4}(x, y, \theta)$ is a smooth function of x, y, θ_{1}, and θ_{2} at least of the third order, and

$$
\begin{align*}
& f_{0}=e_{0}-\frac{g_{1} e_{2}}{g_{12}}+\frac{g_{11} e_{2}^{2}}{g_{12}^{2}} \tag{77}\\
& f_{1}=g_{1}-\frac{2 g_{11} e_{2}}{g_{12}}
\end{align*}
$$

Making the final change of variables by $X=g_{12}^{2} x / g_{11}, Y=$ $g_{12}^{3} y / g_{11}^{2}$, and $\tau=g_{11} t / g_{12}$ and then denoting them again by x, y, and t, respectively, we obtain

$$
\begin{align*}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=\tau_{1}\left(\theta_{1}, \theta_{2}\right)+\tau_{2}\left(\theta_{1}, \theta_{2}\right) x+x^{2}+x y+w_{5}(x, y, \theta) \tag{78}
\end{align*}
$$

where $\theta=\left(\theta_{1}, \theta_{2}\right)$ and $w_{5}(x, y, \theta)$ is a smooth function of x, y, θ_{1}, and θ_{2} at least of the third order.

We substitute values of $\alpha_{0}=1, \lambda_{0}=1 / 4, d_{0}=1 / 10$, $\varepsilon_{0}=1 / 10, \mu_{0}=1 / 100, A_{0}=537 / 500$, and $r_{0}=55 / 8$ for the above system and these values satisfy conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$. And we obtain the following equations:

$$
\begin{align*}
\tau_{1}\left(\theta_{1}, \theta_{2}\right)= & \frac{f_{0} g_{12}^{4}}{g_{11}^{3}} \\
= & -\frac{237291605}{85184} \theta_{1}+\frac{25485118377}{851840} \theta_{2} \\
& +O\left(\left|\theta_{1}, \theta_{2}\right|^{2}\right) \tag{79}\\
\tau_{2}\left(\theta_{1}, \theta_{2}\right)= & \frac{f_{1} g_{12}^{2}}{g_{11}^{2}} \\
= & -\frac{172225}{1936} \theta_{1}+\frac{3983253}{3872} \theta_{2}+O\left(\left|\theta_{1}, \theta_{2}\right|^{2}\right)
\end{align*}
$$

where $g_{11}=-11 / 500-(1 / 16) \theta_{1}+(341 / 800) \theta_{2}+(1 / 4) \theta_{2}^{2}<0$ and $g_{12}=-83 / 200+(1 / 4) \theta_{2}<0$ in a small neighborhood of $\left(\theta_{1}, \theta_{2}\right)=(0,0)$. Let

$$
J=\left(\begin{array}{ll}
\frac{\partial \tau_{1}}{\partial \theta_{1}} & \frac{\partial \tau_{1}}{\partial \theta_{2}} \tag{80}\\
\frac{\partial \tau_{2}}{\partial \theta_{1}} & \frac{\partial \tau_{2}}{\partial \theta_{2}}
\end{array}\right)
$$

And after simple calculation we obtain that

$$
\begin{equation*}
\left.\operatorname{det}(J)\right|_{\lambda=0}=-\frac{16839398748825}{82458112} \neq 0 \tag{81}
\end{equation*}
$$

Thus, τ_{1} and τ_{2} are regular maps in a small neighborhood of $\left(\theta_{1}, \theta_{2}\right)=(0,0)$. By the Bogdanov and Takens bifurcation theorems [36], we obtain the following conclusion.

Theorem 13. Suppose that $A_{0}, d_{0}, \lambda_{0}, \varepsilon_{0}, r_{0}, \alpha_{0}$, and μ_{0} satisfy $\left(A_{1}\right),\left(A_{2}\right), g_{11} \neq 0$, and $g_{12} \neq 0$ when θ_{i} are small. Then (4) admits the following bifurcation behavior.
(1) There is a saddle-node bifurcation curve $S N=$ $\left\{\left(\theta_{1}, \theta_{2}\right): 4 f_{0} g_{11}=f_{1}^{2}+o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right), f_{1} \neq\right.$ $0\}=\left\{\left(\theta_{1}, \theta_{2}\right):(5907 / 6250) \theta_{2}-(11 / 125) \theta_{1}+\right.$ $(2313 / 400) \theta_{1} \theta_{2}-(5 / 16) \theta_{1}^{2}-(1028637 / 40000) \theta_{2}^{2}+$ $o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right)=0,(47991 / 16600) \theta_{2}-(1 / 4) \theta_{1}+(25 /$ 83) $\left.\theta_{1} \theta_{2}-(13645 / 13778) \theta_{2}^{2}+o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right) \neq 0\right\}$.

Figure 6: The bifurcation set and the corresponding phase portraits for system (68).
(2) There is a Hopf bifurcation curve $H=\left\{\left(\theta_{1}, \theta_{2}\right)\right.$: $\left.f_{0}+o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right)=0, f_{1}<0\right\}=\left\{\left(\theta_{1}, \theta_{2}\right):-(537 /\right.$ 50) $\theta_{2}+\theta_{1}+(50 / 83) \theta_{1} \theta_{2}-(74667 / 6889) \theta_{2}^{2}+o\left(\mid\left(\theta_{1}\right.\right.$, $\left.\left.\theta_{2}\right)\left.\right|^{2}\right)=0,(47991 / 16600) \theta_{2}-(1 / 4) \theta_{1}+(25 / 83) \theta_{1} \theta_{2}-$ $\left.(13645 / 13778) \theta_{2}^{2}+o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right)<0\right\}$.
(3) There is a homoclinic bifurcation curve $H L=\left\{\left(\theta_{1}, \theta_{2}\right)\right.$: $\left.25 g_{11} f_{0}+6 f_{1}^{2}=o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right), f_{1}<0\right\}=\left\{\left(\theta_{1}, \theta_{2}\right):\right.$ $(5907 / 1000) \theta_{2}-(11 / 20) \theta_{1}+(611979 / 33200) \theta_{1} \theta_{2}-$ $(19 / 16) \theta_{1}^{2}-(16075834839 / 275560000) \theta_{2}^{2}+o\left(\mid\left(\theta_{1}\right.\right.$, $\left.\left.\theta_{2}\right)\left.\right|^{2}\right)=0,(47991 / 16600) \theta_{2}-(1 / 4) \theta_{1}+(25 / 83) \theta_{1} \theta_{2}-$ $\left.(13645 / 13778) \theta_{2}^{2}+o\left(\left|\left(\theta_{1}, \theta_{2}\right)\right|^{2}\right)<0\right\}$.

6. Numerical Simulations

When $\alpha=1, \lambda=1 / 4, d=1 / 10, \varepsilon=1 / 10, \mu=1 / 100$, $A=537 / 500$, and $r=55 / 8, \sigma>0$. By applying PPLANE8 and Photoshop software, the $\left(\theta_{1}, \theta_{2}\right)$-plane near the origin is divided into 4 regions by these bifurcation curves as shown in Figure 6. Fix $\theta_{1}<0$ and decrease θ_{2} from 0 ; our conclusions are summarized as follows.
(a) When $\left(\theta_{1}, \theta_{2}\right)$ lies in region I, there is no positive equilibrium, which implies that the positive orbits of (4) meet the positive S-axis in finite time, and therefore the disease disappears.
(b) There is a saddle-node point when $\left(\theta_{1}, \theta_{2}\right)$ lies on curve SN.
(c) When $\left(\theta_{1}, \theta_{2}\right)$ crosses SN into region II, two positive equilibria which are an unstable focus and a saddle appear.
(d) When the parameters lie on the curve H , there is also a saddle and an unstable focus. An unstable limit cycle appears with the parameters crossing H into III.
(e) A homoclinic cycle appears as the parameters passing III into HL through the homoclinic bifurcation.

Figure 7: When $\left(\theta_{1}, \theta_{2}\right)=(0,0)$, the unique positive equilibrium is a cusp of codimension 2.

Figure 8: When $\left(\theta_{1}, \theta_{2}\right)=(-0.1,-0.0093)$ lies in region I , there is no positive equilibrium.
(f) The homoclinic loop breaks with the parameter crossing HL into IV, and a saddle and a stable focus appear.

Furthermore, using PPLANE8, some numerical simulations of system (68) are depicted in Figures 7-10. When $\left(\theta_{1}, \theta_{2}\right)=(0,0)$, that is $\left(A_{0}, d_{0}\right)=(537 / 500,1 / 10)$, there is a unique positive equilibrium $\left(S^{*}, I^{*}\right)=(317 / 50,4)$, which is a cusp of codimension 2 (Figure 7). When $\left(\theta_{1}, \theta_{2}\right)=$ $(-0.1,-0.0093)$ lies in region I , there is no positive equilibrium (Figure 8). When $\left(\theta_{1}, \theta_{2}\right)=(-0.02,-0.001863798)$, there is a homoclinic loop (Figure 9). When $\left(\theta_{1}, \theta_{2}\right)=$ $(-0.02,-0.0020)$ lies in region IV, the homoclinic loop is broken, and there is a stable focus and a saddle (Figure 10).

Figure 9: When $\left(\theta_{1}, \theta_{2}\right)=(-0.02,-0.001863798)$, there is a homoclinic loop.

Figure 10: When $\left(\theta_{1}, \theta_{2}\right)=(-0.02,-0.0020)$ lies in region IV, there is a stable focus and a saddle.

7. Discussion

In this paper, we focus on the bifurcation analysis of an SIS epidemic model with bilinear incidence rate and saturated treatment. Generally speaking, in many epidemic models, the basic reproduction number, which is the key concept in epidemiology, can be decreased below unity to eradicate the disease. However, in our model, the basic reproduction number below 1 is not enough to eradicate the disease. According to our analysis in this paper, we demonstrate not only the global stability of the disease-free equilibrium when $R_{0}<R_{0}^{*}$ and the local asymptotic stability of the endemic equilibrium E_{2} when $R_{0}^{*}<R_{0}<1$, but also the global stability of the unique endemic equilibrium E^{*} when $R_{0}>1$. Moreover, it has been shown in Corollary 4 that backward bifurcations occur if the effect of the infected being delayed for treatment is strong. That is to say, we should get prompt treatment for patients. Through Figure 4, we can see that there is a region such that the disease will persist if the initial position lies in the region and disappear if the initial position lies outside this region. So, in order to restrain the spread
of the disease, governments should take timely measures to control the initial infected individuals in a lower level. In addition, from Theorem 8, we can see that the disease will die out if R_{0} is small enough. Therefore, from the definition of R_{0}, one knows that we can decrease the incidence rate λ and increase the cure rate r so as to eradicate the diseases or to make them controlled in a lower endemic steady state.

The stability analysis of the model equilibria enables us to completely analyze their local bifurcation behavior, such as Hopf, saddle-node, and Bogdanov-Takens bifurcation. By computing the first Lyapunov coefficient, we can determine that the Hopf bifurcation is a supercritical Hopf bifurcation or a subcritical Hopf bifurcation. We also show that, under assumptions $\left(A_{1}\right)$ and $\left(A_{2}\right)$, the model undertakes Bogdanov-Takens bifurcation; that is, there are saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation in the system. The normal norm of the Bogdanov-Takens bifurcation is derived in Section 5 which is very helpful to obtain the three kinds of bifurcation curves. By analytical techniques, A and d are chosen as bifurcation parameters and other parameters are fixed, and we easily get a clear picture about the rich dynamics behaviors of our model. Through studying the bifurcations of the SIS epidemic model, we are suggesting that, in order to eradicate the disease, more medical facilities as well as medical professionals are needed and the medical standard needs to be improved as well.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (no. 11001041, no. 10926105, no. 11101283, no. 11271065, and no. 11201360), SRFDP (no. 200802001008), and Scientific Research Innovation Project of Shanghai Municipal Education Commission (12YZ173).

References

[1] M. E. Alexander and S. M. Moghadas, "Periodicity in an epidemic model with a generalized non-linear incidence," Mathematical Biosciences, vol. 189, no. 1, pp. 75-96, 2004.
[2] M. E. Alexander and S. M. Moghadas, "Bifurcation analysis of SIRS epidemic model with generalized incidence," SIAM Journal on Applied Mathematics, vol. 65, no. 5, pp. 1794-1816, 2005.
[3] J. Arino, C. C. McCluskey, and P. van den Driessche, "Global results for an epidemic model with vaccination that exhibits backward bifurcation," SIAM Journal on Applied Mathematics, vol. 64, no. 1, pp. 260-276, 2003.
[4] W. R. Derrick and P. van den Driessche, "Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population," Discrete and Continuous Dynamical Systems B, vol. 3, no. 2, pp. 299-309, 2003.
[5] F. Brauer, "Backward bifurcations in simple vaccination models," Journal of Mathematical Analysis and Applications, vol. 298, no. 2, pp. 418-431, 2004.
[6] K. P. Hadeler and P. van den Driessche, "Backward bifurcation in epidemic control," Mathematical Biosciences, vol. 146, no. 1, pp. 15-35, 1997.
[7] Z. X. Hu, S. Liu, and H. Wang, "Backward bifurcation of an epidemic model with standard incidence rate and treatment rate," Nonlinear Analysis: Real World Applications, vol. 9, no. 5, pp. 2302-2312, 2008.
[8] J. Hui and D. M. Zhu, "Global stability and periodicity on SIS epidemic models with backward bifurcation," Computers \& Mathematics with Applications, vol. 50, no. 8-9, pp. 1271-1290, 2005.
[9] Y. Jin, W. D. Wang, and S. W. Xiao, "An SIRS model with a nonlinear incidence rate," Chaos, Solitons \& Fractals, vol. 34, no. 5, pp. 1482-1497, 2007.
[10] G. H. Li and W. D. Wang, "Bifurcation analysis of an epidemic model with nonlinear incidence," Applied Mathematics and Computation, vol. 214, no. 2, pp. 411-423, 2009.
[11] X. Z. Li, W. S. Li, and M. Ghosh, "Stability and bifurcation of an SIS epidemic model with treatment," Chaos, Solitons amper Fractals, vol. 42, no. 5, pp. 2822-2832, 2009.
[12] W. M. Liu, S. A. Levin, and Y. Iwasa, "Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models," Journal of Mathematical Biology, vol. 23, no. 2, pp. 187204, 1986.
[13] X. B. Liu and L. J. Yang, "Stability analysis of an SEIQV epidemic model with saturated incidence rate," Nonlinear Analysis: Real World Applications, vol. 13, no. 6, pp. 2671-2679, 2012.
[14] M. Martcheva and H. R. Thieme, "Progression age enhanced backward bifurcation in an epidemic model with superinfection," Journal of Mathematical Biology, vol. 46, no. 5, pp. 385-424, 2003.
[15] S. G. Ruan and W. D. Wang, "Dynamical behavior of an epidemic model with a nonlinear incidence rate," Journal of Differential Equations, vol. 188, no. 1, pp. 135-163, 2003.
[16] W. D. Wang and S. G. Ruan, "Bifurcation in an epidemic model with constant removal rate of the infectives," Journal of Mathematical Analysis and Applications, vol. 291, no. 2, pp. 775793, 2004.
[17] Y. L. Tang, D. Q. Huang, S. G. Ruan, and W. N. Zhang, "Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate," SIAM Journal on Applied Mathematics, vol. 69, no. 2, pp. 621-639, 2008.
[18] P. van den Driessche and J. Watmough, "A simple SIS epidemic model with a backward bifurcation," Journal of Mathematical Biology, vol. 40, no. 6, pp. 525-540, 2000.
[19] J. J. Wei and J. A. Cui, "Dynamics of SIS epidemic model with the standard incidence rate and saturated treatment function," International Journal of Biomathematics, vol. 5, no. 3, Article ID 1260003, 18 pages, 2012.
[20] W. D. Wang, "Backward bifurcation of an epidemic model with treatment," Mathematical Biosciences, vol. 201, no. 1-2, pp. 58-71, 2006.
[21] Z. W. Wang, "Backward bifurcation in simple SIS model," Acta Mathematicae Applicatae Sinica, vol. 25, no. 1, pp. 127-136, 2009.
[22] L. Xue and C. Scoglio, "The network level reproduction number for infectious diseases with both vertical and horizontal transmission," Mathematical Biosciences, vol. 243, no. 1, pp. 67-80, 2013.
[23] X. Zhang and X. N. Liu, "Backward bifurcation of an epidemic model with saturated treatment function," Journal of Mathematical Analysis and Applications, vol. 348, no. 1, pp. 433-443, 2008.
[24] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer, New York, NY, USA, 1996.
[25] X. Zhang and X. N. Liu, "Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment," Nonlinear Analysis: Real World Applications, vol. 10, no. 2, pp. 565-575, 2009.
[26] M. A. Safi, A. B. Gumel, and E. H. Elbasha, "Qualitative analysis of an age-structured SEIR epidemic model with treatment," Applied Mathematics and Computation, vol. 219, no. 22, pp. 10627-10642, 2013.
[27] L. H. Zhou and M. Fan, "Dynamics of an SIR epidemic model with limited medical resources revisited," Nonlinear Analysis: Real World Applications, vol. 13, no. 1, pp. 312-324, 2012.
[28] X. Y. Zhou and J. A. Cui, "Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate," Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4438-4450, 2011.
[29] D. Lacitignola, "Saturated treatments and measles resurgence episodes in South Africa: a possible linkage," Mathematical Biosciences and Engineering: MBE, vol. 10, no. 4, pp. 1135-1157, 2013.
[30] J. C. Eckalbar and W. L. Eckalbar, "Dynamics of an epidemic model with quadratic treatment," Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 320-332, 2011.
[31] F. Brauer, "Backward bifurcations in simple vaccination/treatment models," Journal of Biological Dynamics, vol. 5, no. 5, pp. 410-418, 2011.
[32] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, New York, NY, USA, 2003.
[33] R. Bogdanov, "Bifurcations of a limit cycle for a family of vector fields on the plan," Selecta Mathematica, vol. 1, pp. 373-388, 1981.
[34] R. Bogdanov, "Versal deformations of a singular point on the plan in the case of zero eigen-values," Selecta Mathematica: Sovietica, vol. 1, pp. 389-421, 1981.
[35] F. Takens, "Forced oscillations and bifurcation," in Applications of Global Analysis I, vol. 3, pp. 1-59, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 1974.
[36] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, NY, USA, 2nd edition, 1998.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

