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Novel nonstandard techniques for the computation of cohomology classes on toric varieties are
summarized. After an introduction of the basic definitions and properties of toric geometry,
we discuss a specific computational algorithm for the determination of the dimension of line-
bundle-valued cohomology groups on toric varieties. Applications to the computation of chiral
massless matter spectra in string compactifications are discussed, and using the software package
cohomCalg, its utility is highlighted on a new target space dual pair of (0, 2) heterotic string models.

1. Introduction

The computation of certain cohomology groups is a critical technical step in string model
building, relevant, for example, in determining the (chiral) zero-mode spectrum or parts of
the effective four-dimensional theory, like the Yukawa coupling. Common methods often try
to relate the computation at hand via a chain of isomorphisms back to known results in order
to avoid most of the cumbersome computations from the ground up. Spectral sequences
are the established technique to deal with such problems, but often end up to become
laborious rather quickly. Having reasonable efficient algorithms to one’s avail is therefore
a vital requirement to make progress.

Supersymmetry in four dimensions puts strong restrictions on the geometries
admissible for string compactifications. In the absence of additional background fluxes
(besides a gauge flux), this leads to the class of Calabi-Yau manifolds, where of particular
interest for N = 1 supersymmetry are the Calabi-Yau threefolds and fourfolds. Due to the
Atiyah-Singer index theorem, chirality is realized by also turning on a nontrivial gauge
background, which can be understood as the curvature of a nontrivial holomorphic vector
bundle on the manifold. The majority of known Calabi-Yau manifolds are based on toric
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geometry. In particular, they are constructed as complete intersections of hypersurfaces in
toric varieties. The vector bundle can then be described by different methods, where the three
mostly used ones are

(1) the monad construction, which naturally arises in the (0, 2) gauged linear sigma
model,

(2) the spectral cover construction, which gives stable holomorphic vector bundles
with structure group SU(n) on elliptically fibered Calabi-Yau threefolds,

(3) the construction via extensions, which is the natural counterpart of brane
recombinations.

All these three constructions have in common that they involve line bundles in one
way or the other. For instance, the monad is defined via sequences of the Whitney sums of
line bundles, whereas the n-fold spectral cover is equipped in addition with a nontrivial line
bundle on it, which via the Fourier-Mukai transform gives an SU(n) vector bundle on the
Calabi-Yau manifold. The basis starting point of every cohomology computation is therefore
the knowledge of line-bundle-valued cohomology classes on the ambient toric variety.

Using a simple yet powerful algorithm, we can compute the line-bundle-valued
cohomology dimensions hi(X;LX) = dimHi(X;LX) for any toric variety based on the
information contained in the Stanley-Reisner ideal. The Koszul complex then allows to
relate the cohomology on the toric variety to the cohomology of a hypersurface or complete
intersection. The particular form of the algorithm also allows to easily deal with finite group
actions on such geometries, that is, to consider orbifold spaces and twisted string states.

This paper is organized as follows. In Section 2 some basics of toric geometry are
introduced, including the Stanley-Reisner ideal and toric fans. Section 3 introduces the
computational algorithm for cohomology group dimensions of toric varieties that will be
used throughout this paper. Section 4 shows how a finite group action and the resulting
quotient space can be handled. In Section 5 the Koszul sequence is introduced, which
allows to relate the ambient variety’s cohomology to the cohomology of hypersurfaces and
complete intersections. Monad bundle constructions and the Euler sequence are introduced
in Section 6. In Section 7 we show an example of how to compute the data for a (2, 2) model
that is dual to a (0, 2) model. The paper closes in Section 8 with a brief outlook on potential
further applications and developments.

2. Toric Varieties

One of the most important aspects of toric geometry is the ability to understand it in purely
combinatorial terms, which is ideally suited to be handled by computers (see [1–4] for
introductions into the subject). Toric geometry is also directly related to gauged linear σ-
models (GLSMs) in physics [5]. On a more basic notion, a toric variety is a generalization of
a projective space, which consists of a set of homogeneous coordinates x1, . . . , xn as well as R
projective relations

(x1, . . . , xn) ∼
(
λ
Q

(r)
1

r x1, . . . , λ
Q

(r)
n

r xn

)
for λr ∈ C

×. (2.1)

The Q(r)
i for r = 1, . . . , R and i = 1, . . . , n are GLSM charges, that is, the Abelian U(1) charges

in the associated GLSM, and corresponding to the projective weights. In direct comparison to
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projective spaces, toric varieties can be characterized as arising due to the usage of multiple
projective relations instead of just a single one. The special case of a projective space therefore
corresponds to R = 1 in the above notation.

The homogeneous coordinates xi become N= (2, 2) chiral superfields in the GLSM
picture, and the Fayet-Iliopoulos parameters ξr of the Abelian symmetries can be interpreted
as the Kähler parameters of the geometric space. This parameter space of �ξ = (ξ1, . . . , ξR) is
then split into R-dimensional cones due to the vanishing of the D-terms associated to the
GLSM. Within each cone the D-flatness condition can be solved and the cones correspond to
the geometrical Kähler cones. Each such cone is often referred to as a geometric phase and
can be fully characterized by a set of collections of coordinates

Sρ =
{
xρ1 , xρ2 , . . . , xρ|Sρ |

}
for ρ = 1, . . . ,N (2.2)

which are not allowed to vanish simultaneously. Note that such a collection is often written
in product form; that is, the square-free monomial xρ1xρ2 · · ·xρ|Sρ | refers exactly to the same
set. All those sets form the Stanley-Reisner ideal

SR(X) = 〈S1, . . . ,SN〉, (2.3)

which can be equivalently used to uniquely specify a geometric phase. Note that the Stanley-
Reisner ideal is Alexander dual to the irrelevant ideal BΣ used in the mathematical literature.

Given the GLSM charges and the Stanley-Reisner ideal to identify the geometric phase,
the toric variety X of dimension d = n − R can be described as the coset space

X =
(Cn − Z)

(C×)R
, (2.4)

where Z is the set of removed points specified by SR(X) via

Z =
N⋃
ρ=1

{
xρ1 = xρ2 = · · · = xρ|Sρ | = 0

}
. (2.5)

This set Z can be understood as the toric generalization of the removed origin in a projective
space CP

n = (Cn+1 − {0})/C
×, as the Stanley-Reisner ideal for CP

n is just the collection of all
coordinates.

The combinatorial perspective on toric geometry mentioned at the start is formulated
in terms of toric fans, cones, and triangulations. In this language a geometric phase
corresponds to a triangulation of a certain set of lattice vectors νi that span the fan ΣX . The
GLSM charges Q(r)

i reappear in the form of R linear relations

n∑
i=1

Q
(r)
i νi = 0 for r = 1, . . . , R. (2.6)

By associating the lattice vectors νi to the homogeneous coordinates xi, it becomes obvious
that the linear relations (2.6) between the lattice vectors encode the projective equivalences
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(2.1) between the homogeneous coordinates. In the language of fans the Stanley-Reisner ideal
consists of all square-free monomials whose coordinates are not contained in any cone of the
toric fan ΣX .

3. Dimensions of Line-Bundle-Valued Cohomology Groups

Given a toric variety X and a line bundle LX , a frequent issue is to compute the LX-valued
cohomology group dimensions hi(X;LX) for i = 0, . . . ,dimX. After a couple of preliminary
observations in [6, 7], in [8] a complete novel algorithm for the determination of hi(X;LX)
was presented. This was subsequently proven in [9] and independently in [10].

The geometric input data for the computational algorithm presented below are the
GLSM chargesQ(r)

i and the Stanley-Reisner ideal generators S1, . . . ,SN . The basic idea of the
algorithm is to count the number of monomials, where the total GLSM charge is equal to the
divisor class of D, which is the divisor that specifies the line bundle LX = OX(D). The form
of those monomials is highly restricted by the Stanley-Reisner ideal, that is, the simpler the
structure of SR(X), the easier the computation.

More precisely, negative integer exponents are only admissible for those coordinates
that are contained in subsets of the Stanley-Reisner ideal generators. The most economic
way is therefore to determine in a first step the set of square-free monomials Q that arise
from unions of the coordinates in any subset of SR(X). Each Q gives a set of coordinates
with negative exponents, and to each Q there is an associated weighting factor hi(Q) that
specifies to which cohomology group’s dimension hi(X;OX(D)) the number of monomials
ND(Q) with GLSM charge D contributes. The cohomology group dimension formula can be
summarized as

dimHi(X;OX(D)) =
∑
Q

multiplicity factor︷︸︸︷
hi(Q) · ND(Q)︸ ︷︷ ︸

number of monomials

, (3.1)

where the sum ranges over all square-free monomials that can be obtained from unions of
Stanley-Reisner ideal generators. In the remainder of this section, both hi(Q) andND(Q)will
be properly defined.

3.1. Computation of Multiplicity Factors

The multiplicity factors are defined by the dimensions of an intermediate relative homology.
Let [N] := {1, . . . ,N} be a set of indices for the N square-free monomials that generate the
Stanley-Reisner ideal. Then let, for each subset

Sρ :=
{Sρ1 , . . . ,Sρk

} ⊂ {S1, . . . ,SN} (3.2)

of generators,Q(Sρ) be the square-free monomial that arises from the union of all coordinates
in each generator Sρi of the subset.

The construction of the relative complex ΓQ, from which hi(Q) is defined, goes as
follows. From the full simplex on [N] = {1, . . . ,N}, extract only those subsets ρ ⊂ [N]
with Q(Sρ) = Q; that is, one considers all possible combinations of the Stanley-Reisner ideal
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generators whose coordinates unify to the same square-free monomial Q. For some fixed
|ρ| = k, this then defines the set of (k − 1)-dimensional faces Fk−1(Q) of the complex ΓQ, that
is,

Fk(Q) :=
{
ρ ⊂ [N] :

∣∣ρ∣∣ = k + 1
Q(

Sρ

)
= Q

}
. (3.3)

Furthermore, let C
Fk(Q) be the complex vector space with basis vectors eρ for ρ ∈ Fk(Q). The

relative complex

ΓQ : 0 −→ FN−1(Q)
φN−1−→ · · · φ1−→ F0(Q)

φ0−→ F−1(Q) −→ 0, (3.4)

where F−1(Q) := {∅} is a face of dimension −1, is then specified by the chain mappings

φk :Fk(Q) −→ Fk−1(Q),

eρ 	−→
∑
s∈ρ

sign
(
s, ρ

)
eρ−{s}.

(3.5)

A basis vector eρ−{s} vanishes if ρ with the element s removed is not contained in ΓQ.
Furthermore, the signum is defined by sign(s, ρ) := (−1)	−1 when s is the 	th element of
ρ ⊂ [N] = {1, . . . ,N}when written in increasing order.

The homology group dimensions

hi(Q) := dimH|Q|−i−1
(
ΓQ

)
(3.6)

of the relabeled complex then provide the multiplicity factors that determine to which
cohomology group Hi(X;OX(D)) the monomials associated to Q contribute. It should be
emphasized that the hi(Q) depend only on the geometry (the Stanley-Reisner ideal) of the
toric variety X and not on the line bundle OX(D), that is, the multiplicity factors only have to
be computed once for each geometry.

3.2. Counting Monomials

After computing the multiplicity factors hi(Q), it remains to count the number of relevant
monomials. This second part of the algorithm depends on the GLSM charges of the
homogeneous coordinates xi and the specific line bundleOX(D). LetQ again be a square-free
monomial. In order to simplify the notation, let I = (i1, . . . , ik, . . . , in) be an index relabeling
such that the product of the first k coordinates gives Q = xi1 · · ·xik . Then one considers
monomials of the form

RQ(x1, . . . , xn) : = (xi1)
−1−a(xi2)

−1−b · · · (xik)
−1−c(xik+1)

d · · · (xin)
e

=
T(xik+1 , . . . , xin)

xi1 · · ·xik ·W(xi1 , . . . , xik)
,

(3.7)
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Table 1: Toric data for the del Pezzo-1 surface.

Vertices of the polyhedron/fan Coords. GLSM charges Divisor class
Q1 Q2

ν1 = (−1,−1) x1 1 0 H

ν2 = (1, 0) x2 1 0 H

ν3 = (0, 1) x3 1 1 H +X

ν4 = (0,−1) x4 0 1 X

Intersection form: HX −X2.
SR(dP1) = 〈x1x2, x3x4〉 = 〈S1,S2〉.

where T andW are monomials (not necessarily square-free) as well as exponents a, b, c, d, e ∈
N ∪ {0}. One obviously finds the coordinates of the square-free monomial Q in the
denominator, whereas their complements are in the numerator. Based on the particular form
of the relevant monomials define

ND(Q) := dim
{
RQ : degGLSM

(
RQ

)
= D

}
, (3.8)

which counts the number of relevant monomials that have the same GLSM degree as the
divisor D that specified the line bundle LX = OX(D).

3.3. A Step by Step Example: del Pezzo-1 Surface

In order to show the working algorithm in detail, we consider the del Pezzo-1 surface. Its
toric data is summarized in Table 1 for the reader’s convenience. The two Stanley-Reisner
ideal generators yield four possible combinations that become relevant in the computation,
namely,

Q = 1, x1x2, x3x4, x1x2x3x4. (3.9)

The computation of the multiplicity factors for those square-free monomials leads to

C0(1) = {{∅}}, C1(x1x2) = {{S1}}, C1(x3x4) = {{S2}},
C2(x1x2x3x4) = {{S1,S2}},

(3.10)

and all other spaces Ci(Q) vanishing. After computing the homology, this leads to the
following contributions of the monomials (3.7) to the cohomology groups:

H0(dP1;O(m,n)) : T(x1, x2, x3, x4),

H1(dP1;O(m,n)) :
T(x3, x4)

x1x2 ·W(x1, x2)
,

T(x1, x2)
x3x4 ·W(x3, x4)

,

H2(dP1;O(m,n)) :
1

x1x2x3x4 ·W(x1, x2, x3, x4)
.

(3.11)
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Consider computing h•(dP1;O(−1,−2)). Since all GLSM charges are positive, there is no
contribution to h0. Likewise, the denominator monomial of the h2 contribution already has
the GLSM charge (3, 2), which “overshoots” the target values and therefore also gives no
contribution. degGLSM(1/x1x2) = (−2, 0) is no good either, but degGLSM(1/x3x4) = (−1,−2)
fits perfectly, such that there is a sole contribution

1
x3x4

� h•(dP1;O(−1,−2)) = (0, 1, 0). (3.12)

All the aforementioned steps involved in the computation of the cohomology
have been conveniently implemented in a high-performance cross-platform package called
cohomCalg [11].

4. Equivariant Cohomology for Finite Group Actions

Due to the explicit form of the relevant monomials that are counted by the algorithm, one
can consider a rather simple generalization that also takes the action of finite groups into
account [12, 13]. In orientifold and orbifold settings, the internal part of the space-time is
usually specified by a discrete symmetry acting on the “upstairs” geometry. This then induces
a corresponding splitting of the cohomology groups

Hi(X) = Hi
inv(X)

⊕
Hi

non-inv(X) (4.1)

as the generating p-cycles can be either invariant or noninvariant under the symmetry. It is
also necessary to specify the induced action on the bundle defined on the upstairs geometry.

The so-called equivariant structure uplifts the action on the base geometry to the
bundle and preserves the group structure. In fact, for a generic group G, each group element
g induces an involution mapping g : X → X on the base geometry and has a corresponding
uplift φg : V → V that has to be compatible with the bundle structure. This makes the
diagram

V
φg

π

V

π g ◦ π π ◦ φg

X
g

X

(4.2)

commutative, and the G-structure V is called an equivariant structure if it preserves the
group structure, that is, if φg ◦ φh = φgh holds such that the mapping g 	→ φg is a group
homomorphism.

The choice of an equivariant structure provides the means of how the finite group acts
on the relevant monomials (3.7) counted by the algorithm. For a given line bundle OX(D),
one then has to check for all monomials whether or not they are invariant under the induced
action. Consider, for example, the bundle O(−6) on CP

2 and the Z3 action

g1 : (x1, x2, x3) 	−→
(
αx1, α

2x2, x3

)
for α := 3

√
1 = e2πi/3 (4.3)
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on the base coordinates. The same action is used for the monomials, and thus it defines the
equivariant structure. The relevant monomials for the algorithm then pick up the following
values from the involution:

1
u4
1u2u3︸ ︷︷ ︸
g1 → 1

,
1

u1u
4
2u3︸ ︷︷ ︸

g1 → 1

,
1

u1u2u
4
3︸ ︷︷ ︸

g1 → 1

,
1

u3
1u

2
2u3︸ ︷︷ ︸

g1 →α

,
1

u3
1u2u

2
3︸ ︷︷ ︸

g1 →α2

,

1
u2
1u

3
2u3︸ ︷︷ ︸

g1 →α2

,
1

u1u
3
2u

2
3︸ ︷︷ ︸

g1 →α

,
1

u2
1u2u

3
3︸ ︷︷ ︸

g1 →α

,
1

u1u
2
2u

3
3︸ ︷︷ ︸

g1 →α2

,
1

u2
1u

2
2u

2
3︸ ︷︷ ︸

g1 → 1

,

︸ ︷︷ ︸
h2(CP2; O(−6))=(4inv, 3α, 3α2 )

, (4.4)

such that h•
inv(CP

2;O(−6)) = (0, 0, 4) follows. This gives the cohomology of the quotient space
CP

2/Z3 as defined by the action in (4.3).
This powerful generalization of the algorithm allows for instance to compute the

untwisted matter spectrum in heterotic orbifold models or (parts of) the instanton zero mode
spectrum for the Euclidean D-brane instantons in Type II orientifold models (see [14] for
concrete applications).

5. The Koszul Complex

In most string theory applications, the geometries of interest are not toric varieties
by themselves, but rather defined as subspaces thereof. These are defined as complete
intersections of hypersurfaces of certain degrees. In order to relate the cohomology of the
toric variety X to the cohomology of a subspace, the Koszul sequence is used.

To make this paper self-contained and because it has been implemented in the
cohomCalg Koszul extension package, let us briefly describe how this works. Let D ⊂ X be an
irreducible hypersurface, and let 0/=σ ∈ H0(X;O(D)) be a global nonzero section of OX(D),
such that Z(σ) ∼= D. This induces a mapping OX → OX(D) and its dual OX(−D) ↪→ OX , the
latter of which can be shown to be injective. Given an effective divisor

D :=
∑
i

aiHi ⊂ X, (5.1)

where all ai ≥ 0, there is a short exact sequence

0 −→ OX(−D) ↪→ OX � OD −→ 0, (5.2)

called the Koszul sequence. HereOD is the quotient of the sheafOX of holomorphic functions
on X by all holomorphic functions vanishing at least to order ai along the irreducible
hypersurface Hi ⊂ X. This allows to treat OD as the structure sheaf on the divisor D, which
effectively identifies the sheaf cohomology Hi(X;OD) with Hi(D;OD). A proper definition
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of the involved mappings, which become quite laborious to work out explicitly, can be found
in [15]. In addition of the plain Koszul sequence (5.2), there is also a twisted variant

0 −→ OX(T −D) ↪→ OX(T) � OD(T) −→ 0 (5.3)

that is obtained by tensoring (5.2) with the line bundle OX(T). The induced long exact
cohomology sequence

0 −→ H0(X;OX(T −D)) −→ H0(X;OX(T)) −→ H0(D;OD(T))

−→ H1(X;OX(T −D)) −→ H1(X;OX(T)) −→ H1(D;OD(T))

−→ H2(X;OX(T −D)) −→ H2(X;OX(T)) −→ H2(D;OD(T)) −→ · · ·

(5.4)

then allows to relate the cohomology of the toric variety X directly to the cohomology
of the hypersurface.

Given a more generic case of several (mutually transverse) hypersurfaces {S1, . . . , Sl},
one can compute the cohomology on the complete intersection via the generalized Koszul
sequence

0 −→ OX

⎛
⎝−

l∑
j=1

Sj +D

⎞
⎠ −→ · · · −→

⊕
i1<i2

OX(−Si1 − Si2 +D)

−→
⊕
i1

OX(−Si1 +D) −→ OX(D) −→ OS(D) −→ 0.

(5.5)

In contrast to the hypersurface sequence, this is no longer a short exact sequence and hence
does not give rise to a long exact sequence in cohomology. One way to proceed is via
the technique of spectral sequences, which inductively allows one to compute the wanted
cohomology classes on the complete intersection. However, for our implementation, we
decided to take a different approach. We break down this long sequence (5.5) into several
short exact sequences using several auxiliary sheaves Ik:

0 −→ OX

⎛
⎝−

l∑
j=1

Sj +D

⎞
⎠ −→

⊕
i1<···<il−1

OX

⎛
⎝−

l−1∑
j=1

Sij +D

⎞
⎠ � I1 −→ 0,

0 −→ I1 ↪→
⊕

i1<···<il−2
OX

⎛
⎝−

l−2∑
j=1

Sij +D

⎞
⎠ � I2 −→ 0,

...

0 −→ Il−2 ↪→
⊕
i1

OX(−Si1 +D) � Il−1 −→ 0,

0 −→ Il−1 ↪→ OX(D) � OS(D) −→ 0.

(5.6)
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The individually induced long exact sequences of cohomology can then be used for the step-
wise computation of H•(S;OS(D)), which is the cohomology on the complete intersection
S =

⋂l
i=1 Si.

6. Monad Construction of Vector Bundles

Before we come to a concrete application in heterotic string model building, let us present
the construction of holomorphic vector bundles via the so-called monad. Such a structure
directly arises in the (0, 2) GLSM description and can be regarded as a generalization of the
tangent bundle of a complete intersection in a toric variety.

Given the GLSM charges defined in (2.1), the tangent bundle can be defined as the
quotient TS = Ker(f)/ Im(g) of the sequence

0 −→

one Os for each
Picard generator︷︸︸︷

O⊕R
S

g
↪→

n⊕
i=1

OS(Qi)

︸ ︷︷ ︸
one bundle with the GLSM
charges for each coordinate

f
�

one bundle with the degree
for each hypersurface︷ ︸︸ ︷

l⊕
j=1

OS(Sj) −→ 0, (6.1)

where the individual line bundles are restricted to the complete intersection S =
⋂l

i=1 Si.
The rank of the resulting vector bundle is given by rk(T) = n − l − R. Using the methods
presented so far, it is clear that they allow to compute the dimensions of the cohomology
classes hi(S; TS), where the initial input data for the set of long exact sequences are the line-
bundle-valued cohomology classes on the ambient toric variety.

The (0, 2) GLSM generalizes this in the sense that the bundle the left-moving world-
sheet fermions couple to is not any longer the tangent bundle of the Calabi-Yau, but a more
general holomorphic (stable) vector bundle V , which is analogously defined via a sequence
of the Whitney sums of line bundles

0 −→ O⊕RV

S

g
↪→

δ⊕
a=1

OS(Na)
g
�

λ⊕
l=1

OS(Ml) −→ 0. (6.2)

The rank is rk(V ) = δ−λ−RV . The chargesNa andMl have to satisfy the anomaly cancellation
conditions

∑
a

N
(α)
a =

∑
l

M
(α)
l

, ∀α,

∑
l

M
(α)
l

M
(β)
l

−
∑
a

N
(α)
a N

(β)
a =

∑
j

S
(α)
j S

(β)
j −

∑
i

Q
(α)
i Q

(β)
i , ∀α, β,

(6.3)

where 1 ≤ α, β ≤ R denote the components corresponding to the U(1) actions in the
GLSM. The most delicate issue for such constructions is the proof of μ-stability. However,
it should be clear that besides that the monad construction provides a large set of heterotic
(0, 2) backgrounds and that the methods described so far are indeed taylor-made for the
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Table 2: Correlation between zero modes in representations of the GUT groupH.

Number of zero modes in reps. of H 1 h1
S(V ) h1

S(V
∗) h1

S(Λ
2V ) h1

S(Λ
2V ∗) h1

S(V ⊗V ∗)

E8 248
↓ ↓

SU(3) × E6 (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)
SU(4) × SO(10) (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)
SU(5) × SU(5) (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5) ⊕ (24, 1)

determination of the zero-mode spectrum, which is given by the dimensions of vector bundle
valued cohomology classes hi(S;ΛkV ).

7. A (2, 2) Model Dual to a (0, 2) Model

Now let us show all this for concrete heterotic (0, 2) models, for which we first recall a
couple of issues. The theory is naturally equipped with an E8 × E8 gauge theory. One of
these E8’s may be taken to be invisible to the real world, and hence only one E8 remains. The
holomorphic vector bundle now is endowed with a certain structure group G which breaks
this E8 down to some GUT group. The remaining GUT group is then simply the commutant
of G in E8. Depending on what kind of GUT group we are interested in, we may choose the
structure group G to be either SU(3), SU(4), or SU(5) breaking E8 down to E6, SO(10) or
SU(5), respectively.

In order to obtain the number of zero modes in different representations of the GUT
group, we have to calculate the cohomology classes of bundles involving the holomorphic
vector bundle [16]. The precise correlation of vector bundle cohomology and zero modes
for all three GUT groups are given in Table 2 (for a nice review on the particle spectrum of
heterotic theories, see, i.e., [17]).

The moduli appearing in such a framework are given by possible deformations of the
Calabi-Yau manifold, which are counted by the Hodge numbers

h2,1(S), h1,1(S) (7.1)

and by possible deformations of the bundle, that is, the bundle moduli, which are counted by
the dimension of the cohomology of the endomorphism bundle End(V ) of V . Furthermore
one can show that

H1(S; End(V )) ∼= H1
(
S;V ∗ ⊗V

)
, (7.2)

which simplifies its determination. In case of the standard embedding, the vector bundle
is simply the tangent bundle and hence has SU(3) structure and gauge group E6. Many
vector bundles can be constructed using monads, by defining the vector bundle to be
the cohomology of the complex (6.2). Using only this complex, it is possible to construct
bundles with the structure groups shown in Table 2, and hence computing all these
cohomologies simply boils down to the computation of line bundle cohomology on the
complete intersection. This on the other hand can be related, using the Koszul sequence (5.5),
to the cohomology of line bundles on the ambient toric variety.
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In the following we give an example of a pair of heterotic models which are related by
the so-called target space duality [7, 18, 19] and were derived in [20]. The first of those will
be a (2, 2) model (Ma,Va) = (Ma, TMa) while the second one, referred to as (Mb,Vb), is of
type (0, 2) equipped with an SU(3)-bundle which is assumed to be stable.

Let us start with an example in which we can already see most of the structure but
which is not too involved. Consider

V1,1,1,1,2,2,2[3, 4, 3] � P
6
1,1,1,1,2,2,2[3, 4, 3]. (7.3)

Since this configuration is singular we have to resolve it by introducing a new coordinate.
This yields the smooth configuration shown in Table 3, leading to the following monad for
the tangent bundle:

0 −→ O⊕2
Ma

OMa
0, 1 ⊕4 ⊕ OMa

1, 2 ⊕3 ⊕ OMa
1, 0

OMa 1, 3 ⊕2 ⊕ OMa 2, 4 −→ 0,

(7.4)

where the Koszul sequence (5.3) has to be applied as well. Using cohomCalg Koszul extension,
we can obtain the number of zero modes of the chiral spectrum in this model as well as the
dimension of the moduli space:

h•
Ma

(Va) = (0, 68, 2, 0),

h1,1
Ma

+ h2,1
Ma

+ h1
Ma

(End(Va)) = 2 + 68 + 140 = 210,
(7.5)

where the reader should keep in mind that in this case Va = TMa is just the tangent bundle.
The dual (0, 2) model geometry can then be determined to be the data in Table 4, and its
monad is specified by the sequence

0 −→ O⊕2
Mb

OMb 0, 0, 1 ⊕4 ⊕ OMb 0, 1, 2 ⊕ OMb 1, 0, 0 ⊕ OMb 0, 2, 4 ⊕ OMb 0, 1, 0

OMb 0, 1, 3 ⊕2 ⊕ OMb 1, 2, 4 −→ 0.

(7.6)

This configuration satisfies conditions (6.3), and we obtain the following topological data:

h•
Mb

(Vb) = (0, 68, 2, 0),

h1,1
Mb

+ h2,1
Mb

+ h1
Mb

(End(Vb)) = 3 + 51 + 156 = 210.
(7.7)



Advances in High Energy Physics 13

Table 3: Toric data for the smooth (2, 2) model 3-fold geometryMa.

Coordinate GLSM charges Hypers. degrees
0 0 0 0 1 1 1 1 1 1 2
1 1 1 1 2 2 2 0 3 3 4

Table 4: Toric data for the dual (0, 2) model 3-fold geometryMb.

Coordinate GLSM charges Hypersurf. degrees
0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 1 1 1 1
1 1 1 1 2 2 2 0 0 0 3 3 2 2

Comparing to the data (7.5)we can see that the number of zero modes in the chiral spectrum
does not change, and even though the individual Hodge numbers as well as their sum are
both different, the dimension of the full moduli space stays the same.

This is a manifestation of a so far only very poorly understood perturbative (in gs)
target space duality in the configuration space of heterotic string compactifications withN =
1 supersymmetry in four dimensions.

8. Outlook

So far most implementations of computational methods in string model building have been
based on toric geometry [21] and in particular on the combinatorial formulas of Batyrev and
Borisov [22–24]. Of course there are also general software tools for algebraic geometry like
[25–27]. Clearly, these are very powerful but also have their limitations. First, they only apply
in the (2, 2) case, where the vector bundle is identified with the tangent bundle. Second, for
complete intersections the combinatorial formulas hold only for the so-called nef-partitions
which ensure that the corresponding polytopes representing the space are reflexive.

The computational tool reviewed in this paper can also be applied to situations where
other packages fail. As explained, the powerful algorithm for the determination of the
dimensions of line-bundle-valued cohomology classes is taylor made for dealing also with
general complete intersection and for (0, 2) models, where the vector bundle is defined via
line bundles, for example, the monad construction or the spectral cover construction.

Of course, also the algorithm implementation cohomCalg has its limitations. First, in
situations where the number of the Picard generators (projective relations, reflected by h1,1)
becomes large (about the order of ten), the computations become too involved and the
program too time consuming. A second drawback is the exponential growth of the computing
time with the number of the Stanley-Reisner ideal generators, which at the moment takes
several hours for about 40 generators. Third, if there are not enough zeros in the many
intermediate long exact sequences, the result is not unique and consequently one has to
determine the kernel image of maps by hand.

Note that there is also the Macaulay 2 package [3]which can be used as an alternative
to the algorithm presented herein. Preliminary testing indicates that it seems to be able
to handle geometries of a high Picard rank and huge numbers of Stanley-Reisner ideal
generators, but for simple geometries, cohomCalg appears to be faster. Further study is
necessary to fully evaluate strengths and weaknesses for the two algorithms implemented
in [28] and the algorithm described in Section 3. Also see [29, prop. 4.1].
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