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Computer viruses remain a significant threat to computer networks. In this paper, the incorporation of new computers to the
network and the removing of old computers from the network are considered. Meanwhile, the computers are equipped with
antivirus software on the computer network. The computer virus model is established. Through the analysis of the model, disease-
free and endemic equilibriumpoints are calculated.The stability conditions of the equilibria are derived. To illustrate our theoretical
analysis, some numerical simulations are also included. The results provide a theoretical basis to control the spread of computer
virus.

1. Introduction

With the rapid development of computer, communication,
and network technology, network information system has
become an important way of the development of countries
and industries, amongst others. Information security has
become one of the most important and challenging issues
faced in the age of information sharing. The computer virus
is one common information security threat.

Computer virus is not only destructive, but also highly
contagious. Once the virus is copied or generates variety,
its speed is difficult to be controlled. Infectivity is the
basic characteristic of the virus. In biology, the virus can
diffuse from one organism to another. Cohen, Kephart and
White pointed out that the spread mechanisms of computer
viruses and biological viruses have many similarities [1, 2].
Under appropriate conditions, biological viruses canmultiply
quickly, and the infected organisms exhibit symptoms or
even die. Similarly, the computer virus can also spread to
uninfected computers from the infected computer through
many kinds of ways. In some cases, the infected computers
do not work and even get paralysed. Unlike biological
viruses, the computer virus is a software program designed to
replicate itself and spread to other machines. Computer virus
enters the computer and gets executed; it will search for other
programs or storagemedia in line with the conditions of their

infection and target and then insert the code itself, achieving
the purpose of self-reproduction. As long as a computer is
infected (if not promptly treated), the viruswill spread rapidly
on this computer, in which a large number of files (usually an
executable file) will be infected. The infected file has become
a new source of infection and then will exchange data with
other machines or over the network exposure; the virus will
continue to be contagious. A computer virus can enter your
computer in any number of ways, such as via mobile hard
disk, via an email attachment, during file downloads from the
Internet, or even upon a visit to a contaminated web site. By
the time you find the virus that infected the computer, the
mobile hard disk which is often used on this computer has
been infected with the virus. Other computers connected to
the machine network might be infected with the virus. The
network has no permanent immunity to the computer virus.
Therefore, there is always computer virus.

Kephart et al. [2, 3] study the spread of computer virus
using the biological virus model; they mainly focus on the
influence of network topology on the spread of computer
virus. In the homogeneousmixing nodes and only susceptible
node input cases, Mishra et al. [4, 5] establish the mathe-
matical model of Internet spread of computer virus. They
analyze the propagation law of virus using threshold theory
of infectious disease dynamics and predict the development
trend of computer virus. Piqueira et al. [6] study the effects
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of equipping antivirus software on the virus in computer
network. They prove the stability of the disease-free equilib-
rium and endemic equilibrium without incorporating new
computers and removing old computers. For more studies on
virus in computer network, see [7–13] and so on.

In this paper, the new computers are incorporated to the
network, and the old computers are removed from the com-
puter network. Meanwhile, the computers are equipped with
antivirus software on the computer network. The remainder
of this paper presents the model and results. In Section 2,
the mathematical model on computer virus is described,
and in Section 3 we obtain the equilibriums. In Section 4,
the analysis of this model is derived. Numerical simulations
supporting the theoretical analysis are given in Section 5.The
paper ends with a conclusion and discussion in Section 6.

2. The Dynamic Model

The model proposed here is based on the compartmental
SAIR model [6–8], including an antidotal population com-
partment (𝐴) representing nodes of the network equipped
with fully effective antivirus programs, a susceptible compart-
ment (𝑆), an infective compartment (𝐼), and a temporarily
immune compartment (𝑅). Connections between the com-
partments represent operational parameters of the network
and their control can be used as a strategy to maintain
the reliability of the whole system, even in the presence of
infections (see Figure 1).

The total population 𝑁 is divided into four groups. 𝑆(𝑡)
denote noninfected computers subjected to possible infec-
tion. 𝐼(𝑡) denote infected computers. 𝑅(𝑡) denote removed
computers due to infection or not. 𝐴(𝑡) denote noninfected
computers equipped with antivirus.

The SAIR model for computer viruses propagation was
proposed and can be described by

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝐶 − 𝛼

𝑆𝐴
𝑆𝐴 − 𝛽𝑆𝐼 − 𝜇𝑆 + 𝜎𝑅,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛼

𝐼𝐴
𝐼𝐴 − 𝛿𝐼 − 𝜇𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛿𝐼 − 𝜎𝑅 − 𝜇𝑅,

𝑑𝐴 (𝑡)

𝑑𝑡
= 𝛼
𝑆𝐴
𝑆𝐴 + 𝛼

𝐼𝐴
𝐼𝐴 − 𝜇𝐴,

(1)

where 𝐶 is influx rate, representing the incorporation of new
computers to the network; 𝛽 is infection rate of susceptible
computers; 𝜇 is proportion coefficient for the mortality rate,
not due to the virus; 𝛿 is removal rate of infected computers;
𝜎 is recovering rate of removed computers, with an operator
intervention; 𝛼𝑆𝐴 is conversion of susceptible computers
into antidotal ones, occurring when susceptible computers
establish effective communication with antidotal ones and
the antidotal one installs the antivirus in the susceptible ones;
𝛼
𝐼𝐴

represents infected computers that can be fixed by using
antivirus programs being converted into antidotal ones.
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Figure 1: Transfer diagram of the model.

Let𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝐴; then 𝑑𝑁(𝑡)/𝑑𝑡 = 𝐶 − 𝜇𝑁. Let

Ω

= {(𝑆, 𝐼, 𝑅, 𝐴) : 𝑆, 𝐼, 𝑅, 𝐴 ≤ 0, 𝑆 + 𝐼 + 𝑅 + 𝐴 ≤
𝐶

𝜇
} .

(2)

Then, it is clear that Ω is a positive invariant set. Hence, we
will focus our attention only on the regionΩ.

But [6, 7] think the influx rate is considered to be 𝐶 = 0,
𝜇 = 0. In fact, every day new computers can be incorporated
to the network or old computers can be removed from the
network. Therefore, they can not be ignored. In this paper,
we analyse completely dynamical behavior of the spread
of the virus in computer network with incorporating new
computers and removing old computers.

3. The Disease-Free and Endemic Equilibrium

When 𝐼 = 0, if 𝐴 = 0, the disease-free equilibrium of system
(1) is 𝑃

1
= (𝑆
1
, 𝐼
1
, 𝑅
1
, 𝐴
1
) = (𝐶/𝜇, 0, 0, 0). If 𝐴 ̸= 0, we obtain

the threshold 𝑅
01
= 𝐶𝛼

𝑆𝐴
/𝜇
2. When 𝑅

01
> 1, the disease-

free equilibrium of system (1) is 𝑃
2
= (𝑆
2
, 𝐼
2
, 𝑅
2
, 𝐴
2
) =

(𝜇/𝛼𝑆𝐴, 0, 0, 𝐶/𝜇 − 𝜇/𝛼𝑆𝐴).
In the following, we compute the positive equilibrium;

namely, 𝐼 ̸= 0.
According to the third equation of system (1), we have

𝑅 =
𝛿

𝜎 + 𝜇
𝐼. (3)

When𝐴 = 0, using the second equation of system (1), we have

𝑆 =
𝛿 + 𝜇

𝛽
. (4)

According to the first equation of system (1), we obtain

𝐼 =
(𝛽𝐶 − 𝜇 (𝛿 + 𝜇)) (𝜎 + 𝜇)

𝛽𝜇 (𝜎 + 𝛿 + 𝜇)
. (5)
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Therefore, when the threshold 𝑅
02
= 𝛽𝐶/𝜇(𝛿 + 𝜇) > 1, we

have the positive equilibrium

𝑃
3
= (𝑆
3
, 𝐼
3
, 𝑅
3
, 𝐴
3
)

= (
𝛿 + 𝜇

𝛽
,
(𝑅02 − 1) (𝛿 + 𝜇) (𝜎 + 𝜇)

𝛽 (𝜎 + 𝛿 + 𝜇)
,
𝛿

𝜎 + 𝜇
𝐼3, 0) .

(6)

When 𝐴 ̸= 0, taking advantage of the second equation of
system (1), we have

𝐴 =
𝛽𝑆 − (𝛿 + 𝜇)

𝛼
𝐼𝐴

. (7)

According to the fourth equation of system (1), we have

𝐼 =
𝜇 − 𝛼
𝑆𝐴𝑆

𝛼
𝐼𝐴

. (8)

Substituting (7) and (8) into the first equation of system (1),
we have

𝐶 − 𝛼
𝑆𝐴
𝑆
𝛽𝑆 − (𝛿 + 𝜇)

𝛼
𝐼𝐴

− 𝛽𝑆
𝜇 − 𝛼
𝑆𝐴𝑆

𝛼
𝐼𝐴

− 𝜇𝑆

+
𝜎𝛿

𝜎 + 𝜇

𝜇 − 𝛼𝑆𝐴𝑆

𝛼
𝐼𝐴

= 0.

(9)

Namely,

[𝛽𝜇 + 𝛼
𝐼𝐴𝜇 +
𝜎𝛿𝛼𝑆𝐴

𝜎 + 𝜇
− (𝛿 + 𝜇) 𝛼𝑆𝐴] 𝑆

= 𝐶𝛼𝐼𝐴 +
𝜎𝛿𝜇

𝜎 + 𝜇
.

(10)

Hence,

𝑆 =
𝐶𝛼
𝐼𝐴
+ 𝜎𝛿𝜇/ (𝜎 + 𝜇)

𝛽𝜇 + 𝛼
𝐼𝐴
𝜇 + 𝜎𝛿𝛼

𝑆𝐴
/ (𝜎 + 𝜇) − (𝛿 + 𝜇) 𝛼

𝑆𝐴

. (11)

In order to make 𝑆 > 0, it must satisfy the following
conditions:

𝛽𝜇 + 𝛼
𝐼𝐴
𝜇 +
𝜎𝛿𝛼
𝑆𝐴

𝜎 + 𝜇
− (𝛿 + 𝜇) 𝛼𝑆𝐴 > 0. (12)

Namely,

𝑅
03
=
𝛽𝜇 + 𝛼

𝐼𝐴
𝜇 + 𝜎𝛿𝛼

𝑆𝐴
/ (𝜎 + 𝜇)

(𝛿 + 𝜇) 𝛼
𝑆𝐴

> 1. (13)

Therefore, if the threshold 𝑅
03
> 1, we obtain

𝑆
4
=
𝐶𝛼
𝐼𝐴
+ 𝜎𝛿𝜇/ (𝜎 + 𝜇)

(𝛿 + 𝜇) 𝛼
𝑆𝐴
(𝑅
03
− 1)
,

𝐼
4
=
𝜇 − 𝛼
𝑆𝐴𝑆4

𝛼𝐼𝐴

,

𝐴
4
=
𝛽𝑆
4
− 𝛿 − 𝜇

𝛼
𝐼𝐴

.

(14)

In order to make 𝐼
4
, 𝐴
4
> 0, it must satisfy

𝑅
03
> 1 +
𝐶𝛼
𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇

𝜇 (𝜎 + 𝜇) (𝛿 + 𝜇)
,

𝑅
03
< 1 +

𝛽𝜇

(𝛿 + 𝜇) 𝛼
𝑆𝐴

𝐶𝛼
𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇

𝜇 (𝜎 + 𝜇) (𝛿 + 𝜇)
.

(15)

When 1 + (𝐶𝛼
𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇) < 𝑅

03
<

1 + (𝛽𝜇/(𝛿 + 𝜇)𝛼
𝑆𝐴
)((𝐶𝛼

𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇))

(namely, the threshold 𝑅
04
= 𝛽𝜇/(𝛿+𝜇)𝛼

𝑆𝐴
> 1), we have the

positive equilibrium

𝑃4 = (𝑆4, 𝐼4, 𝑅4, 𝐴4)

= (
𝐶𝛼
𝐼𝐴
+ 𝜎𝛿𝜇/ (𝜎 + 𝜇)

(𝛿 + 𝜇) 𝛼
𝑆𝐴
(𝑅
03
− 1)
,
𝜇 − 𝛼
𝑆𝐴
𝑆
4

𝛼𝐼𝐴

,
𝛿

𝜎 + 𝜇

⋅ 𝐼
4
,
𝛽𝑆
4 − 𝛿 − 𝜇

𝛼
𝐼𝐴

) .

(16)

4. Stability of Equilibrium

4.1. Stability of the Disease-Free Equilibrium. The Jacobin
matrix of system (1) at the disease-free equilibrium 𝑃1 is

𝐽 (𝑃
1
)

=

(
(
(
(

(

−𝜇 −
𝛽𝐶

𝜇
𝜎 −

𝐶𝛼𝑆𝐴

𝜇

0
𝛽𝐶

𝜇
− 𝛿 − 𝜇 0 0

0 𝛿 − (𝜎 + 𝜇) 0

0 0 0
𝐶𝛼
𝑆𝐴

𝜇
− 𝜇

)
)
)
)

)

.

(17)

The characteristic equation of 𝐽(𝑃
1
) is given by

(𝜆 + 𝜇) (𝜆 + 𝑙
1) (𝜆 + 𝜎 + 𝜇) (𝜆 + 𝑙2) = 0, (18)

where 𝑙
1
= −𝛽𝐶/𝜇 + 𝛿 + 𝜇 and 𝑙

2
= −𝐶𝛼

𝑆𝐴
/𝜇 + 𝜇. Therefore,

we have 𝑙
1
> 0 if and only if𝑅

02
= 𝛽𝐶/𝜇(𝛿+𝜇) < 1, and 𝑙

2
> 0

if and only if 𝑅
01 = 𝐶𝛼𝑆𝐴/𝜇

2
< 1. It follows from the Routh-

Hurwitz criterion that the eigenvalues have negative real parts
if and only if 𝑅

01
< 1 and 𝑅

02
< 1. Hence, the disease-free

equilibrium 𝑃
1
of model (1) is locally asymptotically stable if

𝑅
01
< 1 and 𝑅

02
< 1 and unstable if 𝑅

01
> 1 or 𝑅

02
> 1.

If𝑅
01
> 1, the disease-free equilibrium𝑃

1
is unstable, and

system (1) exhibits the other disease-free equilibrium 𝑃
2
.
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If𝑅
02
> 1, the disease-free equilibrium𝑃

2
is unstable, and

system (1) exhibits the positive equilibrium 𝑃
3
.

The Jacobin matrix of system (1) at the disease-free
equilibrium 𝑃

2
is

𝐽 (𝑃
2
) = (

−𝜇 − 𝛼
𝑆𝐴
𝐴
2

−𝛽𝑆
2

𝜎 −𝛼
𝑆𝐴
𝑆
2

0 𝛽𝑆2 − 𝛼𝐼𝐴𝐴2 − 𝛿 − 𝜇 0 0

0 𝛿 − (𝜎 + 𝜇) 0

𝛼
𝑆𝐴
𝐴
2

𝛼
𝐼𝐴
𝐴
2

0 𝛼
𝑆𝐴
𝑆
2
− 𝜇

). (19)

Since 𝛼
𝑆𝐴
𝑆
2
− 𝜇 = 0, the characteristic equation of 𝐽(𝑃

2
) is

given by

[𝜆 + (𝜎 + 𝜇)] [𝜆 − (𝛽𝑆
2
− 𝛼
𝐼𝐴
𝐴
2
− 𝛿 − 𝜇)]

⋅ [𝜆
2
+ (𝜇 + 𝛼

𝑆𝐴
𝑆
2
) 𝜆 + 𝜇𝛼

𝑆𝐴
𝑆
2
] = 0.

(20)

By calculating, we obtain that the characteristic equation
has the four eigenvalues: −(𝜎 + 𝜇), 𝛽𝑆2 − 𝛼𝐼𝐴𝐴2 − 𝛿 −
𝜇,−𝜇, and−𝛼𝑆𝐴𝐴2. When 𝑅01 > 1, −𝛼𝑆𝐴𝐴2 < 0. We have
𝛽𝑆2 − 𝛼𝐼𝐴𝐴2 − 𝛿 − 𝜇 < 0 if and only if 𝑅05 = (𝛽 +
𝛼
𝐼𝐴
)𝜇
2
/(𝐶𝛼
𝑆𝐴
𝛼
𝐼𝐴
+ 𝛼
𝑆𝐴
(𝛿 + 𝜇)) < 1. Hence, the disease-free

equilibrium 𝑃
2
of model (1) is locally asymptotically stable if

𝑅
01
> 1 and𝑅

05
< 1.Thedisease-free equilibrium𝑃

2
ofmodel

(1) is unstable if 𝑅
01
> 1 and 𝑅

05
> 1.

Theorem 1. (1) If 𝑅
01
< 1 and 𝑅

02
< 1, the disease-free

equilibrium 𝑃
1
of system (1) is locally asymptotically stable. If

𝑅
01
> 1 or 𝑅

02
> 1, the disease-free equilibrium 𝑃

1
of system

(1) is unstable.
(2) If 𝑅

01
> 1, the disease-free equilibrium 𝑃

1
is unstable,

and system (1) exhibits the other disease-free equilibrium 𝑃
2
.

(3) If 𝑅02 > 1, the disease-free equilibrium 𝑃1 is unstable,
and system (1) exhibits the positive equilibrium 𝑃3.

(4) If 𝑅01 > 1 and 𝑅05 < 1, the disease-free equilibrium
𝑃2 is locally asymptotically stable. If 𝑅05 > 1, the disease-free
equilibrium 𝑃2 is unstable.

4.2. Stability of the Endemic Equilibrium. In the following, we
study the stability of the endemic equilibriums.

The Jacobin matrix of system (1) at the endemic equilib-
rium 𝑃3 is

𝐽 (𝑃
3
)

= (

−𝛽𝐼
3
− 𝜇 −𝛽𝑆

3
𝜎 −𝛼

𝑆𝐴
𝑆
3

𝛽𝐼3 𝛽𝑆3 − 𝛿 − 𝜇 0 −𝛼𝐼𝐴𝐼3

0 𝛿 − (𝜎 + 𝜇) 0

0 0 0 𝛼
𝑆𝐴
𝑆
3
+ 𝛼
𝐼𝐴
𝐼
3
− 𝜇

).

(21)

Since 𝛽𝑆
3 − 𝛿 − 𝜇 = 0, the characteristic equation of 𝐽(𝑃3) is

given by

(𝜆 − (𝛼
𝑆𝐴
𝑆
3
+ 𝛼
𝐼𝐴
𝐼
3
− 𝜇)) 𝐹 (𝜆) = 0, (22)

where

𝐹 (𝜆) = 𝜆
3
+ 𝑎1𝜆
2
+ 𝑎2𝜆 + 𝑎3,

𝑎
1
= 𝛽𝐼
3
+ 𝜇 + 𝜎 + 𝜇 > 0,

𝑎2 = (𝛽𝐼3 + 𝜇) (𝜎 + 𝜇) + 𝛽
2
𝑆3𝐼3 > 0,

𝑎
3
= 𝛽
2
𝑆
3
𝐼
3
(𝜎 + 𝜇) − 𝛽𝜎𝛿𝐼

3

= 𝛽𝐼
3
[(𝛿 + 𝜇) (𝜎 + 𝜇) − 𝛿𝜎] > 0.

(23)

It is easy to calculate 𝑎
1
𝑎
2
− 𝑎
3
> 0. Hence, the eigenvalues of

𝐹(𝜆) = 0 have negative real parts.
Therefore, if the eigenvalues of the characteristic equation

in𝑃
3
want to have negative real parts, only 𝛼

𝑆𝐴
𝑆
3
+𝛼
𝐼𝐴
𝐼
3
−𝜇 <

0. Namely,

𝑅02

< 1

+
𝛼𝑆𝐴 (𝜎 + 𝛿 + 𝜇) (𝛿 + 𝜇) (𝛽𝜇/𝛼𝑆𝐴 (𝛿 + 𝜇) − 1)

𝛼𝐼𝐴 (𝛿 + 𝜇) (𝜎 + 𝜇)

= 𝑅07.

(24)

According to Routh-Hurwitz criterion, the epidemic
equilibrium𝑃

3
is locally asymptotically stable if 1 < 𝑅

02
< 𝑅
07

and unstable if 𝑅
02
> 𝑅
07
.

System (1) has the following limiting system:

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽(
𝐶

𝜇
− 𝐼 − 𝑅 − 𝐴) 𝐼 − 𝛼𝐼𝐴𝐴𝐼 − 𝛿𝐼 − 𝜇𝐼,

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛿𝐼 − 𝜎𝑅 − 𝜇𝑅,

𝑑𝐴 (𝑡)

𝑑𝑡
= 𝛼
𝑆𝐴
(
𝐶

𝜇
− 𝐼 − 𝑅 − 𝐴)𝐴 + 𝛼

𝐼𝐴
𝐴𝐼 − 𝜇𝐴.

(25)

In the following, we prove the stability of the endemic
equilibrium 𝑃

4
by the limit system. The Jacobin matrix of

system (25) at the endemic equilibrium 𝑃4 is
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𝐽 (𝑃
4
) = (

𝛽𝑆
4
− 𝛽𝐼
4
− 𝛼
𝐼𝐴
𝐴
4
− 𝜇 − 𝛿 −𝛽𝐼

4
−𝛽𝐼
4
− 𝛼
𝐼𝐴
𝐼
4

𝛿 − (𝜎 + 𝜇) 0

−𝛼
𝑆𝐴
𝐴
4
+ 𝛼
𝐼𝐴
𝐴
4

−𝛼
𝑆𝐴
𝐴
4
𝛼
𝑆𝐴
𝑆
4
− 𝛼
𝑆𝐴
𝐴
4
+ 𝛼
𝐼𝐴
𝐼
4
− 𝜇

) . (26)

Because 𝛽𝑆4 − 𝛼𝐼𝐴𝐴4 − 𝜇 − 𝛿 = 0, 𝛼𝑆𝐴𝑆4 + 𝛼𝐼𝐴𝐼4 − 𝜇 = 0, the
above matrix becomes

𝐽 (𝑃4)

= (

−𝛽𝐼
4

−𝛽𝐼
4
−𝛽𝐼
4
− 𝛼
𝐼𝐴
𝐼
4

𝛿 − (𝜎 + 𝜇) 0

−𝛼
𝑆𝐴
𝐴
4
+ 𝛼
𝐼𝐴
𝐴
4
−𝛼
𝑆𝐴
𝐴
4
−𝛼
𝑆𝐴
𝐴
4

).

(27)

The characteristic equation of 𝐽(𝑃
4
) is given by

𝜆
3
+ 𝑏
1
𝜆
2
+ 𝑏
2
𝜆 + 𝑏
3
= 0, (28)

where

𝑏
1
= 𝛽𝐼
4
+ 𝜎 + 𝜇 + 𝛼

𝑆𝐴
𝐴
4
> 0,

𝑏
2
= 𝛼
𝑆𝐴
𝛽𝐼
4
𝐴
4
+ 𝛼
𝑆𝐴
𝐴
4
(𝜎 + 𝜇) + 𝛽𝐼

4
(𝜎 + 𝜇)

− (𝛼𝑆𝐴𝐴4 − 𝛼𝐼𝐴𝐴4) (𝛽𝐼4 + 𝛼𝐼𝐴𝐼4) + 𝛿𝛽𝐼4,

𝑏
3
= 𝛼
𝑆𝐴
𝛽𝐼
4
𝐴
4
(𝜎 + 𝜇) − 𝛿𝛼

𝑆𝐴
𝐴
4
(𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
)

− (𝜎 + 𝜇) (𝛼𝑆𝐴𝐴4 − 𝛼𝐼𝐴𝐴4) (𝛽𝐼4 + 𝛼𝐼𝐴𝐼4)

+ 𝛿𝛼
𝑆𝐴
𝛽𝐼
4
𝐴
4
.

(29)

Because of 𝛼
𝐼𝐴
𝐼
4
= 𝜇 − 𝛼

𝑆𝐴
𝑆
4
, we have

𝑏
2
= 𝛼
𝑆𝐴
𝛽𝐼
4
𝐴
4
+ 𝛼
𝑆𝐴
𝐴
4
(𝜎 + 𝜇) + 𝛽𝐼

4
(𝜎 + 𝜇)

− (𝛼𝑆𝐴𝐴4 − 𝛼𝐼𝐴𝐴4) (𝛽𝐼4 + 𝛼𝐼𝐴𝐼4) + 𝛿𝛽𝐼4

= 𝛼
𝑆𝐴
𝐴
4
(𝜎 + 𝜇) + 𝛽𝐼

4
(𝜎 + 𝜇) − 𝛼

𝑆𝐴
𝐴
4
𝛼
𝐼𝐴
𝐼
4

+ 𝛼
𝐼𝐴
𝐴
4
(𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
) + 𝛿𝛽𝐼

4

= 𝛼
𝑆𝐴
𝐴
4
(𝜎 + 𝜇) + 𝛽𝐼

4
(𝜎 + 𝜇)

− 𝛼
𝑆𝐴
𝐴
4
(𝜇 − 𝛼

𝑆𝐴
𝑆
4
) + 𝛼
𝐼𝐴
𝐴
4
(𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
)

+ 𝛿𝛽𝐼4

= 𝛼
𝑆𝐴
𝐴
4
𝜎 + 𝛽𝐼

4
(𝜎 + 𝜇) + 𝛼

𝑆𝐴
𝐴
4
𝛼
𝑆𝐴
𝑆
4

+ 𝛼
𝐼𝐴
𝐴
4
(𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
) + 𝛿𝛽𝐼

4
> 0.

𝑏
3
= 𝛼
𝑆𝐴
𝛽𝐼
4
𝐴
4
(𝜎 + 𝜇) − 𝛿𝛼

𝑆𝐴
𝐴
4
(𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
)

− (𝜎 + 𝜇) (𝛼
𝑆𝐴
𝐴
4
− 𝛼
𝐼𝐴
𝐴
4
) (𝛽𝐼
4
+ 𝛼
𝐼𝐴
𝐼
4
)

+ 𝛿𝛼𝑆𝐴𝛽𝐼4𝐴4

= 𝛼
𝐼𝐴
𝐴
4
𝐼
4
(𝜎 + 𝜇) (𝛽 + 𝛼

𝐼𝐴
) − 𝛿𝛼

𝑆𝐴
𝐴
4
𝛼
𝐼𝐴
𝐼
4

− (𝜎 + 𝜇) 𝛼
𝑆𝐴
𝛼
𝐼𝐴
𝐴
4
𝐼
4
.

(30)

It is easy to calculate 𝑏1𝑏2−𝑏3 > 0.Therefore, in order tomake
𝑏3 > 0, only there is 𝑅06 = (𝜎+𝜇)(𝛽+𝛼𝐼𝐴)/𝛼𝑆𝐴(𝜎+𝛿+𝜇) > 1.
Hence, if the threshold𝑅06 = (𝜎+𝜇)(𝛽+𝛼𝐼𝐴)/𝛼𝑆𝐴(𝜎+𝛿+𝜇) >
1, the endemic equilibrium 𝑃4 is locally asymptotically stable.

Theorem 2. (1) If 1 < 𝑅
02
< 𝑅
07
, the positive equilibrium

𝑃
3
is locally asymptotically stable. If 𝑅

02
> 𝑅
07
, the positive

equilibrium 𝑃
3
is unstable.

(2) If 1 + (𝐶𝛼
𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇) < 𝑅

03
<

1 + (𝛽𝜇/(𝛿 + 𝜇)𝛼
𝑆𝐴
)((𝐶𝛼

𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇))

and 𝑅
06
= (𝜎 + 𝜇)(𝛽 + 𝛼

𝐼𝐴
)/𝛼
𝑆𝐴
(𝜎 + 𝛿 + 𝜇) > 1, the positive

equilibrium 𝑃4 is locally asymptotically stable. If 𝑅06 = (𝜎 +
𝜇)(𝛽 + 𝛼𝐼𝐴)/𝛼𝑆𝐴(𝜎 + 𝛿 + 𝜇) < 1, the positive equilibrium 𝑃4 is
unstable.

5. Numerical Simulation

In this section, we will perform a series of numerical simula-
tions to verify the mathematical analysis. In Figure 2, when
𝑅
01
< 1 and 𝑅

02
< 1, the disease-free equilibrium 𝑃

1
is

asymptotically stable, where the initial values are 𝑆 = 50,
𝐼 = 20, 𝑅 = 1, and 𝐴 = 1. The parameters are 𝐶 = 1,
𝛼
𝑆𝐴
= 0.00045, 𝛽 = 0.05, 𝜇 = 0.05, 𝜎 = 0.8, 𝛼

𝐼𝐴
= 0.0025, and

𝛿 = 0.96.
If 𝑅
01
> 1 and 𝑅

05
< 1, Figure 3 signifies that the disease-

free equilibrium 𝑃
2
of system (1) is asymptotically stable. The

initial values are 𝑆 = 50, 𝐼 = 20,𝑅 = 1, and𝐴 = 1. Choose the
parameters as follows:𝐶 = 6, 𝛼

𝑆𝐴
= 0.0045, 𝛽 = 0.1, 𝜇 = 0.05,

𝜎 = 0.8, 𝛼
𝐼𝐴
= 0.0025, and 𝛿 = 0.8.

If 1 < 𝑅
02
< 𝑅
07
, the positive equilibrium 𝑃

3
of system (1)

is asymptotically stable (see Figure 4). The initial values are
𝑆 = 50, 𝐼 = 20, 𝑅 = 1, and 𝐴 = 1. Choose the parameters as
follows: 𝐶 = 1, 𝛼𝑆𝐴 = 0.00045, 𝛽 = 0.2, 𝜇 = 0.05, 𝜎 = 0.8,
𝛼𝐼𝐴 = 0.0025, and 𝛿 = 0.96.

If 1 + (𝐶𝛼𝐼𝐴(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇) < 𝑅03 < 1 +
(𝛽𝜇/(𝛿+𝜇)𝛼𝑆𝐴)((𝐶𝛼𝐼𝐴(𝜎+𝜇)+𝜎𝛿𝜇)/𝜇(𝜎+𝜇)(𝛿+𝜇)) and𝑅06 =
(𝜎 + 𝜇)(𝛽 + 𝛼𝐼𝐴)/𝛼𝑆𝐴(𝜎 + 𝛿 + 𝜇) > 1, the positive equilibrium
𝑃4 of system (1) is asymptotically stable (see Figure 5). The
initial values are 𝑆 = 50, 𝐼 = 20, 𝑅 = 1, and 𝐴 = 1. Choose
the parameters as follows: 𝐶 = 10, 𝛼

𝑆𝐴
= 0.00045, 𝛽 = 0.2,

𝜇 = 0.05, 𝜎 = 0.8, 𝛼
𝐼𝐴
= 0.0025, and 𝛿 = 17.

6. Conclusion

This paper mainly considers the incorporation of new com-
puters to the network, the removal of old computers from
the network, the computer equipped with antivirus software,
and so forth. They affect the spread of the virus. The model
for computer virus transmission is established. Through the
analysis of the model, two disease-free and two positive
equilibriums are obtained. The stability conditions of the
equilibriums are derived.
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Figure 2: 𝑅
01
< 1 and 𝑅

02
< 1. The disease-free equilibrium 𝑃

1
of system (1) is asymptotically stable.
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Figure 3: 𝑅
01
> 1 and 𝑅

05
< 1. The disease-free equilibrium 𝑃

2
of system (1) is asymptotically stable.
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Figure 4: 1 < 𝑅
02
< 𝑅
07
. The positive equilibrium 𝑃

3
of system (1) is asymptotically stable.
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Figure 5: 1 + (𝐶𝛼
𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇) < 𝑅

03
< 1 + (𝛽𝜇/(𝛿 + 𝜇)𝛼

𝑆𝐴
)((𝐶𝛼

𝐼𝐴
(𝜎 + 𝜇) + 𝜎𝛿𝜇)/𝜇(𝜎 + 𝜇)(𝛿 + 𝜇)), and 𝑅

06
=

(𝜎 + 𝜇)(𝛽 + 𝛼
𝐼𝐴
)/𝛼
𝑆𝐴
(𝜎 + 𝛿 + 𝜇) > 1. The positive equilibrium 𝑃

4
of system (1) is asymptotically stable.
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Through the qualitative analysis of computer virus prop-
agation model, mastering the virus prevention and control
technology is very necessary. In the meantime, computer
users have been advised to update their security settings. We
can strengthen the knowledge of the computer virus spread
(e.g., enhance the user’s information security awareness) in
a timely manner to install antivirus software or fix bugs, to
minimize the impact on network computer virus.
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