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Suspension bridge is a kind of bridge which uses cables as the main bearing structure. Suspension bridge has the characteristics
of saving materials and weak stiffness. With the increase of the span of suspension bridge, wind induced vibration has resulted in
injury of several suspension bridges, which leads to a significant loss. Thus, it is imperative to study the wind vibration mechanism
of cables. As for this problem, this paper based on motion theory of mesoscopic particles performs flow simulation of cables by
LBM which is different from traditional computing method of fluid mechanics. By calculating the distribution function of the
distribution on the grid of uniform flow field, the macroscopic motion law of the flow field around cables can be obtained, which
can provide reference for wind resistant design of suspension.

1. Introduction

Suspension bridges use cables as the main bearing structure
of the superstructure and the cable support tower is anchored
on both banks and ends of the bridge. The suspension bridge
which was developed from the rope bridge initially appeared
in the early nineteenth century. Compared with other kinds of
bridge structures, the suspension bridge can be used to span
a relatively long distance with fewer materials. Therefore, the
suspension bridge is especially suitable for large span highway
bridges. Allowing for this consideration, many large span
bridges were built based on this structure at present. The
suspension bridge is composed of cable, tower, anchorage,
and bridge deck system and the cables are used as the main
bearing component. Suspension bridge [1] has its own unique
nature: it can be built relatively high, allowing boats to pass
and therefore it can be built where the water is deep or
the current is swift. Suspension is a cable associating the
main cable with beam carrying loads. Each point in the
suspension can only withstand tension and the tension is
along the tangential direction of the suspension. Suspension
is relatively soft and the stiffness is small. Thus, it is easy to
generate fierce deflection and vibration under wind load [2].

The performance analysis of the suspension cable under wind
load is necessary.

Presently, with the development of the theory of aero-
dynamics and computing technology, however, numerical
simulation has become an important tool for wind resistance
of bridges. But apparently the blunt body dynamic method
is somehow imprecise and imperfect. For complicated blunt
body dynamic flow problems in structural wind engineering,
it is still difficult to solve Navier-Stokes equations. Even
the simplified model, such as eddy viscosity model, cannot
effectively reveal the intrinsic physical mechanism of the flow
around the blunt body [3]. What is more, the CFD method
based on the Navier-Stokes equation has a low computational
efficiency and the progress of the efficiency is limited in
spite of the rapid development of computer technology.
Therefore, numerical simulation is carried out in this paper by
LBM based on the mesoscopic particle velocity distribution
function. This method can obtain smaller vortexing behavior
under the same discrete rate. In addition, the evolution of the
distribution function is completed on the local grid, which is
suitable for large scale parallel computing and therefore LBM
has higher computational efficiency, accuracy, and stability
(4].



2. The Lattice Boltzmann Method

The Lattice Boltzmann method [5] (LBM) is one of the most
important achievements in recent 20 years of computational
fluid mechanics and different from the traditional numerical
methods [6] for fluid calculation and modeling method
describing the movement of the molecule. LBM regards the
fluid as discrete system composed of a large number of meso-
scopic particles. According to the movement characteristics
of the particle, a simplified LB equation is established to
calculate the evolution of particle distribution function.

The Lattice Boltzmann equation [7] (LBE) is linear, but
actually its nonlinearity is embedded in the left side of the
LBE. In LBM, the nonlinear convection term in the macro-
scopic method is replaced by the linear transfer process,
which is similar to the method of solving the compressible
flow characteristics. LBM can be easily implemented on a
parallel processing computer as a result of the fact that
the collision and streaming processes are local. LBE is an
integropartial differential equation, so one of the difficulties
in solving LBE is the complexity of the collision integral.
In order to simplify the solving process, a collision func-
tion model with a simple operator instead of collision was
proposed. LBE is a special discrete form of Boltzmann-BGK
equation including discrete velocity, discrete time, and space
discretization. Discrete time and space can be linked by
discrete velocity of particles, which makes LBM have effective
parallel computing ability and effective ability to deal with
complex boundaries.

The Lattice Boltzmann evolution equation of the single
relaxation time is

fi (x + ALt + At) — f; (x,t)

1 eq 1
= [fi (1) = £ (x,1)].

In the formula, 7, ¢, f;, and fieq are the relaxation
factor, discrete velocity, particle distribution function, and
equilibrium distribution function, respectively.

In 1992, researchers including Yuehong Qian proposed
the model DnQb [8]. n and b refer to space dimension and
discrete velocity, respectively, and the equilibrium distribu-
tion function is
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In the formula, 14 is the macroscopic velocity. And ¢ is
sound velocity of the grid and w; is weight coeflicient. The two
parameters decide that the model of lattices depends on the
selecting of ¢; in discrete velocity model.

In this paper, we adopted D2Q9 model (shown as Fig-
ure 1):
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FIGURE 1: D2Q9 model.

Weight coeflicient and sound velocity of lattices are as
follows:
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In the formula, ¢ = Ax/At is velocity of grid. Ax and At
are grid length and time step, respectively.
The macroscopic velocity and momentum of fluid are

p=2f
pu=)Gf:

(5)

The relationship between the fluid viscosity coefficient
and the relaxation factor of the model is

V= (T - %) cszAt. (6)

Generally, the calculation process of LBE is as follows:

(1) Initialize the distribution function:

fi(x,0) (i=1,2,...,b). 7)

(2) Perform collision at ¢:

ﬁu@:ﬁmﬂ+;&m i=L2...b. ()

(3) Perform migration:

fi(x + At t+At) = f (x,8), i=1,2,...,b.  (9)
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(4) Calculate macroscopic thermodynamic quantities:

plx,t+At) =) fi(x,t+Ab),

(10)
pu(x,t+At) = Zc,»fi (x,t + At).

(5) Repeat steps (2)-(4) until the terminal conditions are
met.

In LBM, the accurate simulation of boundary condi-
tions [9-11] is an important and crucial problem, because
the boundary conditions are not easy to determine, which
needs to confirm the distribution function of the bound-
ary. At present, the types of boundary of LBM can be
divided into heuristic schemes, dynamic schemes, and inter-
polation/extrapolation schemes. According to the type of
boundary condition, it also can be divided into the velocity
boundary and the pressure boundary. Additionally, there are
some special artificial boundaries, such as the entrance, exit,
infinity, and symmetry.

The rebound format is usually used for simulating the
boundary condition of stationary solid or obstacle flow. It is
mainly refers to the fact that the projectile of solid boundary
will rebound to fluid field. We can easily know that f; = f;,
f> = fu f6 = fs»and f;, fy, and fg can be obtained from the
streaming process.

In practical application, the velocity component is usually
known. Thus, a method is proposed by Zou and He to
calculate the 3 unknown equilibrium distribution functions
under equilibrium conditions:

P=ﬁ[fo+fz+f4+2(f3+f6+f7)]’

2
h :f3+§P”’
(11)
g Lo 1 ..1
fs=f7- > (fo—fu)+ 6P”+ 2P”>

fo=fot 5 (o= fi)+ zpu=pu

Sometimes, the velocity of the exit is unknown. In these
situations, we need to use extrapolation method to get the
unknown distribution functions. For example,

f3,n =2 f3,n—1 - f3,n—2’
Jon=2" fon1 = fona (12)
f7,n =2 f7,n—1 - f7,n—2'

Through the research done before, we can know that,
in traditional CFD, the convection term is nonlinear. What
is more, for incompressible flow problems, the pressure
term is implicit. In LBM, the integral differential equation,
however, is transformed into a linear differential equation.
Additionally, the distribution function is used to describe the
motion of the fluid, which makes us not have to construct
Poisson equation. But this BGK model is only valid for small
Reynolds number. We have to further research the model for
high Reynolds number.

45 f—— ; ; ; " ——

4 |
=1 > |
}

15 ¢

10

50 100 150 200 250 300 350 400

FIGURE 2: Streamline, Re = 20.
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FIGURE 3: 3D graph, Re = 20.

3. Flow Simulation of Cables

Because cables of suspension bridges have a large dynamic
response under wind load [12] and the theory of LBM suitable
for blunt body flow [13], this paper simulates flow around
cables by LBM in order to verify the feasibility and accuracy
of LBM. We choose a rectangle with 400 meters’ length and
45 meters’ width as the computational domain. We suppose
the wind velocity is 5 m/s. We chose the standard rebounded
scheme as the surface free slip boundary and dealt with the
flow inlet velocity boundary and the exit constant pressure
boundary by the nonequilibrium rebounded scheme. As
follows, we selected cables with different quantity to simulate
the flow.

3.1. Single Flow Simulation

3.1.1. Re = 20. The barrier is a rectangular cylinder [14] of 5m
* 5m placed 50 meters away from the entrance. When the
Reynolds number is 20, we obtain the streamline and three-
dimensional graph by use of the MATLAB after 40000 steps
of the calculation, as shown in Figures 2 and 3.

3.1.2. Re = 100. The barrier is a rectangular cylinder of 5m
#* 5m placed 50 meters away from the entrance. When
the Reynolds number is 100, we obtain the streamline and
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FIGURE 4: Streamline, Re = 100.
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FIGURE 5: 3D graph, Re = 100.

three-dimensional graph by use of the MATLAB after 40000
steps of the calculation, as shown in Figures 4 and 5.

3.1.3. Re = 1000. The barrier is a rectangular cylinder of 5m
* 5m placed 50 meters away from the entrance. When the
Reynolds number is 1000, we obtain the streamline and three-
dimensional graph by use of the MATLAB after 40000 steps
of the calculation, as shown in Figures 6 and 7.

We can see from the flow around the wake that the
variation of the flow field is obvious, and it will gradually
tend to be stable. When the Reynolds number is 20, the flow
field in front of the square cylinder surface has the maximum
vorticity, while the vorticity of other regions is small. When
the Reynolds number increases to 100, the flow field around
the square cylinder becomes unstable, which is no longer a
laminar flow. When the Reynolds number increases to 1000,
the flow field after a long distance around the column is still
in a state of volatility. By the comparison of Figures 2-7, we
can see that, with the increase of Reynolds number [15, 16],
steady flow changes to unsteady flow gradually.

3.2. Flow Simulation of Two Circular Cylinders in Tandem

3.2.1. Re = 20. The barriers are two rectangular cylinders of
5m * 5m placed 50 meters away from the entrance. When the
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FIGURE 6: Streamline, Re = 1000.
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FIGURE 7: 3D graph, Re =1000.

Reynolds number is 20, we obtain the streamline and three-
dimensional graph by use of the MATLAB after 40000 steps
of the calculation, as shown in Figures 8 and 9.

3.2.2. Re = 100. The barriers are two rectangular cylinders of
5m % 5m placed 50 meters away from the entrance. When the
Reynolds number is 100, we obtain the streamline and three-
dimensional graph by use of the MATLAB after 40000 steps
of the calculation, as shown in Figures 10 and 11.

We can see from the flow around the wake that the
variation of the flow field is obvious, and it will gradually tend
to be stable. When the Reynolds number is 20, the streamline
has been closed at 400 m, while when the Reynolds number
is 100, the streamline may be closed in a long distance. By
comparison of Figures 8-11, we can see that, with the increase
of Reynolds number, steady flow changes to unsteady flow
gradually.

After single and double flow simulation, we can conclude
that when the Reynolds number is small, flow field will
become stable quickly. With the increase of Reynolds number,
steady flow changes to unsteady flow gradually, which proves
that LBM is not fit for numerical simulation with high
Reynolds number. Therefore, we should carry out numerical
simulation with small Reynolds number.
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FIGURE 8: Streamline, Re = 20.
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FIGURE 9: 3D graph, Re = 20.
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FIGURE 10: Streamline, Re = 100.

3.3. Flow around Three Cylinders in Tandem. The barriers are
three rectangular cylinders of 5m % 5m placed 50 meters
away from the entrance. When the Reynolds number is 20, we
obtain the streamline and three-dimensional graph by use of
the MATLAB after 40000 steps of the calculation, as shown
in Figures 12 and 13.
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FIGURE 11: 3D graph, Re = 100.
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FIGURE 12: Streamline, Re = 20.
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FIGURE 13: 3D graph, Re = 20.

We can see from the flow around the wake that the
variation of the flow field is obvious, and it will gradually tend
to be stable. The flow field at both sides of the side column
varies greatly, but the flow field between the two columns
varies little. By comparison of Figures 2 and 3, Figures 8 and
9, and Figures 12 and 13, we can see that the less the obstacles,
the easier for flow field tending to be stable.

3.4. Flow Simulation of Double Column Parallel. The barriers
are two rectangular cylinders of 5m * 5m placed 50 meters
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FIGURE 15: 3D graph, Re = 20.

and 155 meters away from the entrance, respectively. When
the Reynolds number is 20, we obtain the streamline and
three-dimensional graph by use of the MATLAB after 40000
steps of the calculation, as shown in Figures 14 and 15.

We can see from the flow around the wake that the
variation of the flow field is obvious, and it will gradually tend
to be stable. The flow field at both sides of the side column
varies greatly, but the flow field between the two columns
varies little. By comparison of Figures 8 and 9 and Figures
14 and 15, we can see that the less the obstacles, the easier for
flow field tending to be stable.

3.5. Flow Simulation of Four Column Parallel. The barriers are
four rectangular cylinders of 5m * 5m placed 50 meters and
155 meters away from the entrance, respectively. When the
Reynolds number is 20, we obtain the streamline and three-
dimensional graph by use of the MATLAB after 40000 steps
of the calculation, as shown in Figures 16 and 17.

We can see from the flow around the wake that the
variation of the flow field is obvious, and it will gradually tend
to be stable. By comparison of Figures 14 and 15 and Figures
16 and 17, we can see that the less the obstacles, the easier for
flow field tending to be stable.
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4. Conclusion

Because the accuracy of existing numerical simulation
method is low, this paper puts forward a numerical simu-
lation with high accuracy and good stability based on LBE.
We compile the calculation program by use of MATLAB
to simulate stationary flow of single, double, or multiple
columns, and we obtain the streamlines and three-dimension
graph which can be used to study the characteristics of
cables around the flow. Through the calculation, we draw
the conclusions: when the Reynolds number is high, steady
flow changes to unsteady flow resulting in the fact that LBM
is not suitable for numerical simulation with high Reynolds
number, while when the Reynolds number is low, the flow is
steady flow;, and the variation of the flow field around cables is
obvious. The flow field tends to be stable after a while, which is
in accordance with practical theory. Thus, LBM is suitable for
flow simulation around cables with small Reynolds number.
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