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A novel filled function is constructed to locate a global optimizer or an approximate global optimizer of smooth or nonsmooth
constrained global minimization problems. The constructed filled function contains only one parameter which can be easily
adjusted during the minimization. The theoretical properties of the filled function are discussed and a corresponding solution
algorithm is proposed. The solution algorithm comprises two phases: local minimization and filling. The first phase minimizes the
original problem and obtains one of its local optimizers, while the second phase minimizes the constructed filled function and
identifies a better initial point for the first phase. Some preliminary numerical results are also reported.

1. Introduction

Science and economics rely on the increasing demand for
locating the global optimization optimizer, and therefore
global optimization has become one of the most attractive
research areas in optimization. However, the existence of
multiple local minimizers that differ from the global solution
confronts us with two difficult issues, that is, how to escape
from a localminimizer to a smaller one and how to verify that
the current minimizer is a global one. These two issues make
most of global optimization problems unsolvable directly by
classical local optimization algorithms. Up to now, various
kinds of new theories and algorithms on global optimization
have been presented [1–3]. In general, global optimization
methods can be divided into two categories: stochastic
methods and deterministic methods.The stochastic methods
are usually probability based approaches, such as genetic
algorithm and simulated annealing method.These stochastic
methods have their advantages, but their shortages are also
obvious, such as being easily trapped in a local optimizer.
Deterministic methods such as filled function method [4–7],

tunneling method [8], and stretching function method [9]
can, however, often skip from the current local minimizer to
a better one.

The filled function approach, initially proposed for
smooth optimization by Ge and Qin [4] and improved in
[5–7], is one of the effective global optimization approaches.
It furnishes us with an efficient way to use any local opti-
mization procedure to solve global optimization problem.
The essence of filled function method is to construct a
filled function and then to minimize it to obtain a better
initial point for the minimization of the original prob-
lem. The existing filled function methods are usually only
suitable for unconstrained optimization problem. More-
over, it requires the objective function to be continuously
differentiable and the number of local minimizers to be
finite. But, in practice, optimization problems may be non-
smooth and often have many complicated constraints and
the number of local minimizers may also be infinite. To
deal with such situation, in this paper, we extend filled
function methods to the case of nonsmooth constrained
global optimization and propose a new filled function
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method. The proposed filled function method combines
filled functionmethod for unconstrained global optimization
with the exterior penalty function method for constrained
optimization.

The paper is organized as follows. In Section 2, a new
filled function is proposed and its properties are discussed.
In Section 3, a corresponding filled function algorithm is
designed and numerical experiments are performed. Finally,
in Section 4, some conclusive remarks are given.

In the rest of this paper, the generalized gradient of a
nonsmooth function 𝑓(𝑥) at the point 𝑥 ∈ 𝑋 is denoted
by 𝜕𝑓(𝑥) and the generalized directional derivative of 𝑓(𝑥)

in the direction 𝑑 at the point 𝑥 is denoted by 𝑓0(𝑥; 𝑑). The
interior, the boundary, and the closure of the set 𝑆 are denoted
by int 𝑆, 𝜕𝑆, and 𝑐𝑙𝑆, respectively.

2. A New One-Parameter Filled
Function and Its Properties

2.1. Problem Formulation. Consider the following nons-
mooth constrained global optimization problem (𝑃):

min
𝑥∈𝑆

𝑓 (𝑥) , (1)

where 𝑆 = {𝑥 ∈ 𝑋 | 𝑔
𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐼}, 𝑋 ⊂ 𝑅𝑛 is a

box set, 𝑓(𝑥) and 𝑔
𝑖
(𝑥), 𝑖 ∈ 𝐼, are Lipschitz continuous with

constants 𝐿
𝑓
and 𝐿

𝑔𝑖
, 𝑖 ∈ 𝐼, respectively, and 𝐼 = {1, . . . , 𝑚}

is an index set. For simplicity, the set of local minimizers
for problem (𝑃) is denoted by 𝐿(𝑃) and the set of the global
minimizers is denoted by 𝐺(𝑃).

To proceed, we assume that the number of minimizers of
problem (𝑃) is infinite, but the number of different function
values at the minimizers is finite.

Definition 1. A function 𝑃(𝑥, 𝑥∗) is called a filled function of
𝑓(𝑥) at a local minimizer 𝑥∗ if it satisfies the following:

(1) 𝑥∗ is a strictly local maximizer of 𝑃(𝑥, 𝑥∗) on 𝑋;

(2) for any 𝑥 ∈ 𝑆
1
\𝑥∗ or 𝑥 ∈ 𝑋 \ 𝑆 one has 0 ∉ 𝜕𝑃(𝑥, 𝑥∗),

where 𝑆
1
= {𝑥 ∈ 𝑆 | 𝑓(𝑥) ≥ 𝑓(𝑥∗);

(3) if 𝑆
2
= {𝑥 ∈ 𝑆 | 𝑓(𝑥) < 𝑓(𝑥∗)} is not empty, then there

exists a point 𝑥
2
∈ 𝑆
2
such that 𝑥

2
is a local minimizer

of 𝑃(𝑥, 𝑥∗).

Definition 1 guarantees that when any local search proce-
dure for unconstrained optimization is used to minimize the
constructed filled function, the sequences of iterative point
will not stop at any point at which the objective function
value is larger than 𝑓(𝑥∗). If 𝑥∗ is not a global minimizer,
then a point 𝑥 with 𝑓(𝑥) < 𝑓(𝑥∗) could be identified in the
process of the minimization of 𝑃(𝑥, 𝑥∗). Then, we can get a
better local minimizer of 𝑓(𝑥) by using 𝑥 as an initial point.
By repeating these two steps, we could finally obtain a global
minimizer or an approximate globalminimizer of the original
problem.

2.2. A New Filled Function and Its Properties. We propose in
this section a one-parameter filled function as follows:

𝑃 (𝑥, 𝑥∗, 𝑞)

= −
1

𝑞
[𝑓(𝑥) − 𝑓(𝑥∗) +

𝑚

∑
𝑖=1

max (0, 𝑔
𝑖
(𝑥))]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩
2
)

+ 𝑞[min (0,max (𝑓 (𝑥) − 𝑓 (𝑥∗) , 𝑔
𝑖
(𝑥) , 𝑖 ∈ 𝐼))]

3
,

(2)

where 𝑞 > 0 is a parameter and 𝑥∗ is the current local
minimizer of 𝑓(𝑥).

Theorems 2–4 show that when parameter 𝑞 > 0 is suitably
large, the function 𝑃(𝑥, 𝑥∗, 𝑞) is a filled function.

Theorem 2. Assume that 𝑥∗ ∈ 𝐿(𝑃); then 𝑥∗ is a strictly local
maximizer of 𝑃(𝑥, 𝑥∗, 𝑞).

Proof. Since 𝑥∗ ∈ 𝐿(𝑃), there is a neighborhood 𝑂(𝑥∗, 𝛿) of
𝑥∗ with 𝛿 > 0 such that 𝑓(𝑥) ≥ 𝑓(𝑥∗) and 𝑔

𝑖
(𝑥) ≤ 0, 𝑖 ∈ 𝐼,

for all 𝑥 ∈ 𝑂(𝑥∗, 𝛿) ∩ 𝑆. We consider the following two cases.

Case 1. For all 𝑥 ∈ 𝑂(𝑥∗, 𝛿) ∩ 𝑆 and 𝑥 ̸= 𝑥∗, we have
min(0,max(𝑓(𝑥) − 𝑓(𝑥∗), 𝑔

𝑖
(𝑥), 𝑖 ∈ 𝐼)) = 0, and so

𝑃 (𝑥, 𝑥∗, 𝑞) = −
1

𝑞
(𝑓 (𝑥) − 𝑓 (𝑥∗))

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩
2
)

< − arg 1 = 𝑃 (𝑥∗, 𝑥∗, 𝑞) .

(3)

Case 2. For all 𝑥 ∈ 𝑂(𝑥∗, 𝛿) ∩ (𝑋 \ 𝑆), there exists at least one
index 𝑖

0
∈ 𝐼 such that 𝑔

𝑖0
(𝑥) ≥ 0, it follows that

min (0,max (𝑓 (𝑥) − 𝑓 (𝑥∗) , 𝑔
𝑖
(𝑥) , 𝑖 ∈ 𝐼)) = 0. (4)

Thus

𝑃 (𝑥, 𝑥∗, 𝑞)

= −
1

𝑞
[𝑓(𝑥) − 𝑓(𝑥∗) +

𝑚

∑
𝑖=1

max(0, 𝑔
𝑖
(𝑥))]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩
2
)

< − arg 1 = 𝑃 (𝑥∗, 𝑥∗, 𝑞) .

(5)

The above discussion indicates that 𝑥∗ is a strictly local
maximizer of 𝑃(𝑥, 𝑥∗, 𝑞).

Theorem 3. Assuming that 𝑥∗ ∈ 𝐿(𝑃), then, for any 𝑥 ∈ 𝑆
1
,

𝑥 ̸= 𝑥∗ or 𝑥 ∈ 𝑋\𝑆, it holds that 0 ∉ 𝜕𝑃(𝑥, 𝑥∗
1
, 𝑞) when 𝑞 > 0

is big enough.
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Proof. For any 𝑥 ∈ 𝑆
1
, 𝑥 ̸= 𝑥∗, or 𝑥 ∈ 𝑋 \ 𝑆, we have

min(0,max(𝑓(𝑥) − 𝑓(𝑥∗), 𝑔
𝑖
(𝑥), 𝑖 ∈ 𝐼)) = 0, and so

𝑃 (𝑥, 𝑥∗, 𝑞)

= −
1

𝑞
[𝑓(𝑥) − 𝑓(𝑥∗) +

𝑚

∑
𝑖=1

max(0, 𝑔
𝑖
(𝑥))]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩
2
) .

(6)

Thus

𝜕𝑃 (𝑥, 𝑥∗, 𝑞)

⊂ −
1

𝑞
[𝑓 (𝑥) − 𝑓 (𝑥∗) +

𝑚

∑
𝑖=1

max (0, 𝑔
𝑖
(𝑥))]

× (𝜕𝑓 (𝑥) +
𝑚

∑
𝑖=1

𝜆
𝑖
𝜕𝑔
𝑖
(𝑥))

−
2 (𝑥 − 𝑥∗)

1 + (1 + ‖𝑥 − 𝑥∗‖2)
2
,

(7)

where 0 ≤ 𝜆
𝑖
≤ 1, 𝑖 ∈ 𝐼.Therefore, when 𝑞 > 0 is big enough,

it holds that

⟨𝜕𝑃 (𝑥, 𝑥∗, 𝑞) ,
𝑥 − 𝑥∗

‖𝑥 − 𝑥∗‖
⟩

≤
1

𝑞
[𝐿𝐷 +

𝑚

∑
𝑖=1

max
𝑥∈𝑋

󵄩󵄩󵄩󵄩𝑔𝑖 (𝑥)
󵄩󵄩󵄩󵄩][𝐿

𝑓
+
𝑚

∑
𝑖=1

𝐿
𝑔𝑖
]

−
2
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩

1 + (1 + ‖𝑥 − 𝑥∗‖2)
2

< 0,

(8)

which implies that 0 ∉ 𝜕𝑃(𝑥, 𝑥∗, 𝑞).

Theorem 4. Assume that 𝑥∗ ∈ 𝐿(𝑃) but 𝑥∗ ∉ 𝐺(𝑃) and
𝑐𝑙 int 𝑆 = 𝑐𝑙𝑆. If 𝑞 > 0 is suitably large, then there exists a point
𝑥
0
∈ 𝑆 such that 𝑥

0
is a local minimizer of 𝑃(𝑥, 𝑥∗, 𝑞).

Proof. By the conditions, there exists an 𝑥
2
∈ int 𝑆 such that

𝑓(𝑥
2
) < 𝑓(𝑥∗), 𝑔

𝑖
(𝑥
2
) < 0, 𝑖 ∈ 𝐼.

Then, for any 𝑥 ∈ 𝜕𝑆,

𝑃 (𝑥, 𝑥∗, 𝑞) = −
1

𝑞
[𝑓(𝑥) − 𝑓(𝑥∗) +

𝑚

∑
𝑖=1

max (0, 𝑔
𝑖
(𝑥))]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

󵄩󵄩󵄩󵄩
2
) ;

𝑃 (𝑥
2
, 𝑥∗, 𝑞) = −

1

𝑞
[𝑓(𝑥
2
) − 𝑓(𝑥∗)]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥2 − 𝑥∗

󵄩󵄩󵄩󵄩
2
)

+ 𝑞[max(𝑓(𝑥
2
) − 𝑓(𝑥∗), 𝑔

𝑖
(𝑥
2
), 𝑖 ∈ 𝐼)]

3
.

(9)

Since, as 𝑞 → +∞,

𝑃 (𝑥, 𝑥∗, 𝑞) ≥ −
𝜋

2
, 𝑃 (𝑥
2
, 𝑥∗, 𝑞) 󳨀→ −∞, (10)

then when 𝑞 > 0 is suitably big, we have

𝑃 (𝑥
2
, 𝑥∗, 𝑞) < 𝑃 (𝑥, 𝑥∗, 𝑞) , ∀𝑥 ∈ 𝜕𝑆. (11)

Assume that the function 𝑃(𝑥, 𝑥∗, 𝑞) reaches its global mini-
mizer over 𝑆 at 𝑥

0
. Since 𝑆\𝜕𝑆 is an open set, then 𝑥

0
∈ 𝑆\𝜕𝑆,

and it holds that

min
𝑥∈𝑆

𝑃 (𝑥, 𝑥∗, 𝑞) = min
𝑥∈𝑆\𝜕𝑆

𝑃 (𝑥, 𝑥∗, 𝑞)

= 𝑃 (𝑥
0
, 𝑥∗, 𝑞) ≤ 𝑃 (𝑥

2
, 𝑥∗, 𝑞) .

(12)

In the following, we will prove that

𝑓 (𝑥
0
) < 𝑓 (𝑥∗) , 𝑔

𝑖
(𝑥
0
) < 0, 𝑖 ∈ 𝐼, (13)

which leads to the result.
The proof is by contradiction. Suppose that

𝑓 (𝑥
0
) ≥ 𝑓 (𝑥∗) , 𝑔

𝑖
(𝑥
0
) < 0, 𝑖 ∈ 𝐼. (14)

Then, as 𝑞 → +∞,

𝑃 (𝑥
0
, 𝑥∗, 𝑞) 󳨀→ − arg (1 +

󵄩󵄩󵄩󵄩𝑥0 − 𝑥∗
󵄩󵄩󵄩󵄩
2
) > −∞, (15)

which implies that when 𝑞 > 0 is suitably big, we have

𝑃 (𝑥
0
, 𝑥∗, 𝑞) > 𝑃 (𝑥

2
, 𝑥∗, 𝑞) . (16)

This is a contradiction.

3. Algorithm and Numerical Examples

Based on the properties of the proposed filled function, we
nowgive a corresponding filled function algorithmas follows.

3.1. Filled Function Algorithm FFAM

Initialization Step

(1) Set a disturbance constant 𝛼 = 0.1.
(2) Select an upper bound of 𝑞denoted by 𝑞

𝑢
and set 𝑞

𝑢
:=

108.
(3) Select directions 𝑒

𝑘
, 𝑘 = 1, 2, . . . , 𝑙, with integer 𝑙 =

2𝑛, where 𝑛 is the number of variables.
(4) Set 𝑘 = 1.

Main Step

(1) Start from an initial point 𝑥; minimize the problem
(𝑃) by implementing a nonsmooth local search pro-
cedure and obtain the first localminimizer𝑥∗

1
of𝑓(𝑥).

(2) Let 𝑞 = 1.



4 Mathematical Problems in Engineering

(3) Construct a filled function at 𝑥∗
1
:

𝑃 (𝑥, 𝑥∗
1
, 𝑞)

= −
1

𝑞
[𝑓(𝑥) − 𝑓(𝑥∗

1
) +
𝑚

∑
𝑖=1

max(0, 𝑔
𝑖
(𝑥))]

2

− arg (1 +
󵄩󵄩󵄩󵄩𝑥 − 𝑥∗

1

󵄩󵄩󵄩󵄩
2
)

+ 𝑞[min (0,max (𝑓 (𝑥) − 𝑓 (𝑥∗
1
) , 𝑔
𝑖
(𝑥) , 𝑖 ∈ 𝐼))]

3
.

(17)

(4) If 𝑘 > 𝑙, then go to (7). Else, set 𝑥 = 𝑥∗
1

+ 𝛼𝑒
𝑘
as an

initial point, minimize 𝑃(𝑥, 𝑥∗, 𝑞) by implementing a
nonsmooth local search algorithm, and obtain a local
minimizer 𝑥

𝑘
.

(5) If 𝑥
𝑘
∈ 𝑆, then set 𝑘 = 𝑘 + 1 and go to (4). Else, go to

(6).
(6) If 𝑥

𝑘
meets 𝑓(𝑥

𝑘
) < 𝑓(𝑥∗

1
), then set 𝑥 = 𝑥

𝑘
and

𝑘 = 1. Start from 𝑥 as a new initial point, minimize
the problem (𝑃) by using a local search algorithm,
and obtain another local minimizer 𝑥∗

2
of 𝑓(𝑥) with

𝑓(𝑥∗
2
) < 𝑓(𝑥∗

1
). Set 𝑥∗

1
= 𝑥∗
2
and go to (2). Else, go to

(7).
(7) Increase 𝑞 by setting 𝑞 = 10𝑞.
(8) If 𝑞 ≤ 𝑞

𝑢
, then set 𝑘 = 1 and go to (3). Else, the

algorithm stops and 𝑥∗
1
is taken as a global minimizer

of the problem (𝑃).

At the end of this section, we make a few remarks below.
(1) Algorithm FFAM is comprised of two stages: local

minimization and filling. In stage 1, a local minimizer 𝑥∗
1

of 𝑓(𝑥) is identified. In stage 2, filled function 𝑃(𝑥, 𝑥∗
1
, 𝑞) is

constructed and then minimized. Stage 2 terminates when
one point 𝑥

𝑘
∈ 𝑆
2
is located. Then, algorithm FFAM

reenters into stage 1, with 𝑥
𝑘
as an initial point to find a new

minimizer 𝑥∗
2
of 𝑓(𝑥) (if such one minimizer exists), and so

on.The above process is repeated until some certain specified
stopping criteria are met, and then the last local minimizer is
regarded as a global minimizer.

(2)Themotivation andmechanism behind the algorithm
FFAM are given below.

In Step (3) of the Initialization Step, we can choose
directions 𝑒

𝑘
, 𝑘 = 1, 2, . . . , 𝑙, as positive and negative unit

coordinate vectors. For example, when 𝑛 = 2, the directions
can be chosen as (1, 0), (0, 1), (−1, 0), and (0, −1).

In Step (1) and Step (6) of the Main Step, we can obtain a
local optimizer of the problem (𝑃) by using any nonsmooth
constrained local optimization procedure such as Bundle
methods and Powell’s method. In Step (4) of the Main
Step, we can minimize the proposed filled function by using
Hybrid Hooke and Jeeves-Direct Method for Nonsmooth
Optimization [10], Mesh Adaptive Direct Search Algorithms
for Constrained Optimization [11], and so forth.

(3) The proposed filled function algorithm can also be
applied to smooth constrained optimization. Any smooth
local minimization procedure in the minimization phase

Table 1: Computational results with initial point (−1, −1, −1).

𝑘 𝑥
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
)

1 (−1, −1, −1) (−1.9802, −0.0132, −0.0006) −1.9410
2 (1.1931, 0.6332, −1.1932) (1.9889, −0.0001, −0.0111) −5.9477

can be used, such as conjugate gradient method and quasi-
Newton method.

3.2. Numerical Examples. Weperform the numerical tests for
three examples. All the numerical tests are programmed in
Fortran 95. In nonsmooth case, we search for the local mini-
mizers by using Hybrid Hooke and Jeeves-Direct Method for
Nonsmooth Optimization [10] and theMesh Adaptive Direct
Search Algorithms for Constrained Optimization [11]. In
smooth case, we use penalty function method and conjugate
gradient method to get the local minimizers.

The following are the three examples and their numerical
results. And the symbols used in the tables are explained
below:

𝑘: the iteration number in finding the 𝑘th local
minimizer,
𝑥
𝑘
: the 𝑘th new initial point in finding the 𝑘th local

minimizer,
𝑥∗
𝑘
: the 𝑘th local minimizer,

𝑓(𝑥∗
𝑘
): the function value of the 𝑘th local minimizer.

Problem 1. Consider

min 𝑓 (𝑥) = −𝑥2
1
+ 𝑥2
2
+ 𝑥2
3
− 𝑥
1

s.t. 𝑥2
1
+ 𝑥2
2
+ 𝑥2
3
− 4 ≤ 0

min {𝑥
2
− 𝑥
3
, 𝑥
3
} ≤ 0.

(18)

Algorithm FFAM succeeds in finding an approximate global
minimizer 𝑥∗ = (1.9889, −0.0001, −0.0111)𝑇 with 𝑓(𝑥∗) =
−5.9477. The computational results are given in Table 1.

Problem 2. Consider

min 𝑓 (𝑥) = −20 exp(−0.2√
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨
2

)

− exp(
cos (2𝜋𝑥

1
) + cos (2𝜋𝑥

2
)

2
) + 20

s.t. 𝑥2
1
+ 𝑥2
2
≤ 300

2𝑥
1
+ 𝑥
2
≤ 4

− 30 ≤ 𝑥
𝑖
≤ 30, 𝑖 = 1, 2.

(19)

Algorithm FFAM succeeds in finding a global minimizer
𝑥∗ = (0, 0)𝑇 with 𝑓(𝑥∗) = −2.7183. The computational
results are listed in Table 2.
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Table 2: Computational results with initial point (−1, −1).

𝑘 𝑥
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
)

1 (−1, −1) (−15.0000, 0.0000) 5.7164
2 (−1.0585, 0.5165) (0.0001, −0.2094) −0.3690
3 (0.0007, −0.0435) (0.0000, 0.0000) −2.7183

Table 3: Computational results with initial point (0, 0).

𝑘 𝑥
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
)

1 (0, 0) (0.6116, 3.4423) −4.0541
2 (2.1653, 2.2546) (2.3295, 3.1780) −5.5081

Problem 3. Consider

min 𝑓 (𝑥) = −𝑥
1
− 𝑥
2

s.t. 𝑥
2
≤ 2𝑥4
1
− 8𝑥3
1
+ 8𝑥2
1
+ 2

𝑥
2
≤ 4𝑥4
1
− 32𝑥3

1
+ 88𝑥2

1
− 96𝑥

1
+ 36

0 ≤ 𝑥
1
≤ 3

0 ≤ 𝑥
2
≤ 4.

(20)

Algorithm FFAM succeeds in finding a global minimizer
𝑥∗ = (2.3295, 3.1780)𝑇 with 𝑓(𝑥∗) = −5.5081. This problem
is taken from [12]. We give this numerical example here to
illustrate that algorithm FFAM is also suitable for smooth
constrained global optimization. The computational results
are given in Table 3.

4. Conclusion

In this paper, we present a new filled function for both
nonsmooth and smooth constrained global optimization
and investigate its properties. The filled function contains
only one parameter which can be readily adjusted in the
process of minimization. We also design a corresponding
filled function algorithm. Moreover, in order to demonstrate
the performance of the proposed filled function method, we
make three numerical tests. The preliminary computational
results show that the proposed filled function approach is
promising.
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