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This paper addresses the robust stability of teleoperated systems under the four-channel architecture, affected by time-varying
communication delays and using disturbance observers. It is based on our previous work which provides a framework for robust
stability against delays with bounded variation and a bounded time-derivative, using structured singular values (SSV). The main
new feature here is the inclusion of disturbance observers (DOBs). The DOB concept is well-documented and relevant to many
applications, since only position (but not force) measurements are usually available. In this paper, we adapt two DOBs (master and
slave) to our generic framework, by representing them as stable, fast filters affected by the uncertainty in the plant modelling. Our
main result is an SSV test to verify robust stability. The simulation results confirm the usefulness of this approach.

1. Introduction

A teleoperation system consists of master and slave mechan-
ical systems, where the master is directly manipulated by
a human operator and the slave, operating in a remote
environment, is designed to track the master closely. The
main aspects when analyzing and designing these systems
are stability and transparency, where transparency is the
measure of how much the operator’s actions are mirrored
in the remote environment in an ideal situation. In practice,
there is a compromise between these two goals mainly due to
the presence of time delays generated by the communication
channel [1].

As far as stability is concerned, the teleoperation schemes
are classified [2] as intrinsically stable schemes (passivity-
based) and delay-dependent stable schemes. In early works
dealing with constant delay, this issue was addressed by
means of frequency Laplace or passivity techniques, applied
to linear time invariant master-slave two-port systems [1–
5]. On the other hand, the most successful control scheme
in achieving a fully transparency under ideal conditions for
transparency properties is the four-channel control scheme
[1, 2, 4, 6].

Moreover, the low cost and wide availability of the
Internet has opened a new line of research to establish
Internet-based teleoperation [6–8]which requires the control
signal to be transmitted through the network, exposing the
system control loop to the varying time delay of a packet
switched network [9]. Some examples of actual bounds for
the delay magnitude and its derivative, appearing with UDP
(user datagram protocol) for different Internet locations can
be seen in [8].

Furthermore, in [10] the authors affirm that the bilateral
teleoperators designed within the passivity framework, using
concepts of scattering and two-port network theory, provide
robust stability against constant delay in the network and
velocity tracking but cannot guarantee position tracking
in general. That is why many recent results try to extend
passivity-based architecture to solve these problems; see the
tutorial [11, 12].

Another option is to use delay-dependent stability tools.
With these, better performance, such as zero tracking error,
is gained in the case of small network delays (the typical
operating condition), although the possibility of losing sta-
bility when there are large delays must be accepted. Thus
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the natural solution is to use tools that check this fact and
provide estimations of the maximum allowable delays.

In this sense, several efforts are being made in the
development of delay-dependent stability tools like those in
[6, 13] and references therein. We develop in [8] a generic
approach to model any teleoperation setup as a negative
single feedback loop containing a linear time invariant block
and an uncertain time-varying delay. The main added value
of this approach is the possibility of deriving frequency-
domain conditions for robust stability in the presence of
time-varying delays and parametric uncertainties. As a case
study, the two-channel position error (PE) control scheme
was tested for the Internet-based haptic teleoperation of a
laboratory 3D-Crane. In [14], using this approach, we present
preliminary results about the scaled four-channel control
scheme for teleoperatingmanipulators.The result of applying
this analysis technique is that we can justify the design
of a 𝛾-4C scheme previously used in [6], incorporating a
tuning factor 𝛾 to increase in practical conditions the stable
region fixing the desired bounds on time-varying delay and
parametric uncertainty, with the particularity of maintaining
the tracking properties provided by this transparent control
scheme.

In this work, because we know that force observers
can be included using the concept of disturbance observer
(DOB) [15–17], also called reaction force observers (RFOB)
[18], to cope with unmeasured human or environmental
forces, we adapt two DOBs (master and slave) to our generic
framework for robust stability, by representing them as stable,
fast filters affected by the uncertainty in the plant modelling.
Our main result is an SSV test to verify robust stability
for four-channel teleoperation with time-varying delays and
disturbance observers.

The paper is organized as follows. Section 2 introduces
an overall description of teleoperation system and Section 3
explains a generic model for robust stability analysis in delay-
dependent control schemes with disturbance observers.
Section 4 defines a robust stability condition based on the
generic model formulation. Section 5 describes the teleop-
eration case study. Section 6 then presents the analysis and
simulation results. Finally, the conclusions are discussed in
Section 7.

2. Teleoperation System Description

Consider a generic teleoperation setup, like that in Figure 1,
consisting of the master side (left) and the slave side (right)
exchanging signals through a communication channel.

The master and slave will be modeled as a mechanical
system with coordinates (positions) given by the 𝑛×1 vectors
𝑥
𝑚
, 𝑥
𝑠
. In the Laplace domain, if 𝑥

𝑚
(0) = 𝑥̇

𝑚
(0) = 0, we have

𝑃
𝑚
(𝑠)𝑋
𝑚
(𝑠) := 𝐹

𝑚
(𝑠) ,

𝑃
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(𝑠)𝑋
𝑠
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𝑠
(𝑠) .

(1)

The input of the master plant is the master force 𝐹
𝑚
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𝐹
ℎ
− 𝐹
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Figure 1: Generic teleoperation system.

that send information to the slave, and 𝑧
𝑚
, the 𝑛

𝑧
signals used

by the local controller.
The slave side can be treated in a similar way, where 𝐹

𝑒
is

the unknown force from the environment and the controller
force 𝐹

𝑠𝑐
entering additively in 𝐹

𝑠
= 𝐹
𝑒
+ 𝐹
𝑠𝑐
.

In this work we also deal with the case of interaction
with the environment on the slave side for implementation in
applications such as robot arms with interacting tools. This
can be described as

𝑓
𝑒
= − 𝑘
𝑒
𝑥
𝑠
−𝐵
𝑒
𝑥̇
𝑠
,

𝐹
𝑒
(𝑠) = (−𝑘

𝑒
−𝐵
𝑒
𝑠)𝑋
𝑠
(𝑠) := 𝑊 (𝑠)𝑋

𝑠
(𝑠) .

(2)

In order to define how the signals sent from the master
reach to the slave and vice versa, the delay parameter is
assumed to be (see [8]) an unknown time-varying function
for which the upper bounds on the magnitude and the
variation satisfy ∀𝑡 ≥ 0:

0 ≤ 𝜏 (𝑡) = ℎ + 𝜂 (𝑡) ≤ ℎmax,
󵄨󵄨󵄨󵄨𝜂 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝜅 ≤ ℎ (3a)

| ̇𝜏 (𝑡)| ≤ 𝑑 < 1. (3b)

In this way, we assume that the main effect of the commu-
nication channel is to introduce a time-varying delay in the
form:

𝑦
𝑚𝑑𝑖

(𝑡) = D
𝑚
(𝑦
𝑚𝑖
) (𝑡) := 𝑦

𝑚𝑖
(𝑡 − 𝜏
𝑚
(𝑡)) ,

𝑦
𝑠𝑑𝑖

(𝑡) = D
𝑠
(𝑦
𝑠𝑖
) (𝑡) := 𝑦

𝑠𝑖
(𝑡 − 𝜏
𝑠
(𝑡)) ,

(4)

where D
𝑚
and D

𝑠
are the corresponding time-delay opera-

tors.
Now, we consider the expressions for the Generalized

four-channel control scheme (G-4C) in the most general
and representative case of delay-dependent schemes. Here,
the master and slave exchange, through the communication
channel, the velocities, or positions and the forces in both
directions, and the local controllers are defined in terms of the
applied external force (𝐹

ℎ
, 𝐹
𝑒
), its own velocity/position 𝑧

𝑚,𝑠

(master/slave), and the delayed velocity/position and force
𝑦
𝑠𝑑,𝑚𝑑

(slave/master) from the other side.
In the classical notation [1, 2, 4] the controllers 𝐾

𝑚
,

𝐾
𝑠
, when the system exchanges positions and forces (see

Figure 2), are usually defined as

𝐹
𝑚𝑐

= 𝐶
𝑚
𝑥
𝑚
+𝐶2𝐹𝑠𝑑 +𝐶4𝑥𝑠𝑑 −𝐶6𝐹ℎ, (5a)

𝐹
𝑠𝑐
= −𝐶

𝑠
𝑥
𝑠
+𝐶3𝐹𝑚𝑑 +𝐶1𝑥𝑚𝑑 +𝐶5𝐹𝑒. (5b)



Mathematical Problems in Engineering 3

+
+
+ +

+ +−

−Fmc

Fsd
Fmd

Fh Fe

Fscysd ymd

xm

xsd xmd

xszm zs
Km Ks

Cm

C4

C2

C6 C5

C3

C1

Cs

Figure 2: Local controllers in G-4C control scheme.

In this work we include the DOB blocks representing
disturbance observers that estimate the external forces 𝐹

ℎ
, 𝐹
𝑒

based onmeasurements of local controller forces 𝐹
𝑚𝑐
, 𝐹
𝑠𝑐
and

the mechanical systems coordinates (positions) 𝑥
𝑚
, 𝑥
𝑠
. Note

that the use ofDOBs in the control scheme involves obtaining
the local controller forces 𝐹

𝑚𝑐
, 𝐹
𝑠𝑐
in (5a) and (5b) from the

estimated external forces 𝐹
ℎ
, 𝐹
𝑒
. This issue will be described

in the following subsection.

2.1. Disturbance Observers DOB. A classical scheme for a
disturbance observer [15] can be seen in Figure 3(a). The
unknown signal 𝑑, an additive disturbance input to any plant
G, can be estimated from the known signals 𝑢, 𝑥 given an
approximate model Ĝ of the plant by tuning the controller
𝐾
𝑜
.

Proposition 1. A DOB as defined in Figure 3(a), with the
transfer function G as the plant and the transfer function Ĝ
as the model, can be described by the equivalent diagram in
Figure 3(b) with the following assignments:

Δ
𝑒
:= G− Ĝ ≡ modeling error

Δ 1 := Ĝ
−1
G− 𝐼 ≡ multiplicative error.

(6)

Proof. The estimated signal 𝑑 in Figure 3(a) is

𝑑 = −𝐾
𝑜
Ĝ𝑑−𝐾

𝑜
Ĝ𝑢+𝐾

𝑜
G𝑑+𝐾

𝑜
G𝑢. (7)

Rearranging the terms and adding ±𝐾
𝑜
Ĝ𝑑,

(𝐼 +𝐾
𝑜
Ĝ) ⋅ 𝑑 = −𝐾

𝑜
Ĝ𝑢+𝐾

𝑜
G𝑑+𝐾

𝑜
G𝑢±𝐾

𝑜
Ĝ𝑑, (8)

we get

(𝐼 +𝐾
𝑜
Ĝ) ⋅ 𝑑 = 𝐾

𝑜
Ĝ𝑑+𝐾

𝑜
(G− Ĝ) ⋅ (𝑢 + 𝑑) (9)

and consequently,

󳨐⇒ (𝐼 +𝐾
𝑜
Ĝ) ⋅ 𝑑 = 𝐾

𝑜
Ĝ𝑑+𝐾

𝑜
ĜΔ 1 (𝑢 + 𝑑) . (10)

Then, the following equation can be described in an equiva-
lent block diagram as shown in Figure 3(b):

𝑑 = (𝐼 +𝐾
𝑜
Ĝ)
−1

𝐾
𝑜
Ĝ ⋅ [(1+Δ 1) ⋅ 𝑑 +Δ 1 ⋅ 𝑢] . (11)

In this way, if the modelling error Δ
𝑒
→ 0, that is Ĝ →

G,Δ
1
→ 0 also, and it is possible to design𝐾

𝑜
so that 𝑑 → 𝑑

quickly and robustly.
Once Proposition 1 is proved, we apply this result to

define the master and slave disturbance observers in the
teleoperation system shown in Figure 1.

Definition 2. For 𝑢 = −𝐹
𝑚𝑐
, 𝑑 = 𝐹

ℎ
, the controller 𝐾

𝑜
= 𝐾
𝑚𝑜
,

the master plant G = 𝑃
−1
𝑚
, the master model Ĝ = 𝑃̂

−1
𝑚
, and

Δ 1𝑚 := 𝑃̂
−1
𝑚
𝑃
𝑚
− 𝐼, the external force 𝐹

ℎ
can be estimated by

a disturbance observer as in Figure 3 defined in the following
form:

𝐹
ℎ
= F
𝑚𝑜

⋅ [(𝐼 +Δ 1𝑚) ⋅ 𝐹ℎ −Δ 1𝑚 ⋅ 𝐹𝑚𝑐] (12a)

with the closed loop transfer function:

F
𝑚𝑜

= (𝐼 +𝐾
𝑚𝑜
𝑃̂
−1
𝑚
)
−1

𝐾
𝑚𝑜
𝑃̂
−1
𝑚
. (12b)

Definition 3. For 𝑢 = 𝐹
𝑠𝑐
, 𝑑 = 𝐹

𝑒
, the controller 𝐾

𝑜
= 𝐾
𝑠𝑜
,

the slave plant G = 𝑃
−1
𝑠
, the slave model Ĝ = 𝑃̂

−1
𝑠
, and

Δ
1𝑠

:= 𝑃̂
−1
𝑠
𝑃
𝑠
− 𝐼, the external force 𝐹

𝑒
at the slave side can

be estimated by a disturbance observer as in Figure 3 defined
in the following form:

𝐹
𝑒
= F
𝑠𝑜
⋅ [(𝐼 +Δ 1𝑠) ⋅ 𝐹𝑒 +Δ 1𝑠 ⋅ 𝐹𝑠𝑐] (13a)

with the closed loop transfer function:

F
𝑠𝑜
= (𝐼 +𝐾

𝑠𝑜
𝑃̂
−1
𝑠
)
−1

𝐾
𝑠𝑜
𝑃̂
−1
𝑠
. (13b)

Remark 4. A first contribution of this work is that the DOB
blocks required to observe the unknown external forces
𝐹
ℎ
, 𝐹
𝑒
based on measurements of local controller forces

𝐹
𝑚𝑐
, 𝐹
𝑠𝑐
and the positions 𝑥

𝑚
, 𝑥
𝑠
can be described by the

equivalent diagram in Figure 3(b) developed in Proposition 1,
by representing the observers as stable, fast filters affected
by the uncertainty in the plant modelling. Using Definition 2
and (12a) and (12b) we obtain the estimation of 𝐹

𝑒
by DOB on

themaster side, and using Definition 3 and (13a) and (13b) we
obtain the estimation of 𝐹

𝑒
by the DOB on the slave side.

3. Generic Model for Robust Stability in
Delay-Dependent Control Schemes with
Disturbance Observers

Our first objective will be to remodel the whole system
to obtain a single feedback loop containing a linear time
invariant LTI block and an uncertain time-varying delay
block. However, since teleoperation systems present several
delayed signals and since time-varying delays do not com-
mute with linear blocks, then it is not possible to reduce
them to one single delay. As a consequence, the stability
treatment requires the use of structured singular values (𝜇-
values) instead of ordinary singular values.

So, our strategy will be to rearrange the terms in such a
way that the loop transformation of the delayed systemmain-
tains an uncertain time-varying delay block with the same
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Figure 3: (a) Classical DOB scheme. (b) Equivalent diagram of DOB.

dimension as the number of the exchanged signals between
the master and slave.

In previous works we have obtained thesemodels for tele-
operation systems with a 2C-position error control scheme
[8], with a 4C-control scheme [14] and now, in this study,
we model a teleoperation system with a general 4C-control
scheme incorporating the disturbance observers.

Proposition 5. A teleoperation setup as described in Figures 1,
2, and 3, given by (1)–(5b), (12a), (12b), (13a), and (13b), can
be formulated as a compact model for robust stability analysis
using the generic approach developed in [8] in the form given
by (14), (15a), and (15b) and the block diagram in Figure 4:

Π
𝑜
(𝑠)𝑋 (𝑠) = −𝐶

𝑜
(𝑠)D𝐷 (𝑠)𝑋 (𝑠) +Φ

𝑜
(𝑠) 𝐹 (𝑠) , (14)

with

Π
𝑜
= (

𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚

0
0 Π22

) ,

𝑋 = (
𝑋
𝑚

𝑋
𝑠

) ,

𝐶
𝑜
= (

0
1×2

𝜃
𝑚
𝐶
4

𝜃
𝑚
𝐶
2

−𝜃
𝑠
𝐶
1

−𝜃
𝑠
𝐶
3

0
1×2

) ,

D = (
𝐼2 ⋅D𝑚 02×2
02×2 𝐼2 ⋅D𝑠

) ,

𝐷 = (
(1 𝑃
𝑚
)
𝑇 02×1

02×1 (1 𝑃
𝑠
)
𝑇

) ,

Φ
𝑜
= (

1 + 𝜃
𝑚
𝐶6F𝑚𝑜 (1 + Δ

1𝑚
) 0

0 Φ22
) ,

𝐹 = (
𝐹
ℎ

𝐹
𝑒

) ,

(15a)

where 𝜃
𝑚
:= (1 − 𝐶6F𝑚𝑜Δ 1𝑚)

−1, 𝜃
𝑠
:= (1 − 𝐶5F𝑠𝑜Δ 1𝑠)

−1 and
where the matricesΠ

𝑜
,Φ
𝑜
take the following values depending

on the case of external force as a disturbance 𝐹
𝑒

̸= 𝑓(𝑥
𝑠
)

+F(s) Φo(s)

Co(s)

Yd(s) Y(s)

D(s)

X(s)

−
Πo(s)

−1

Figure 4: Teleoperation loop.

(including 𝐹
𝑒
= 0 for free motion), or the case of environment

as impedance𝑊in (2):

Environment as disturbance case: Π22 = 𝑃
𝑠
+ 𝜃
𝑠
𝐶
𝑠
,

Φ
22

= 1+ 𝜃
𝑠
𝐶
5
(1 +Δ

1𝑠
)F
𝑠𝑜

Environment as impedance case: Π22

= 𝑃
𝑠
+ 𝜃
𝑠
𝐶
𝑠
− [1+ 𝜃

𝑠
𝐶5 (1+Δ 1𝑠)F𝑠𝑜]𝑊,

Φ22 = 0.

(15b)

Remark 6. Proposition 5 states one of the main results of
this paper. A teleoperation setup with a general 4C-control
scheme incorporating the disturbance observers can be
formulated as a compact model for robust stability analysis
by the loop transformation of the delayed system and main-
tains an uncertain time-varying delay block with the same
dimension as the number of the exchanged signals between
the master and slave.

We adopt the scaled four-channel control scheme 𝛾-4C
stated in our previous works [6, 14]. The controllers in the
𝛾-4C scheme incorporate a constant tuning factor 𝛾 > 1,
named the stability factor. The proposed form in which this
factor is included in the controllers in (16) increases the stable
region in practical conditions by fixing the desired bounds
on time-varying delay, with the particularity of maintaining
the tracking properties provided by this transparent control
scheme.
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One of the contributions of this paper after considering
these results is that we propose control based on observed
external forces, to define the controllers in (5a) and (5b) in
the form given by (16).

For 𝐶
𝑚
(𝑠), 𝐶
𝑠
(𝑠), 𝐶5, 𝐶6, and 𝛾 > 1,

𝐶4 (𝑠) = −
𝑃̂
𝑚
(𝑠) + 𝐶

𝑚
(𝑠)

𝛾
,

𝐶1 (𝑠) = 𝑃̂
𝑠
(𝑠) +𝐶

𝑠
(𝑠) ,

𝐶2 =
(1 + 𝐶6)

𝛾
,

𝐶3 =
(1 + 𝐶5)

𝛾
.

(16)

Definition 7. Given (14), (15a), and (15b) obtained by
Proposition 5 and selecting a control scheme 𝛾-4C with the
values proposed in (16), we define the compact model for
robust stability analysis in 𝛾-4C with disturbance-observer-
based teleoperation as

Π
𝑜
(𝑠)𝑋 (𝑠) = −𝐶

𝑜
(𝑠)D𝐷 (𝑠)𝑋 (𝑠) +Φ

𝑜
(𝑠) 𝐹 (𝑠) . (17)

Obtained after suitable identification and given the controller
values in (16).Thismodel can be drawn by the blocks diagram
in Figure 4.

Remark 8. The model described in Definition 7 is directly
represented by Figure 4 and maintains four time-varying
delays channels inherited from Figure 1, bearing in mind that
they cannot be combined in a single delay because time-
varying delays do not commute with LTI systems. The four
delays are the ones affecting positions and forces sent from
master to slave and back.

3.1. Steady-State Analysis. Note that from the teleoperation
loop in Figure 4, we can also obtain the zero-delay (D =
𝐼 ⇒ 𝑌

𝑑
= 𝑌) closed loop dynamics in order to study

some transparency properties and the steady-state behavior,
considering

𝑋(𝑠)

= (𝐼 +Π
−1

𝑜
(𝑠) 𝐶
𝑜
(𝑠)𝐷 (𝑠))

−1

Π
−1

𝑜
(𝑠) Φ
𝑜
(𝑠) 𝐹 (𝑠)

=: Λ
𝑜
(𝑠) 𝐹 (𝑠) .

(18)

That is,

𝑥
𝑚
= Λ 11𝑓ℎ +Λ 12𝑓𝑒,

𝑥
𝑠
= Λ
21
𝑓
ℎ
+Λ
22
𝑓
𝑒
,

(19a)

with the following values:

Λ 11 = Δ
Λ

−1
(𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

⋅ (1+ 𝜃
𝑚
𝐶6F𝑚𝑜 (1+Δ 1𝑚)) ,

Λ
12

= −Δ
Λ

−1

(𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
(𝐶
4
+𝐶
2
𝑃
𝑠
) ⋅ Π
−1

22

⋅ Φ
22
,

Λ
21

= Δ
Λ

−1

⋅ Π
−1
22 ⋅ 𝜃𝑠 (𝐶1 +𝐶

3
𝑃
𝑚
) (𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

⋅ (1 + 𝜃
𝑚
𝐶
6
F
𝑚𝑜

(1 +Δ
1𝑚

)) ,

Λ 22 = Δ
Λ

−1
⋅ Π
−1
22 ⋅ Φ22

(19b)

withΔ
Λ
= 1+Π

−1

22
⋅𝜃
𝑠
(𝐶
1
+𝐶
3
𝑃
𝑚
)(𝑃
𝑚
+𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
(𝐶
4
+𝐶
2
𝑃
𝑠
)

and Π22, Φ22 as defined in (15b) for each 𝐹
𝑒
case.

Regarding observers for analysis, if the modelling error
Δ
𝑒

→ 0 ⇒ Δ
1𝑚
, Δ
1𝑠

→ 0, and 𝐾
𝑚𝑜
, 𝐾
𝑠𝑜
appropriately,

we can obtain in the steady-state F
𝑚𝑜
, F
𝑠𝑜

→ 1. In these
conditions, 𝜃

𝑚
, 𝜃
𝑠
→ 1.

Remark 9. Therefore, the Λ steady-state values are given by
(20) when the teleoperation setup is formed by master and
slave systems with one degree-of-freedom, whose dynamic
models are 𝑃

𝑚
= 𝑀
𝑚
𝑠
2

+ 𝐵
𝑚
𝑠, 𝑃
𝑠
= 𝑀
𝑠
𝑠
2

+ 𝐵
𝑠
𝑠 and tuning

𝐶
𝑚
(𝑠) = 𝑘

𝑚
, 𝐶
𝑠
(𝑠) = 𝑘

𝑠
, 𝐶
5
= constant, 𝐶

6
= constant and

𝛾-4C controllers as in (16):

lim
𝑠→ 0

Λ (𝑠) = Λ
∞

=
1

Δ
Λ∞

(

1 + 𝐶6
𝐶
𝑚∞

−
𝐶4∞
𝐶
𝑚∞

Φ22∞
Π22∞

𝐶1∞
Π22∞

(1 + 𝐶6)

𝐶
𝑚∞

Φ22∞
Π22∞

),

with Δ
Λ∞

= 1 +
𝐶1∞𝐶4∞
𝐶
𝑚∞

Π22∞
.

(20)

So that, depending on 𝐹
𝑒
, we obtain

Disturbance case: Λ
∞

󵄨󵄨󵄨󵄨𝐹𝑒 ̸=𝑓(𝑥𝑠)

=
1

Δ
Λ∞

(

1 + 𝐶
6

𝐶
𝑚∞

−
𝐶
4∞

𝐶
𝑚∞

(1 + 𝐶
5
)

𝐶
𝑠∞

𝐶
1∞

𝐶
𝑚∞

(1 + 𝐶
6
)

𝐶
𝑠∞

1 + 𝐶
5

𝐶
𝑠∞

)

=
𝛾

𝛾 − 1
(

1 + 𝐶
6

𝑘
𝑚

1

𝛾

(1 + 𝐶
5
)

𝑘
𝑠

(1 + 𝐶
6
)

𝑘
𝑚

1 + 𝐶
5

𝑘
𝑠

),

with Δ
Λ∞

= 1 +
𝐶
1∞

𝐶
4∞

𝐶
𝑚∞

𝐶
𝑠∞

.

(21a)
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Impedance case: Λ
∞

󵄨󵄨󵄨󵄨𝐹𝑒=𝑓(𝑥𝑠)

=
1

Δ
Λ∞

(

1 + 𝐶
6

𝐶
𝑚∞

0

𝐶
1∞

𝐶
𝑚∞

(1 + 𝐶
6
)

(𝐶
𝑠∞

+ 𝑘
𝑒
(1 + 𝐶

5
))

0

)

=
𝑘
𝑒
(1 + 𝐶

5
)

𝑘
𝑠
+ 𝑘
𝑒
(1 + 𝐶

5
)
(

1 + 𝐶
6

𝑘
𝑚

0

𝑘
𝑠

𝑘
𝑚

(1 + 𝐶
6
)

(𝑘
𝑠
+ 𝑘
𝑒
(1 + 𝐶

5
))

0

) ,

with Δ
Λ∞

= 1 +
𝐶
1∞

𝐶
4∞

𝐶
𝑚∞

(𝐶
𝑠∞

+ 𝑘
𝑒
(1 + 𝐶

5
))

.

(21b)

4. Robust Stability for Delay-Dependent
Control Schemes with
Disturbance Observers

In this Section, the approach to stability under time-varying
delay in teleoperation developed in [8] is applied to the 𝛾-4C
control scheme incorporating the external forces disturbance
observers. A basic result adapted from [19] providing a bound
of a certain delay subsystem, is combined with input-output
stability criteria and 𝜇-analysis and synthesis techniques to
reach a final robust stability condition (Theorem 11).

Proposition 10. A teleoperation setup as stated in Definition 7
and Figure 4 can be modeled as a negative single feedback
loop containing a linear time invariant LTI block 𝐺(𝑠) and an
uncertain time-varying delay block D shown in Figure 5(a),
with

𝐺 (𝑠) = 𝐷 (𝑠)Π
−1
𝑜

(𝑠) 𝐶
𝑜
(𝑠) . (22)

And so, the LTI subsystem considering (14), (15a), (15b), and
(17) is

𝐺 = (

02×2
(𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
𝐶4 (𝑃

𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
𝐶2

𝑃
𝑚
(𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
𝐶4 𝑃
𝑚
(𝑃
𝑚
+ 𝜃
𝑚
𝐶
𝑚
)
−1

𝜃
𝑚
𝐶2

−Π
−1
22𝜃𝑠𝐶1 −Π

−1
22𝜃𝑠𝐶3

−𝑃
𝑠
Π
−1
22𝜃𝑠𝐶1 −𝑃

𝑠
Π
−1
22𝜃𝑠𝐶3

02×2

) (23)

given the controller values in (16) and Π22, Φ22 as defined in
(15b) for each 𝐹

𝑒
case.

Proof. Consider the feedforward actionΦ
𝑜
(𝑠) defined in (15a)

and (15b). If the DOBs modelling error Δ
𝑒

→ 0 ⇒

Δ
1𝑚

Δ
1𝑠

→ 0 and it is possible to design𝐾
𝑜
so that estimated

external forces tend to real ones quickly and robustly, then
F
𝑚𝑜
,F
𝑠𝑜

→ 1, 𝜃
𝑚
, 𝜃
𝑠
→ 1. Also, it is natural to assume that

𝐶
5
and 𝐶

6
are designed such that Φ

𝑜
(s) is stable. Then the

stability of the whole teleoperation system does not depend
on Φ

𝑜
(𝑠) and depends essentially on the stability of the

feedback loop in Figure 4. Therefore, from (17) and Figure 4,
𝑋 = −Π

−1

𝑜
𝐶
𝑜
𝑌
𝑑
and 𝑌 = −𝐷Π

−1

𝑜
𝐶
𝑜
𝑌
𝑑
= −𝐺𝑌

𝑑
, which can be

represented in a compact form in Figure 5(a).

Theorem 11. Consider a 𝛾-4C based teleoperation system
incorporating the external forces disturbance observers mod-
eled by (14)–(17) and directly represented by Figure 4 and
transformed into Figure 5(a) by Proposition 10. Let 𝐺(𝑠) be as
defined in (23) and let 𝜙(𝑠) be as defined in [19]

𝜙 (𝑠) = 𝑘 ⋅
ℎ
2
max𝑠

2
+ 𝑐 ⋅ ℎmax𝑠

ℎ2max𝑠
2 + 𝑎ℎmax𝑠 + 𝑘 ⋅ 𝑐

(24)

with 𝑘 = 1+1/√1 − 𝑑, 𝑎 = √2𝑘 ⋅ 𝑐, where 𝑐 is any positive real
number and delay bounds ℎmax, 𝑑 are as defined in (3a) and
(3b).

A sufficient condition for stability of the delayed system as
described in Figure 5(a), with a complex diagonal structured
uncertainty, is

Γ = max
𝜔∈[0,∞]

𝜇 [𝐻 (𝑗𝜔)] = max
𝜔∈[0,∞]

𝜌 [𝐻 (𝑗𝜔)] < 1, (25)

where

𝐻(𝑠) =: 𝜙 (𝑠) ⋅ (𝐼 +𝐺 (𝑠))
−1

𝐺 (𝑠) (26)

and 𝜇(⋅) is the structured singular value (SSV) with respect to a
repeated complex scalar uncertainty, which is equal to 𝜌(⋅), the
spectral radius of a matrix (the maximum of the norms of the
eigenvalues).

Proof. This result is obtained first, by applying the loop trans-
formation theorem (Figure 5(a) loop is stable iff Figure 5(b)
loop is stable) and the small gain theorem to Figure 5(b),
whereby ‖𝐻(𝑠)‖

𝐿2
⋅ ‖Δ‖
𝐿2

< 1. Since ‖Δ‖
𝐿2

≤ 1 by [19],
the sufficient condition is ‖𝐻(𝑠)‖

𝐿2
< 1. Second, using

the 𝜇-techniques for robust stability [20] we can interpret
Figure 5(b) as a nominal system𝐻(𝑠) connected to a dynamic
or complex uncertainty Δ that is actually diagonal. More
details can be seen in [8].

Remark 12. As a prerequisite for robust stability, we must
first satisfy nominal stability; that is,𝐻(𝑠)must be internally
stable. A necessary condition for this, derived from 𝐻(𝑠)

definition (26), is |𝐼 + 𝐺(𝑠)| ̸= 0.
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𝒟
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Figure 5: (a) LTI system with time-varying delay in the feedback loop. (b) Loop transformation of the delay system.

The use of frequency techniques combined with input-
output stability criteria and 𝜇-analysis and synthesis tech-
niques provides properties of robustness.Therefore using the
stability condition (25) for any delay satisfying (3a) and (3b),
we ensure robust stability under time-varying delays. But the
modeled systems can also present a second uncertainty: the
variation of the parameters, and this has an influence on
system 𝐻(𝑠) in the final condition (25). Parameter variation
could be treated explicitly in the 𝜇-synthesis framework
although it can be simply addressed by discretization of the
parameter intervals and by checking (25) for the mesh of
discretized values. This is less conservative, as recommended
in [20], and also provides robustness against parametric
uncertainty.

In our teleoperation case study with the control scheme
incorporating the external forces disturbance observers, the
parametric uncertainties are dealt with by using different
models for the nominal plants and for the plant estimations
used in the observers and controllers.

Remark 13. As the main contribution of this paper,
Proposition 10 remodels the 4C control scheme to incor-
porate the external forces disturbance observers to obtain a
single feedback loop containing a linear time invariant LTI
block and an uncertain time-varying delay block to reach
a final robust stability condition, proposed in Theorem 11
through (25), over the whole system.

5. Teleoperation Case Study

The previous generalized framework for 4C architecture
with force observers through DOBs has been analyzed by
simulations using Simulink and Matlab. In this section we
describe the parameters of the simulation case study. The
following section presents the simulation results.

We study the remote teleoperation between master and
slave haptic devices. The master and slave sides consist of
identified linearmodels of two PhantomOmni haptic devices
manufactured by SensAble Technologies Inc. These devices
have 6-DoF position sensing and 3-DoF force actuation.
To focus on the robust stability issue, rather than multi-
DoF issues, we limit the movements to 1-DoF. This has
been achieved using the first rotational coordinate (the base
rotation) as the free DoF. In this way, the two Omnis rotate
around their vertical axes, while the shoulder, elbow, and
stylus are blocked.

Thus, the master and slave positions are (𝑥
𝑚
, 𝑥
𝑠
), the

sensed Omni base angles in radians (rad). The actuations
are (𝑓

𝑚
, 𝑓
𝑠
), the torque inputs to the motors for vertical

axis rotation, in machine units (mu) because we do not have
access to physical units.

We concentrate on 1-DoF movements around a fixed
position (theOmnis’ “zero”). Although theOmnis are robotic
nonlinear systems, it is expected from the linearization
principle that the local dynamics from forces to positions can
be captured by models in the form 𝐺

𝑖
= 𝑃
−1

𝑖
= 1/𝑠(𝑀

𝑖
𝑠 + 𝐵
𝑖
),

as usual [21]. Notice that here we maintain the terms “forces”
and “positions” for simplicity, to denote also torques and
angles. Notice as well that since the forces are in machine
units, the inertia-mass 𝑀 and friction 𝐵 coefficients will be
given in machine or virtual units.

After linearizing the devices by dead-zone compensation,
the linear models 𝐺

𝑖
(𝑠) = 1/(𝑠(𝑀𝑠 + 𝐵)) can be obtained as

usual [21] by applying in closed loop (proportional controller)
square and triangular references, recording force inputs
and position outputs and performing standard least-squares
identifications of𝑀, 𝐵. In this way, the simulated master and
slave plants are 𝑃

−1

𝑚
= 1/(𝑀

𝑚
𝑠
2

+ 𝐵
𝑚
𝑠), 𝑃−1
𝑠

= 1/(𝑀
𝑠
𝑠
2

+

𝐵
𝑠
𝑠) (in machine units) with 𝑀

𝑚
= 𝑀
𝑠
= 0.0015 (m.u.),

𝐵
𝑚

= 𝐵
𝑠
= 0.028 (m.u.). For the observers in (12a)–(13b)

and the controllers (𝐶
1
, 𝐶
4
in (16)) we establish master and
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slave approximate models with the values 𝑃̂
−1

𝑚
= 𝑃̂
−1

𝑠
=

1/(0.001 s2+0.02 s).We complete the controller parameters in
(16) with the numerical values:𝐶

𝑚
= 𝑘
𝑚
,𝐶
𝑠
= 𝑘
𝑠
with 𝑘

𝑚
= 𝑘
𝑠

= 0.1; 𝐶
5
= 𝐶
6
= 0.2, 𝛾 = 10.

Related to the external forces, the human forces𝑓
ℎ
will be

ramp inputs simulating how the human operator moves the
master in its free work space to be followed by the slave. But
on the slave side, there is a “wall,” hard (𝑘

𝑒
= 4) or soft (𝑘

𝑒
=

0.2), with damping (𝐵
𝑒
= 0.2) or not, located at 𝑥

𝑠
= 0.3 so that

the slave will be in contact with the environment once it gets
to that position, reflecting the perceived force to the master
side.

These forces are estimated byDOBs inwhich the designed
observer controllers are PID-type (proportional, integral, and
derivative) controllers in the form

𝐾
𝑚𝑜

= 𝐾
𝑠𝑜
=

6.25 ⋅ (𝑠 + 20)
2

𝑠 ⋅ (𝑠 + 100)
(27)

to obtain 𝑑 → 𝑑 (in Figure 3(b), i.e.,𝐹
ℎ
→ 𝐹
ℎ
and𝐹
𝑒
→ 𝐹
𝑒
)

with null steady-state error for step and ramp inputs in 𝑑 and
with a fast transient (at least three times faster than the control
transient), bandwidth 100 rad/sec and phase margin 41∘.

Remark 14. If the DOBsmodelling error tends to zero,Δ
𝑒
→

0, and the observer controllers are selected as in (27), fulfilling
these design requirements, we ensure that estimated external
forces tend to real ones with null error, quickly and robustly,
and soF

𝑚𝑜
,F
𝑠𝑜

→ 1, 𝜃
𝑚
, 𝜃
𝑠
→ 1.

6. Analysis and Simulation Results

The robust stability tool under time-varying delay, described
in Section 4, provides a sufficient condition for stability Γ <

1 that depends on the delay bounds (ℎmax, 𝑑), on some
parametric uncertainty (Δ

𝑒
), on the designed observers and

on the 𝛾 factor in local controllers in (16). The stability
analysis can be assessed by applyingTheorem 11 usingMatlab.
In this way, we compute the structured singular value (SSV)
𝜇[𝐻(𝑗𝜔)] for 𝜔 ∈ (0,∞) and test the stability by applying
condition Γ = max

𝜔∈[0,∞]𝜇[𝐻(𝑗𝜔)] < 1.
The influence of the 𝛾 factor on the stability has been

studied in previous works [6, 14]. As the main conclusions,
we highlighted that the stability factor lets us increase the
stability margin in practical conditions, maintaining the
tracking properties of the system, and we can adjust the 𝛾

factor in order to ensure the stability of the system given the
desired delay characteristics.

Here, for brevity, we present in Figure 6 the stability
condition results for the teleoperation case study described in
Section 5, with the DOBs in free motion (𝐹

𝑒
= 0). First, fixing

the delay bounds ℎmax = 0.5 s and 𝑑 = 0.45 we show the SSV
(red⋅ ⋅ ⋅ ) for 𝛾 = 3, 5, 7, 9, 10, checking that the system is stable
for 𝛾 = 10 (red) because Γ = 0.9349 < 1. Then we change the
delay conditions with the same 𝛾 = 10: in green (- -) ℎmax =
5 s, 𝑑 = 0.45⇒ Γ = 1.0793 and in blue (-⋅) ℎmax = 0.5 s, 𝑑 = 0.95
⇒ Γ = 1.9636. The system is unstable in both cases.

Following this procedure, in Table 1 we present the
minimum value of the stability factor 𝛾 to ensure the stability

0

0.5

1

1.5

2

2.5

3

Frequency (rad/s)

SS
V

d

Stability
 limit

hmax

𝛾 = 3

𝛾 = 10

𝛾 = 10, hmax = 0.5, d = 0.45

𝛾 = 10, hmax = 0.5, d = 0.95

𝛾 = 10, hmax = 5, d = 0.45

𝛾 = 9

𝛾 = 7

𝛾 = 5

𝛾 = 3

10−1 100 101 102 10310−2

Figure 6: Γ: Upper bound on 𝜇 for 𝑑 = 0.45, ℎmax = 0.5, 𝛾 = 3, 5, 7, 9,
10 (red), for 𝑑 = 0.45, ℎmax = 5, 𝛾 = 10 (green - -), for 𝑑 = 0.95, ℎmax =
0.5, 𝛾 = 10 (blue -⋅).

Table 1: Minimum stability factor for stability.

Environment
conditions 𝑓

𝑒
= −4𝑥

𝑠
𝑓
𝑒
= −4𝑥

𝑠
− 0.2𝑥̇

𝑠
𝑓
𝑒
= −0.2𝑥

𝑠
𝑓
𝑒
= 0

Minimum 𝛾 1 1.1 7.8 9.1

of the teleoperation system with ℎmax = 0.5 s and 𝑑= 0.45 for
different environment forces 𝐹

𝑒
.

Then, we study the performance of the system through
simulations when the human operator applies a reference
force (𝐹

ℎ
) to move the master and it is followed by the slave,

which has in its work space (𝑥
𝑠
= 0.3) a wall. For these

simulation conditions, the observer on the slave side must
only be appliedwhen𝐹

𝑒
̸= 0.This last issue can be understood

by bearing the observer structure in Figure 3(b) in mind.
When Δ

𝑒
̸= 0 ⇒ Δ

1
̸= 0. On the slave side, the unknown

signal (𝑑=𝐹
𝑒
), when the slave is in freemotion, is zero, and so

the observer output 𝑑 will tend to known signal 𝑢 = 𝐹
𝑠𝑐
, with

values to follow the master positions as the control system
requires. Note that if this occurs on the master side, 𝑑 = 0 =
𝐹
ℎ
implies that the control system reference is zero.Therefore

the observer output will tend to known signal 𝑢 = −𝐹
𝑚𝑐

but
in this case it will also be zero.

The simulation results are with delay values ℎ = 0.5 s,
|𝜂(𝑡)| ≤ 0.01 s, and 𝑑 = 0.45. Due to time-varying delay we
saw in simulations that the master and slave forces were very
noisy, which is not very desirable. To solve this issue, the
output signals in 𝐶

1
, 𝐶
4
controllers in (16) must be filtered.

So, we select a second order lowpass butterworth filter with
a cutoff frequency of 100 rad/sec at the output of 𝐶

1
, 𝐶
4
.

The master/slave plants are not the same as the master/slave
models; that is, Δ

𝑒
̸= 0 with the values described in Section 5.

In Figure 7 the environment impedance is 𝐹
𝑒
= −0.2𝑥

𝑠
,

and in Figure 8 we consider hard wall impedances. In this
last case the contact generates high force oscillation that the
observer is able to detect, which also tests the performance
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Figure 7: Simulation case soft wall impedance: 𝛾 = 10 with ℎ = 0.5, |𝜂(𝑡)| ≤ 0.01 s, 𝑑 = 0.45, Δ
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̸= 0.

of the system. We can conclude that the designed DOBs in
which Δ

𝑒
→ 0 are robust.

The interested reader can see in [22] more detailed
simulations and an appendix with the proof of Proposition 5.

7. Conclusions

In this paper we have extended our previous framework
for robust stability to the practical case in which there are
no force measurements and thus DOBs are required to

observe unknown forces and to implement the four-channel
architecture. This has been achieved by representing the
observers as stable, fast filters affected by the uncertainty
in the plant modelling. In this way the stability test has an
SSV formulation including the observer parameters.We have
done extensive simulations with modelling errors, various
delay ranges, jitter, and environments on the slave side,
confirming the usefulness of the approach.

There are several possible extensions to this work to be
considered for future research. To improve the teleoperation
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Figure 8: Simulation case hard wall impedance: 𝛾 = 10 with ℎmax = 0.5, |𝜂(𝑡)| ≤ 0.01 s, 𝑑 = 0.45.

robustness, for example, Lyapunov-Krasovskii functionals
can be used as in [23] or the generic IQC framework as in
[24, 25].
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