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In multiagent systems, tracking multiple targets is challenging for two reasons: firstly, it is nontrivial to dynamically deploy
networked agents of different types for utility optimization; secondly, information fusion for multitarget tracking is difficult in the
presence of uncertainties, such as data association, noise, and clutter. In this paper, we present a novel control approach in distributed
manner for multitarget tracking. The control problem is modelled as a partially observed Markov decision process, which is a
NP-hard combinatorial optimization problem, by seeking all possible combinations of control commands. To solve this problem
efficiently, we assume that the measurement of each agent is independent of other agents’ behavior and provide a suboptimal
multiagent control solution by maximizing the local Rényi divergence. In addition, we also provide the SMC implementation
of the sequential multi-Bernoulli filter so that each agent can utilize the measurements from neighbouring agents to perform
information fusion for accurate multitarget tracking. Numerical studies validate the effectiveness and efficiency of our multiagent
control approach for multitarget tracking.

1. Introduction

Advances in microelectromechanical systems have signifi-
cantly boosted the development of multiagent systems in
the past two decades. Low-cost agents, for example, robots,
unmanned vehicles, or autonomous platforms, with high
mobility, various sensing types, and powerful communi-
cation ability, are capable of different tasks in complex
environment, for example, environmental monitoring, target
localization and tracking, and event recognition [1, 2]. Mul-
tiagent coordinated control, as the fundamental problems in
multiagent system, has received increasing research interest
for utility optimization recently [3–5]. An area that benefits
greatly from multiagent system is target tracking [6]. How-
ever, very little progress has been made in this direction
since it is an extremely challenging problem in two aspects:
multiagent control and information fusion for multitarget
tracking.

The multiagent control problem in essence is a decision
making issue which is to fulfill a given task in an optimal/
suboptimal way. In this paper, we study the multiagent con-
trol problem particularly for multitarget tracking including

accurate estimation of both target number and the location
of each target. In the literature, researchers and practitioners
have done extensive work on the agent control problem.
Olfati-Saber et al. [6] established a consensus based Kalman
filter for distributed single target tracking. In [7], multiagent
control is performed by path following of a virtual leader.
Olfati-Saber [8] provided flocking algorithms in both theory
and applications to handle large number of agents. Unfortu-
nately, none of them fit for the multitarget tracking issue well.

Recently, random finite set (RFS) based Bayesian frame-
work has opened doors for multisensor multiobject system
and provides elegant mathematical tools to address multitar-
get tracking problem inmultiagent systems [9].The probabil-
ity hypothesis density (PHD) [10], cardinalizedPHD(CPHD)
[11], and multi-Bernoulli filter [12] have been developed as
approximations under different posterior assumptions. Gaus-
sianmixture and particle implementation of these filters have
been shown to be effective in different tracking applications
[13–17]. Using tools from FISST, agent control can pose as a
partially observed Markov decision process (POMDP) [18],
which has been shown to be effective in a single agent case in
recent works [19, 20].
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In this paper, we will further extend the work in [19, 20]
to amore general problem:multiagent control formultitarget
tracking, which is far more difficult than the single agent
control case. We first model the multiagent coordinated
control problem as a 1-step look-ahead POMDP since the
multiple-step look-ahead is computationally intractable and
show it is a NP combinatorial optimization problem when
seeking all possible combinations of admissible control com-
mands. Hence, we propose a suboptimal solution under the
assumption that themeasurements of each agent are indepen-
dent of other agents’ behavior. The multiagent coordinated
control is decoupled into distributed control of each agent
by maximizing the local Rényi divergence between prior and
posterior multitarget probability density. Besides, we present
the sequential Monte Carlo (SMC) implementation of the
sequential multi-Bernoulli filter for each agent to utilizemea-
surements from neighbouring agents. Numerical simulations
demonstrate the effectiveness and efficiency of our approach.

The remainder of this paper is organized as follows.
Section 2 presents some preliminary knowledge of RFS based
Bayesian framework to lay a foundation for the rest of this
paper. In Section 3, we illustrate the distributed agent control
approach and present its implementation in detail. Section 4
provides the information fusion scheme formultitarget track-
ing for each agent to utilize measurements from other agents.
Section 5 provides numerical results that verify the proposed
agent control and multitarget tracking approach.

2. Preliminary Knowledge of RFS Based
Bayesian Framework

This section provides the basic concepts and notations of
RFS based Bayesian framework. Section 2.1 gives a general
description of RFS and how to model multitarget by multi-
Bernoulli RFS. Then, the RFS based Bayesian filtering is
provided thereafter in Section 2.2.

2.1. Multi-Bernoulli RFS. A random finite set (RFS) is a
randomvariable that takes values as unordered finite sets.The
randomness of anRFS refers to two aspects: the set cardinality
(number of elements of the set) is random; each element in
the set is also a randomvariable.The probabilistic description
of RFS has been studied regarding various types of probability
distributions such as multi-Bernoulli (or Bernoulli) RFS,
IID (short for independent identically distributed) cluster
RFS, and Poisson RFS [21]. Here, we introduce the multi-
Bernoulli RFS for multitarget state modelling, which offers
a better alternative than the Poisson RFS and IID cluster
RFS in applications with highly nonlinear model and/or
nonhomogeneous sensor type [12].

Assume the dimension of target state is 𝑛; then, the
target state space is denoted by X ⊆ R𝑛. A multi-Bernoulli
RFS 𝑋 on X is a union of a fixed number of independent
Bernoulli RFSs 𝑋(𝑗) with existence probability 𝑟

(𝑗)

∈ (0, 1)

and probability density 𝑝
(𝑗) (defined on X), 𝑗 = 1, . . . ,𝑀;

that is,𝑋 = ∪
𝑀

𝑗=1
{𝑋

(𝑗)

}.

Use a Bernoulli set for modelling a single target; then, the
multitarget state can be modeled as multi-Bernoulli RFS Ξ

with probability density given in [12] as follows:

𝑓 ({x
1
, . . . , x

𝑛
}) = 𝑓 (0) ⋅ ∑

(𝑟
(𝑗)
,𝑝
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(x
𝑖
)

1 − 𝑟
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) , (1)

where 𝑟
(𝑗) and 𝑝

(𝑗), respectively, represent the existence
probability and distribution of the 𝑗th target and 𝑓(0) =

∏
𝑀

𝑗=1
(1 − 𝑟

(𝑗)

). It is clear that the multitarget density can
be completely specified by multi-Bernoulli parameter set
{(𝑟

(𝑗)

, 𝑝
(𝑗)

)}
𝑀

𝑗=1
. Hence, let us denote the multitarget density

at time 𝑘 by 𝜋
𝑘
= {(𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
)}
𝑀𝑘

𝑗=1
for short in the following

content.

2.2. Multisource Multiobject Bayesian Framework. Stochastic
filtering in Bayesian framework has developed in decades
[22]. Under the assumption of linear model and Gaussian
distribution, Kalman filter is derived [23] and has beenwidely
used for tracking since then. To extend the standard Bayesian
framework to a multisource multitarget version, we need the
help of RFSmodelling. Let𝑋

𝑘
and𝑍

𝑘
denote the state set and

observation set, respectively, as follows:

𝑋
𝑘
= {x

𝑘,1
, . . . , x

𝑘,𝑁𝑘
} ,

𝑍
𝑘
= {𝑍

1

𝑘
, . . . , 𝑍

𝑊

𝑘
} ,

(2)

where 𝑊 is the total number of agents (we treat each agent
as a single sensor) and 𝑍

𝑖

𝑘
= {z𝑖

𝑘
, . . . , z𝑖

𝑘,𝑀𝑘,𝑖
} for 𝑖 = 1, . . . ,𝑊.

𝑁
𝑘
is the time-varying cardinality of targets, while𝑀

𝑘,𝑖
is the

cardinality of the measurement set generated by agent 𝑖.
Using the RFS representation, the movement of multiob-

ject can be described using two parts: an RFS for survival
targets from previous time step 𝑆

𝑘
and an RFS for sponta-

neous birth targets at current time Γ
𝑘
.Thus, at time 𝑘, we have

the predicted RFS 𝑋
𝑘
= 𝑆

𝑘
∪ Γ

𝑘
. The RFS for measurements

𝑍
𝑖

𝑘
of agent 𝑖 can be represented as a union of two parts:

target-generatedmeasurementsΘ𝑖

𝑘
and clutter𝐾𝑖

𝑘
; thus,𝑍𝑖

𝑘
=

Θ
𝑖

𝑘
∪ 𝐾

𝑖

𝑘
.

Given the specific type of RFS, the Bayesian framework
for optimal estimation via RFS which is the same form as the
classical Bayesian filtering is given as follows:

𝑓
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,

(3)

which represent the prediction and update process of
Bayesian recursion via set integrals, respectively. Under
different assumptions of the RFS type, the PHD, CPHD, and
multi-Bernoulli filter have been derived from (3) by finite set
statistics [9]. Notice that the integrals in (3) are FISST set
integrals (see [9–11] for details).
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3. POMDP Based Distributed Multiagent
Control Approach

In this section, we first illustrate multiagent control in the
framework of a POMDP in Section 3.1. Section 3.2 provides
maximizing expected Rényi divergence between prior and
posterior multitarget density as the objective function for
the control scheme. By assuming the measurement of each
agent is independent of other agents’ behavior, we propose a
distributed agent control approach by maximizing the local
Rényi divergence in Section 3.3.

3.1. POMDP Based Multiagent Control. We begin with the
notations of using a POMDP as the solution for multiagent
control. At time 𝑘, denote the control command of agent 𝑖
by u𝑖

𝑘
∈ U𝑖

𝑘
, where U𝑖

𝑘
is the set of all admissible control

commands for agent 𝑖. Let U
𝑘
∈ U

𝑘
denote the multiagent

control command, and U
𝑘
is the set of all possible control

command combinations.Then,U
𝑘
= {u1

𝑘
, . . . , u𝑖

𝑘
, . . . , u𝑊

𝑘
} for

𝑖 = 1, . . . ,𝑊 and𝑊 is the total number of agents.
DefineD(V, 𝑓, 𝑍) as the objective function dependent on

multiagent control command V, multitarget density 𝑓, and
the associated measurement set 𝑍 when control command
V was applied. The aim of multiagent control is to find
the optimal multiagent control command U

𝑘
by maxi-

mizing/minimizing the statistical expectation of predefined
objective functionD(V, 𝑓, 𝑍) as

U
𝑘
= arg max(min)

V∈U𝑘

E

× [D (V, 𝑓
𝑘−1

(𝑋
𝑘−1

| 𝑍
0:𝑘−1

,U
0:𝑘−1

) , 𝑍
𝑘
(V))] ,

(4)

where 𝑓
𝑘−1

(𝑋
𝑘−1

| 𝑍
0:𝑘−1

,U
0:𝑘−1

) represents the multitarget
posterior density after applying a sequence of multiagent
control commands U

0
, . . . ,U

𝑘−1
. Remark that the general

formulation of POMDP is a 𝑝-step future decision process
of which the computational cost would grow exponentially
with the number of future steps. In this paper, we only
consider a one-step future decision described by (4) as an
approximation.

3.2. Global Objective Function. As shown in (4), the objective
function plays a crucial role in POMDP based multiagent
control problem. Information theoretic method is a typical
objective function for sensor management. Here, we propose
maximizing the information gain of multitarget prior and
posterior density as the objective function for tracking. The
Rényi divergence, also known as alpha divergence, measures
the information gain between any two probability densities.
The objective function for multitarget tracking is given as
follows:

R (U
𝑘
) =

1

𝛼 − 1

× log((∫ [𝑔
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where 𝑝(𝑍
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1:𝑘
)𝛿𝑋 and 𝛼 is a parameter that determines

howmuch we emphasize the tails of two densities in the met-
ric. Notice that the Rényi divergence becomes the Kullback-
Leibler discrimination and Hellinger affinity, respectively,
when 𝛼 → 1 and 𝛼 = 0.5 [24].

To compute the expectation of (5), we introduce the
SMC implementation of the objective function. At time 𝑘,
assume that the multitarget predicted density 𝑓

𝑘+1|𝑘
(𝑋

𝑘
|

𝑍
1:𝑘
) is given in SMC form; that is, 𝑓
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represent target position in the state

space, and 𝜔
𝑗 is the weight associated to particle𝑋𝑗

𝑘+1
. Notice

that𝑋𝑗

𝑘+1
is a particle sampled from aRFS, which accounts for

the randomness of both the cardinality and target positions
of particle 𝑋

𝑗

𝑘+1
. Given the Bayesian prediction and update

equations (3), we obtain

E [R (U
𝑘
, 𝑍

𝑘+1
)]

=

1

(𝛼 − 1)

log
∑
𝑆

𝑗=1
𝜔
𝑗

[𝑔
𝑘+1

(𝑍
𝑘+1

| 𝑋
𝑗

𝑘+1
,U

𝑘
)]

𝛼

[∑
𝑆

𝑗=1
𝜔
𝑗
𝑔
𝑘+1

(𝑍
𝑘+1

| 𝑋
𝑗

𝑘+1
,U

𝑘
)]

𝛼
,

(6)

where themultisensormultitarget likelihood function depen-
dent on multiagent control 𝑔

𝑘+1
(𝑍

𝑘+1
| 𝑋

𝑗
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,U

𝑘
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𝑔
𝑘+1

(𝑍
𝑘+1

| 𝑋
𝑗

𝑘+1
,U

𝑘
) =

𝑊

∏

𝑖=1

𝑔
𝑖

𝑘+1
(𝑍

𝑖

𝑘+1
| 𝑋

𝑗

𝑘+1
,U

𝑘
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and the single-sensor multitarget likelihood function depen-
dent on multiagent control 𝑔𝑖

𝑘+1
(𝑍

𝑖
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𝑗

𝑘+1
,U
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) is given in

[9] as follows:
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𝐷
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𝜃(𝑙)
)

,

(8)

where 𝑔
𝑖

𝑘+1
(z𝑖
𝜃(𝑙)

| x𝑗
𝑘+1,𝑙

,U
𝑘
) is the standard single-sensor

single-target likelihood function described by the measure-
ment model of agent 𝑖; 𝑓

𝑐
(𝑍

𝑖

𝑘+1
) is the probability density of

clutter RFS and𝑓
𝑐
(𝑍

𝑖

𝑘+1
) = 𝑒

−𝜆

∏z𝑖∈𝑍𝑖
𝑘+1
𝜆𝑐(z𝑖) for PoissonRFS;

𝜆 is the clutter rate, while 𝑐(⋅) is the probability distribution
of clutter; 𝑙 : 𝜃(𝑙) > 0 represents all possible associations
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between the particle set 𝑋𝑗

𝑘+1
and the measurement set 𝑍𝑖

𝑘+1
;

that is, 𝜃 : {1, . . . , 𝑛
𝑗

𝑘+1
} → {0, 1, . . . ,𝑀

𝑘,𝑖
}. Notice that (6)

is a multisensor multitarget case, whereas the derivation is
similar to the single sensor case in [19].Thus, we directly omit
the tedious proof here.

3.3. Distributed Agent Control. Even though multiagent con-
trol can be described as a POMDP given by (4) and (5),
it is still intractable to achieve the global optimum of
defined objective function for two reasons: firstly, searching
all admissible control command combinations is a NP-hard
combinatorial optimization problem [25]; secondly, global
optimization requires the existence of a centralized fusion
center that receives information from all agents, which is
unrealistic for most large-scale multiagent systems. Hence,
we propose a distributed sensor control method that com-
promises the local optimum of the global objective function,
which is computationally tractable and convenient to imple-
ment.

Instead of computing the global information gain, we
consider finding the optimal command for each individual
agent. Similar to (5), the Rényi divergence for the 𝑖th agent is
given by

E [R
𝑖

(u𝑖
𝑘
, 𝑍

𝑘+1
)]

=

1

(𝛼 − 1)

log
∑
𝑆
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𝜔
𝑗
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𝑘+1

(𝑍
𝑘+1

| 𝑋
𝑗

𝑘+1
, u𝑖

𝑘
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𝛼
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𝜔
𝑗
𝑔
𝑘+1
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𝑘+1

| 𝑋
𝑗
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, u𝑖

𝑘
)]

𝛼
.

(9)

Assume that measurement set generated by one agent is
independent of other agents’ behaviour; then, themultisensor
multitarget likelihood function 𝑔

𝑘+1
(𝑍

𝑘+1
| 𝑋

𝑗

𝑘+1
, u𝑖

𝑘
) in (9)

can be written as follows:
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𝑘
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𝑘
)
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𝑘
)
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) ,

(10)

where 𝑔
𝑙

𝑘+1
(𝑍

𝑙

𝑘+1
| 𝑋

𝑗

𝑘+1
, u𝑖

𝑘
) = 𝑔

𝑙

𝑘+1
(𝑍

𝑙

𝑘+1
| 𝑋

𝑗

𝑘+1
) for

𝑙 ̸= 𝑖. The future measurement 𝑍
𝑘+1

is generated assuming
no clutter and unity detection rate as illustrated in [20]. For
agent 𝑖, 𝑍𝑖

𝑘+1
is predicted based on the multitarget state and

possible control commandu𝑖
𝑘
, while𝑍𝑙

𝑘+1
for 𝑙 ̸= 𝑖 is predicted

based on the multitarget state and current location of agent 𝑙.
Therefore, we can find the optimal control command for each
individual agent and then combine them together to form the
total control command set, which is given as follows:

u𝑖
𝑘
= arg max

u∈V𝑘
E [R

𝑖

(u, 𝑍
𝑘+1

)] , (11)

U
𝑘
=

𝑊

⋃

𝑖=1

{u𝑖
𝑘
} . (12)

Remark 1. Equation (9) is exactly a particular case of (6) by
assuming all agents except agent 𝑖 stay still at current time.
The proposed distributed control approach is a suboptimal
solution of (6) by seeking its local optimum, and the local
optimummeans that u𝑖

𝑘
is optimal given all other agents keep

still.

When computing the optimal command of agent 𝑖, the
distributed agent control given by (11) approximates the
likelihood function 𝑔

𝑙

𝑘+1
(𝑍

𝑙

𝑘+1
| 𝑋

𝑗

𝑘+1
) via using current

locations of agent 𝑙 for 𝑙 ̸= 𝑖. Hence, we refer to (9) as the
“local Rényi divergence” in this paper.

The proposed distributed control approach can signifi-
cantly reduce the computational cost to perform real-time
agent control. For illustration, assume that all agents have the
samenumber of possible control commanddenoted by𝑚; the
computation complexity of our control approach isO(𝑊 ⋅𝑚)

which is much smaller than O(𝑚𝑊

) by searching all control
combinations, especially in large-scale multiagent system.

Generally speaking, each agent can only communicate
with its neighbouring 𝑊



𝑘
agents and obtain their current

locations s𝑙
𝑘
as well as their measurement model 𝑔𝑙(z | x) for

𝑙 = 1, . . . ,𝑊


𝑘
. Here, we assume that the information received

by each agent is accurate without any input saturation. For a
more challenging case that there is input saturation described
in [26, 27], the topic is beyond the scope of this paper. The
neighbouring relationship may change over time due to the
relative movement of agents. Algorithm 1 provides the SMC
implementation of proposed distributed control for each
agent by maximizing the local Rényi divergence.

4. Multisensor Fusion for
Multi-Target Tracking

Asmentioned before, themulti-Bernoulli filter outweighs the
PHD/CPHD filter in the SMC implementation for nonlinear
problem since the state extraction in multi-Bernoulli filter is
not dependent upon the heuristics in clustering but is depen-
dent only on the Bernoulli parameters. Hence, the multi-
Bernoulli filter has been used extensively in computer vision
[16, 17], robot SLAM [28], and sensor network [29]. Besides,
the state-of-the-art development of the multi-Bernoulli filter
offers the power to directly produce tracks of individual
targets, which is known as the labelled multi-Bernoulli filter
in the community [30].

In this section, we first briefly review the cardinality-
balanced multi-Bernoulli filter given in [12] in Section 4.1.
Then, Section 4.2 provides the sequential update scheme for
information fusion of multiple sensors.

4.1. Cardinality-Balanced Multi-Bernoulli Filter

Prediction. At time 𝑘, if the posterior multitarget density
is multi-Bernoulli given by 𝜋

𝑘
= {(𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
)}
𝑀𝑘

𝑗=1
and the

density of new births is also multi-Bernoulli 𝜋
Γ,𝑘+1

=

{(𝑟
(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀Γ,𝑘+1

𝑗=1
, then the predicted density is given by

𝜋
𝑘+1|𝑘

= {(𝑟
(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}

𝑀𝑘

𝑗=1

∪ {(𝑟
(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀Γ,𝑘+1

𝑗=1

, (13)
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Input: predicted multi-target density 𝜋
𝑘+1|𝑘

, neighbouring agents s𝑙
𝑘
and 𝑔

𝑙

(z | x) for 𝑙 = 1, . . . ,𝑊


𝑘

(1) Sampling the multi-object state space {𝑋𝑗

𝑘+1|𝑘
}
𝑆

𝑗=1
∼ 𝜋

𝑘+1|𝑘
;

(2) Compute predicted estimation: target number 𝑛
𝑘+1|𝑘

and state𝑋
𝑘+1|𝑘

= ∪

𝑛𝑘+1|𝑘

𝑗=1
{x𝑗
𝑘+1|𝑘

};
(3) for 𝑙 = 1, . . . ,𝑊



𝑘
do

(4) Predict 𝑍𝑙

𝑘+1
based on𝑋

𝑘+1|𝑘
and 𝑔

𝑙

(z | x);
(5) Compute single-sensor multi-target likelihood given by (8) to obtain {𝑔(𝑍

𝑙

𝑘+1
| 𝑋

𝑗

𝑘+1|𝑘
)}
𝑆

𝑗=1
;

(6) end for
(7) for each u𝑖

𝑘
∈ U𝑖

𝑘
do

(8) Predict 𝑍𝑖

𝑘+1
based on u𝑖

𝑘
and 𝑔

𝑖

(z | x);
(9) Compute single-sensor multi-target likelihood given by (8) to obtain {𝑔(𝑍

𝑖

𝑘+1
| 𝑋

𝑗

𝑘+1|𝑘
,u𝑖

𝑘
)}
𝑆

𝑗=1
;

(10) Compute multi-sensor multi-target likelihood given by (10) to obtain {𝑔(𝑍
𝑘+1

| 𝑋
𝑗

𝑘+1|𝑘
,u𝑖

𝑘
)}
𝑆

𝑗=1
;

(11) Compute the value 𝜌(u𝑖
𝑘
) = E[R𝑖

] given by (9);
(12) end for
Output: û𝑖

𝑘
= argmax 𝜌(u𝑖

𝑘
)

Algorithm 1: Control law of agent 𝑖.

where for survival targets

𝑟
(𝑗)

𝑘+1|𝑘
= 𝑟

(𝑗)

𝑘
⋅ ⟨𝑝

(𝑗)

𝑘
, 𝑝

𝑆,𝑘
⟩ ,

𝑝
(𝑗)

𝑘+1|𝑘
(x) =

⟨𝑓
𝑘+1|𝑘

(𝑥 | ⋅) , 𝑝
(𝑗)

𝑘
𝑝
𝑆,𝑘
⟩

⟨𝑝
(𝑗)

𝑘
, 𝑝

𝑆,𝑘
⟩

.

(14)

And, for new born targets, 𝑟(𝑗)
Γ,𝑘+1

, 𝑝
(𝑗)

Γ,𝑘+1
(x) are prior existence

probability and distribution of birth model.

Update. At time 𝑘 + 1, if the predicted multitarget density
is multi-Bernoulli 𝜋

𝑘+1|𝑘
= {(𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}

𝑀𝑘+1|𝑘

𝑗=1
, the output

of corrector is composed of legacy tracks and measurement-
updated tracks as

𝜋
𝑘+1

= {(𝑟
(𝑗)

𝐿,𝑘+1
, 𝑝

(𝑗)

𝐿,𝑘+1
)}

𝑀𝑘+1|𝑘

𝑗=1

∪ {(𝑟
𝑈,𝑘+1

(z) , 𝑝
𝑈,𝑘+1

(⋅ | z))}z∈𝑍𝑘 ,
(15)

where

𝑟
(𝑗)

𝐿,𝑘+1
= 𝑟

(𝑗)

𝑘+1|𝑘

1 − ⟨𝑝
(𝑗)

𝑘+1|𝑘
, 𝑝

𝐷,𝑘+1
⟩

1 − 𝑟
(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝

𝐷,𝑘+1
⟩

,

𝑝
(𝑗)

𝐿,𝑘+1
(x) = 𝑝

(𝑗)

𝑘+1|𝑘
(x)

1 − 𝑝
𝐷,𝑘+1

(x)
1 − ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝

𝐷,𝑘+1
⟩

,

𝑟
𝑈,𝑘+1

(z)

= (

𝑀𝑘+1|𝑘

∑

𝑗=1

𝑟
(𝑗)

𝑘+1|𝑘
(1 − 𝑟

(𝑗)

𝑘+1|𝑘
) ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓

𝑘+1,z⟩

(1 − 𝑟
(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝

𝐷,𝑘+1
⟩)

2
)

×(𝜅
𝑘+1

(z) +
𝑀𝑘+1|𝑘

∑

𝑗=1

𝑟
(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓

𝑘+1,z⟩

1 − 𝑟
(𝑗)

𝑘+1|𝑘
⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝑝

𝐷,𝑘+1
⟩

)

−1

,

𝑝
𝑈,𝑘+1

(z) =
∑

𝑀𝑘+1|𝑘

𝑗=1
(𝑟
(𝑗)

𝑘+1|𝑘
/ (1 − 𝑟

(𝑗)

𝑘+1|𝑘
)) 𝑝

(𝑗)

𝑘+1|𝑘
(x) 𝜓

𝑘+1,z (x)

∑

𝑀𝑘+1|𝑘

𝑗=1
(𝑟
(𝑗)

𝑘+1|𝑘
/ (1 − 𝑟

(𝑗)

𝑘+1|𝑘
)) ⟨𝑝

(𝑗)

𝑘+1|𝑘
, 𝜓

𝑘+1,z⟩
,

𝜓
𝑘+1,z (x) = 𝑔

𝑘+1
(z | x) 𝑝

𝐷,𝑘+1
(x) ;

(16)

𝑝
𝑆
and 𝑝

𝐷
are probability of survival and detection.The inner

product ⟨⋅, ⋅⟩ is defined between two real valued functions
𝛽 and 𝛾 by ⟨𝛽, 𝛾⟩ = ∫𝛽(𝑥)𝛾(𝑥)𝑑𝑥. Note that, without
loss of generality, we refer to the cardinality-balanced multi-
Bernoulli filter as “multi-Bernoulli” filter for simplicity in this
paper.

4.2. Sequential Multisensor Multi-Bernoulli Filter. In mul-
tisensor multitarget tracking scenario, there is no unified
multisensor fusion method which is tractable and computa-
tionally acceptable. Sequential update has been widely used
and verified to be a good approximation for information
fusion of multiple sensors. Here, multitarget tracking in
multiagent network is implemented via multi-Bernoulli filter
with sequential update scheme based on the SMC implemen-
tation.

Suppose that, at time 𝑘, the posterior multitarget density
is given as {𝑟(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
}
𝑀𝑘

𝑗=1
, and the distribution of each target

is given by a set of weighted particles 𝑝(𝑗)
𝑘
(x) = ∑

𝐿
(𝑗)

𝑘

𝑖=1
𝜔
(𝑗)

𝑖,𝑘
⋅

𝛿x(𝑗)
𝑖,𝑘

(x). Then, we give the SMC implementation of sequential
multisensor multi-Bernoulli filter in Algorithm 2. We refer
the readers to Section 4.1 of [12] for detailed equations.

The superscript (𝑗),𝑙 in Algorithm 2 represents the pre-
dicted 𝑗th Bernoulli set updated with the 𝑙th sensor. To
avoid the infinite growth ofmulti-Bernoulli set number, those
with existence probability less than a predefined threshold
(e.g., 0.001) are removed. Meanwhile, the particle number
is limited between 𝐿min and 𝐿max, in case that sampling is
not enough or resampling reallocates too many particles.The
number of particles for each Bernoulli set is proportional to
each target existence 𝑟

(𝑗)

𝑘
during the resampling step. With
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Prediction:
Input: 𝜋

𝑘
= {𝑟

(𝑗)

𝑘
, 𝑝

(𝑗)

𝑘
}
𝑀𝑘

𝑗=1

(1) for Survival targets: 𝑗 = 1, . . . ,𝑀
𝑘
do

(2) for 𝑖 = 1, . . . , 𝐿
(𝑗)

𝑘
, sample 𝑥(𝑗)

𝑆,𝑖,𝑘+1|𝑘
, compute weight 𝜔(𝑗)

𝑆,𝑖,𝑘+1|𝑘
and normalization �̃�

(𝑗)

𝑆,𝑖,𝑘+1|𝑘

(3) compute 𝑟(𝑗)
𝑆,𝑘+1|𝑘

, 𝑝(𝑗)
𝑆,𝑘+1|𝑘

(x)
(4) end for
(5) for newborn targets: 𝑗 = 1, . . . ,𝑀

Γ,𝑘+1
do

(6) for 𝑖 = 1, . . . , 𝐿
(𝑗)

Γ,𝑘
, sample 𝑥(𝑗)

Γ,𝑖,𝑘+1
, compute weight 𝜔(𝑗)

Γ,𝑖,𝑘+1
and normalization �̃�

(𝑗)

Γ,𝑖,𝑘+1

(7) compute 𝑟(𝑗)
Γ,𝑘+1

, 𝑝(𝑗)
Γ,𝑘+1

(x)
(8) end for
Output: 𝜋

𝑘+1|𝑘
= {(𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
)}
𝑀𝑘

𝑗=1
∪ {(𝑟

(𝑗)

Γ,𝑘+1
, 𝑝

(𝑗)

Γ,𝑘+1
)}

𝑀Γ,𝑘+1

𝑗=1

Update:
Input: 𝜋

𝑘+1|𝑘
= {𝑟

(𝑗)

𝑘+1|𝑘
, 𝑝

(𝑗)

𝑘+1|𝑘
}

𝑀𝑘+1|𝑘

𝑗=1
; neighbouring agents s𝑙

𝑘
, 𝑔𝑙(z | x) and 𝑍

𝑙

𝑘+1
for 𝑙 = 1, . . . ,𝑊



𝑘

(1) for 𝑙 = 1, . . . ,𝑊


𝑘
do

(2) for Legacy targets: 𝑗 = 1, . . . ,𝑀
𝑘+1|𝑘

do
(3) compute 𝜔(𝑗),𝑙

𝐿,𝑖,𝑘+1
and normalization �̃�

(𝑗),𝑙

𝐿,𝑖,𝑘+1
, compute pseudo-likelihood 

(𝑗),𝑙

𝐿,𝑘+1

(4) compute 𝑟(𝑗),𝑙
𝐿,𝑘+1

, 𝑝(𝑗),𝑙
𝐿,𝑘+1

(x)
(5) end for
(6) for z ∈ 𝑍

𝑙

𝑘+1
do

(7) forMeasurement-updated targets: 𝑗 = 1, . . . ,𝑀
𝑘+1|𝑘

do
(8) compute 𝜔(𝑗),𝑙

𝑈,𝑖,𝑘+1
(z) and normalization �̃�

(𝑗),𝑙

𝑈,𝑖,𝑘+1
(z), compute pseudo-likelihood 

(𝑗),𝑙

𝑈,𝑘+1
(z)

(9) compute 𝑟(𝑗),𝑙
𝑈,𝑘+1

(z), 𝑝(𝑗),𝑙
𝑈,𝑘+1

(x; z)
(10) end for
(11) end for
(12) 𝜋

𝑘+1|𝑘
= {(𝑟

(𝑗),𝑙

𝐿,𝑘+1
, 𝑝

(𝑗),𝑙

𝐿,𝑘+1
)}

𝑀𝑘+1|𝑘

𝑗=1
∪ {(𝑟

𝑙

𝑈,𝑘+1
(z), 𝑝𝑙

𝑈,𝑘+1
(⋅ | z))}z∈𝑍𝑙

𝑘+1

(13) end for
Output: 𝜋

𝑘+1
= {(𝑟

(𝑗),𝑊

𝑘

𝐿,𝑘+1
, 𝑝

(𝑗),𝑊

𝑘

𝐿,𝑘+1
)}

𝑀𝑘+1|𝑘

𝑗=1
∪ {(𝑟

𝑊

𝑘

𝑈,𝑘+1
(z), 𝑝𝑊


𝑘

𝑈,𝑘+1
(⋅ | z))}

z∈𝑍
𝑊
𝑘
𝑘+1

Algorithm 2: SMC sequential multisensor multi-Bernoulli filter.

a given existence threshold 0.75, those sets with 𝑟
(𝑗)

𝑘
over

0.75 are true tracks, while the others are not. Notice that the
multi-Bernoulli filter we adopt here cannot produce tracks
directly, and it can be replaced by the labelledmulti-Bernoulli
filter to produce individual tracks at the cost of some extra
computation.

5. Simulation

In order to demonstrate the performance of proposed multi-
agent control approach for multitarget tracking, we present
numerical results for a planar multitarget tracking sce-
nario in multiagent system where three controllable moving
observers, two equipped with range-only sensors and one
with a bearing-only sensor, are placed in a specified surveil-
lance area of size [0, 1000m] × [0, 1000m] to estimate the
number of targets as well as their positions. Each agent shares
its current locations, sensor type, and observations with the
other agents. It is intuitive that the initial positions of agents
have an impact on the agent control and target tracking
procedure. However, we are not going to involve the network
topology issue in this paper since our approach is supposed to
act independently from the network topology which is
different from the method described in [31, 32].

There are unknown and time-varying numbers of targets
observed in clutter for each agent. Assume that targets move
according to the nearly constant velocity model given by

x
𝑘
= 𝐹x

𝑘−1
+ 𝐺wV,𝑘, (17)

where x
𝑘
= [𝑝

𝑥,𝑘
, V
𝑥,𝑘

, 𝑝
𝑦,𝑘

, V
𝑦,𝑘

]
𝑇; p

𝑘
= [𝑝

𝑥,𝑘
, 𝑝

𝑦,𝑘
]
𝑇 are pla-

nar position and k
𝑘
= [V

𝑥,𝑘
, V
𝑦,𝑘

]
𝑇 are planar velocity, respec-

tively, along 𝑥-coordinate, 𝑦-coordinate. 𝐹 = 𝐼
2
⊗ [

1 𝑇

0 1
]; 𝐺 =

𝐼
2
⊗[

𝑇
2
/2

𝑇

]. 𝐼
2
is 2×2 identitymatrix and ⊗ denotes Kronecker

product. 𝑇 is the sampling period, and wV,𝑘 ∼ N(0, 𝑄
𝑘
) is

a 2 × 1 IID Gaussian noise. Assume process noise is time-
invariant and identical for both V

𝑥,𝑘
and V

𝑦,𝑘
; then, 𝑄 = 𝜎

2

V𝐼2,
where 𝜎V is the standard deviation.

Measurement of sensor 𝑙 originated from target with state
x
𝑘
is noisy vector of range or bearing measurement, and the

measurement model for range-only sensor is given by

z𝑙
𝑟,𝑘

=




p
𝑘
− s

𝑙





+ 𝑤

𝑙

𝑟
(18)

and, for bearing-only sensor,

z𝑙
𝜙,𝑘

= arctan
𝑦
𝑙
− 𝑝

𝑦,𝑘

𝑥
𝑙
− 𝑝

𝑥,𝑘

+ 𝑤
𝑙

𝜙
, (19)
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Figure 1: Target tracks. Start/stop positions for each track are shown
with ∙/◼. Colored ⧫ are initial locations of agents.

where s𝑙
𝑘

= [𝑥
𝑙

𝑘
, 𝑦

𝑙

𝑘
] is the location of agent 𝑙 and ‖p

𝑘
−

s𝑙
𝑘
‖ = √(𝑥

𝑙

𝑘
− 𝑝

𝑥,𝑘
)
2

+ (𝑦
𝑙

𝑘
− 𝑝

𝑦,𝑘
)
2 is the Euclidean distance

between sensor 𝑙 and the target. 𝑤𝑙

𝑟
is zero mean Gaussian

noise N(⋅; 0, (𝜎
𝑙

𝑟
)
2

) and 𝑤
𝑙

𝜙
is also zero mean Gaussian noise

N(⋅; 0, (𝜎
𝑙

𝜙
)
2

). The standard derivations of 𝑤𝑙

𝑟
and 𝑤

𝑙

𝜙
are,

respectively, given by 𝜎𝑙
𝑟
and 𝜎

𝑙

𝜙
as follows:

𝜎
𝑙

𝑟,𝑘
= 𝜎

0
+ 𝛽

𝑟





p
𝑘
− s

𝑙






2

𝜎
𝑙

𝜙,𝑘
= 𝜎

1
+ 𝛽

𝜙





p
𝑘
− s

𝑙





,

(20)

with 𝜎
0
= 1m, 𝛽

𝑟
= 5 × 10

−5m−1, 𝜎
1
= 𝜋/180 rad, and 𝛽

𝜙
=

10
−5 rad ⋅m−1.
Targets can appear or disappear in the scene at any time,

and survival probability 𝑝
𝑆
= 0.95 for each existing target.

New born targets appear spontaneously according to 𝛾
𝑘

=

0.2N(⋅; x, 𝑄). Three targets are presented as illustrated in
Figure 1, where x

1
= [800m; −5m/s; 300m; 0m/s]𝑇, x

2
=

[650m; 0.5m/s; 800m; −6m/s]𝑇, and x
3
= [300m; 5m/s;

600m; −8m/s]𝑇, respectively, for each target, and 𝑄 =

diag([50m, 2m/s, 50m, 2m/s]2) are identical for all three
targets.

The probability of detection for both range-only sensor
and bearing-only sensor is modelled by

𝑝
𝐷
(x
𝑘
) = {

0.99




p
𝑘
− s

𝑙





≤ 𝑅

0

max {0, 0.99 − 𝑐




p
𝑘
− s

𝑙





}





p
𝑘
− s

𝑙





≥ 𝑅

0
,

(21)

with 𝑅
0
= 320m and 𝑐 = 0.002m−1. The clutter rate of each

sensor 𝜆
𝑐
= 5 per scan. The standard derivation of process

noise 𝜎V = 1m/s for both V
𝑥,𝑘

and V
𝑦,𝑘
. Given the current

agent location s𝑙
𝑘
, the set of admissible control commands for

each agent is computed as U𝑙

𝑘
= {[𝑥

𝑙

𝑘
+ 𝑖Δ

𝑅
cos(𝑗Δ

𝜙
), 𝑦

𝑙

𝑘
+

𝑖Δ
𝑅
cos(𝑗Δ

𝜙
)]}

𝑗=0,...,𝑁𝑅

𝑖=0,...,𝑁𝜙
, where Δ

𝜙
= 2𝜋/𝑁

𝜙
and Δ

𝑅
= 30m

are for angular and radial step size.𝑁
𝑅
= 2 and𝑁

𝜙
= 8 here.

The initial locations of agents are shown in Figure 1, and
each agent runs for 30 scans with sampling period 𝑇 = 1 s.
Birth intensity for the multi-Bernoulli filter is approximated
using adaptive target birth intensity sampling technique
described in [33]. 𝐿min = 300 and 𝐿max = 500 are the min-
imum and maximum particle numbers of each Bernoulli set
for track maintenance.

Since each agent shares its location and observation with
other two agents, agents have pretty much the same perfor-
mance in this scene. Hence, we take agent 3 (bearing-only)
as an example to illustrate the tracking procedure. Figure 2
presents three key frames of one trial run of the proposed
control and tracking approach. It is clear that, with the move-
ment of agents, scattered particles converge to the ground
truth locations of targets.This is because each agent ismoving
forward to a more informative direction so that “ghost” par-
ticles that are not generated by actual targets can be quickly
eliminated by the multisensor fusion scheme. As a result,
the estimation of target positions is getting more accurate
over time. Besides, it can be seen from Figure 2(c) that the
trajectories of agents are different for their distinctive initial
locations and sensor types.

Due to stochastic nature of our control and tracking
approach, we adopt 1000 Monte Carlo runs to evaluate their
performance. The optimal subpattern assignment (OSPA)
metric composed of location error and cardinality error
is used for tracking performance evaluation [34]. Figure 3
shows the OSPA distance of our approach, (𝑐 = 100m, 𝑝 = 1)
from 1000 Monte Carlo runs, from which we can see that
the OSPA distance converges with the movement of agents
over time. The location error is reduced gradually since
each agent is obtaining more informative measurements
to lower the covariance of position estimation, while the
estimation of target number quickly converges to a relatively
low value. The average computation time for a single run
is only approximately 0.82 s (algorithm is implemented in
MATLAB 2012a on a PC with 8GBRAM and Intel Core
i7-4770k CPU). Several runs have been recorded in videos
attached as Supplementary Material (available online at
http://dx.doi.org/10.1155/2015/903682) for demonstration.

6. Conclusion

In this paper, we propose a novel distributed multiagent
control approach by maximizing the local Rényi divergence.
The SMC implementation of the sequential multi-Bernoulli
filter is provided for each agent to utilize the information from
neighbouring agents. Simulation results demonstrate that
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Figure 2: One trial result. Green dots are for particles. Colored lines are trajectories of agents. Colored ⧫ are current locations of agents. Red
∘ are ground truth of target stop positions, while black ∗ are for target estimation.

the proposed approach is capable of distributed multitarget
tracking via effective sensor control.

Our future work is to use convex relaxation method
for seeking global optimal solution for multiagent control
and compare with the approach proposed in this paper. We
also need to consider more challenging measurement model,
such as time-difference-of-arrival measurement or Doppler
measurement, which depends on the behavior of multiple
agents.
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