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The algebraic Riccati matrix equation is used for eigendecomposition of special structured matrices. This is achieved by similarity
transformation and then using the algebraic Riccati matrix equation to the triangulation of matrices. The process is the
decomposition of matrices into small and specially structured submatrices with low dimensions for easy finding of eigenpairs.
Here, we show that previous canonical forms I, II, III, and so on are special cases of the presentedmethod. Numerical and structural
examples are included to show the efficiency of the present method.

1. Introduction

Eigenvalue problem is a special category for studying of
engineering problems. As an example, the eigenvalues cor-
respond to natural frequencies in vibration of systems and
buckling loads in the stability analysis of structures [1–4].
General methods are available in the literature for eigenvalue
problems [5–7]. Well established techniques exist for the
eigensolution of bilateral symmetry in the work of Kaveh and
Sayarinejad [8, 9] and Kaveh and Salimbahrami [10]. Other
eigensolution methods are also available for cyclically sym-
metric structures inThomas [11], Williams [12, 13], Aghayere
[14], Kaveh and Rahami [15–17], and Kaveh and Nemati
[18]. The history of the developments in symmetry and the
application of different mathematical tools can be found in
the excellent review paper of Kangwai et al. [19]. Canonical
forms are also studied in the past decade for eigensolution of
symmetric structural mathematical modeling, [8–10, 18].

The algebraic Riccati equation has been widely used
in control system syntheses [20, 21], especially in optimal
control [22–24]. As a solution of this equation, it may not be
unique [25]. The existence conditions of solutions have been
considerably investigated by [26]. A review of application and

solution of the algebraic Riccati matrix equation can be found
in [27, 28].

In this paper, we introduce a general solution form
of canonical and symmetry forms I, II, III, and so on
which presented in [8–10, 29–34]. This is achieved via using
similarity transformations and the solutions of the algebraic
Riccati matrix equation.

2. Basic Definitions of Graph Theory

2.1. Definitions from Graph Theory. A graph 𝑆(𝑁, 𝐸) consists
of a set of elements,𝑁(𝑆), called nodes and a set of elements,
𝐸(𝑆), called members (edges), together with a relation of
incidence which associates two distinct nodes with each
member, known as its ends. Two nodes of a graph are called
adjacent if these nodes are the end nodes of a member. A
member is called incident with a node if it is an end node
of the member [17]. The degree of a node is the number of
edges incident with the node.

2.2. Matrices Associated with a Graph. Let 𝑆 be a graph with
𝑁 nodes.The adjacencymatrix𝐴 is an𝑁×𝑁matrix in which
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the entry in row 𝑖 and column 𝑗 is 1 if node 𝑛
𝑖
is adjacent to 𝑛

𝑗

and is zero otherwise. This matrix is symmetric, and the row
sums of𝐴 are the degrees of nodes of 𝑆. The Laplacian matrix
𝐿 of graph 𝑆 is defined as

L = D − A, (1)

where D is a diagonal matrix in which the 𝑖th diagonal entry
is equal to the degree of node 𝑖. The adjacency and Laplacian
matrices are important matrices in the theory of graphs, and
their eigenvalues and eigenvectors form the foundation of a
branch of mathematics known as the algebraic graph theory
[18–20].

3. Bisymmetric and Persymmetric Matrices

3.1. Bisymmetric Matrix. In mathematics, a bisymmetric
matrix is a square matrix that is, symmetric about both of
its main diagonals. More precisely, an 𝑛 × 𝑛 matrix M is
bisymmetric if and only if it satisfies M = M𝑇 and M × S =
S ×M, where S is the 𝑛 × 𝑛 exchange matrix:

S =
[
[
[

[

1

1

c
1

]
]
]

]

. (2)

3.2. Persymmetric Matrix. In mathematics, a persymmetric
matrixmay refer to a squarematrix which is symmetric in the
northeast-to-southwest diagonal or a square matrix such that
the values on each line perpendicular to the main diagonal
are the same for a given line. If B is a persymmetric matrix:

B𝑇 = SBS, (3)

where S is the exchange matrix.

4. Similarity Transformation of Matrices

A complex scalar 𝜆
𝑖
is called an eigenvalue of the square

matrixA
𝑛×𝑛

if a nonzero vector v
𝑖
exists such thatAv

𝑖
= 𝜆
𝑖
v
𝑖
.

The vector v
𝑖
is called an eigenvector of A associated with 𝜆

𝑖
.

The set of eigenvalues of A is called the spectrum of A. A
scalar 𝜆

𝑖
is an eigenvalue of A if and only if det(A − 𝜆

𝑖
I) = 0.

That is true if and only if 𝜆
𝑖
is a root of the characteristic

polynomial. Two matrices A and B are said to be similar if
there is a nonsingular matrix U such that

B = U−1AU. (4)

The mapping A → B is called a similarity transformation.
Using (3)–(5), it can be shown that similarity transformations
preserve the eigenvalues of matrices:

Av
𝑖
= 𝜆v
𝑖
, (5)

U−1AUU−1v
𝑖
= U−1𝜆v

𝑖
. (6)

By substituting B = U−1AU and y
𝑖
= U−1v

𝑖
, we will have

By
𝑖
= 𝜆y
𝑖
. (7)

Equation (9) which is a standard representation of eigenprob-
lems means that 𝜆

𝑖
are also the eigenvalues of the matrix B.

This transformation is used in the next sections for block
diagonalization of adjacency and the Laplacian matrices with
a special pattern.

5. The Algebraic Riccati Matrix Equation

Thematrix equation

XBX + XA −DX − C = 0 (8)

is called algebraic Riccati matrix equation. In this equation,
A,B,C, and D, with appropriate dimensions, are known
matrices, and X should be determined. Solutions of the
algebraic Riccati matrix equation (6) are important in many
applications. Potter [20] has solved a special case of the
equation, but the closed form of the problem has not
been solved. Additional particular solutions are obtained
by the decomposition of C into a sum of three matrices.
Unfortunately, there is no procedure for determining every
permissible decomposition of C. This solution of the Riccati
equation by the decomposition of C is as follows:

XBX = M,

XA = N,

−DX = P,

M + N + P = C.

(9)

6. Decomposition of Specially Structured
Matrix

Consider the following blocked matrix:

L = [A B
C D] , (10)

where A,D ∈ 𝑅𝑛×𝑛. It is desired to find a similarity
transformation form of L. We use matrix U as

U = [ I 0
X I] . (11)

It is obvious that

U−1 = [ I 0
−X I] . (12)

Eigenvalues of L can be determined as

LV
𝑖
= 𝜆v
𝑖
. (13)

Similarity transformation of L can be written as

𝐾 = U−1LU, (14)

K = [ I 0
−X I] [

A B
C D] [

I 0
X I] , (15)
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expanding and then the simplification of (15) yields

K = [ A + BX B
−XBX − XA +DX + C D − XB] . (16)

If the algebraic Riccati equation,−XBX−XA+DX+C = 0,
can be solved, then we can decompose (10) as

[
A + BX B

0 D − XB] . (17)

So, the eigenvalues of Lcan be found as

eig (L) = eig (A + BX) ∪ eig (D − XB) . (18)

7. The Algebraic Riccati Matrix Equation and
Canonical Forms

If in (16), we assume X = I and

B + A −D − C = 0 (19)

or

B + A = D + C, (20)

then the decomposed form of (10) can be written as

eig (L) = eig (A + B) ∪ eig (D − B) . (21)

Equation (19) is the fundamental idea behind all of the
canonical and symmetry forms I, II, and so on and the
augmented form of them.Thismeans that all of the canonical
and symmetry forms are a special form of (10) when A = D
and C = B. The solution can be obtained by solving the
algebraic Riccati equation when X = I.

8. Augmented Forms

The solution of the algebraic matrix equation is X = I, when
the submatrices of L are satisfied by the following condition:

B + A = D + C. (22)

We can add matrices in the both sides of (20) while the
decomposed form is stable

B ±m + A ± n = D ±m + C ± n. (23)

So, eigenvalues of L and K are the same:

L = [A B
C D] , K = [A ± n B ±m

C ± n D ±m] . (24)

9. Decomposition of Bisymmetric Matrices

Consider bisymmetric matrix L

L = [ A B
B𝑇 A] . (25)

So, we have

SBS = B𝑇,

AS = SA.
(26)

Similarity transformation of L can be written as

K = [ A + BX B
−XBX − XA + AX + B𝑇 A − XB] . (27)

If the matrix equation −XBX − XA + AX + B𝑇 = 0 can be
solved, we can write the decomposed form of L. For this case,
the relationshipX = S satisfies in the algebraic Riccati matrix
equation (27), so

eig (L) = eig (A + BS) ∪ eig (A − SB) . (28)

10. Numerical Examples

Example 1. Consider the following submatrices:

A = [
[

4 −1 2

−1 6 −1

2 −1 4

]

]

,

B = [
[

1 6 3

8 5 6

0 8 1

]

]

,

M = [ A B
B𝑇 A] .

(29)

In this example,A is a symmetric, andB is a persymmetric, so
we can calculate the eigenvalues of M using present method
by eigenvalues of the following submatrices:

eig (M) = eig (A + BS) ∪ eig (A − BS)

= (

−0.3274

4.0000

18.3274

) ∪ (

−9.1328

1.1598

13.9731

) .

(30)

Example 2. In this example,M is the Laplacian matrix of the
following graph:
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1

2

3

4

5

6

M =

[
[
[
[
[
[
[

[

3 1 1 1

1 3 1 1

1 2 1

1 2 1

1 1 3 1

1 1 1 3

]
]
]
]
]
]
]

]

,

A = [
[

3 1 0

1 3 1

0 1 2

]

]

,

B = [
[

1 1

1

1

]

]

,

eig (M) = eig (A + BS) ∪ eig (SAS − BS)

= (

1.0968

3.1939

5.7093

) ∪ (

0.5858

2.0000

3.4142

) .

(31)

Example 3. In this example, M is the adjacency, and the
Laplacian matrix of the following graph model of a truss:

1 2 3 4

6 7 8 9

5

10

Adj (𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Lap (𝑆) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3 −1 −1 −1

−1 4 −1 −1 −1

−1 4 −1 −1 −1

−1 4 −1 −1 −1

−1 2 −1

−1 2 −1

−1 −1 −1 4 −1

−1 −1 −1 4 −1

−1 −1 −1 4 −1

−1 −1 −1 3

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(32)

Example 4. In this example, M is the adjacency, and the
Laplacian matrix of the following graph model of a truss:

1 2 3 4

6 7 8 9

5

10

Adj (𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1

1 1

1 1 1 1 1

1 1 1 1

1 1 1

1 1 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Lap (𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3 −1 −1 −1

−1 3 −1 −1

−1 4 −1 −1 −1

−1 5 −1 −1 −1 −1

−1 2 −1

−1 2 −1

−1 −1 −1 −1 5 −1

−1 −1 −1 4 −1

−1 −1 3 −1

−1 −1 −1 3

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(33)

Example 5. In this example, M is the adjacency, and the
Laplacian, matrix of the following graph model of a truss:
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1 4

2 3

5 8

6 7

Adj (𝑠) =

[
[
[
[
[
[
[
[
[
[

[

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

]
]
]
]
]
]
]
]
]
]

]

,

LaP (𝑠) =

[
[
[
[
[
[
[
[
[
[

[

4 −1 −1 −1 −1

−1 3 −1 −1

−1 5 −1 −1 −1 −1

−1 −1 3 −1

−1 3 −1 −1

−1 −1 −1 −1 5 −1

−1 −1 3 −1

−1 −1 −1 −1 4

]
]
]
]
]
]
]
]
]
]

]

.

(34)

Example 6. In this example, M is the adjacency, and the
Laplacian matrix of the following graph model of a truss:

1 2 3

4 5 6

7 8 9

10 11 12

Adj (𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1

1 1

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

Adj (𝑠) =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

2 −1 −1

−1 5 −1 −1 −1 −1

−1 2 −1

−1 −1 5 −1 −1 −1

−1 −1 5 −1 −1 −1

−1 −1 −1 4 −1

−1 4 −1 −1 −1

−1 −1 −1 5 −1 −1

−1 −1 −1 5 −1 −1

−1 2 −1

−1 −1 −1 −1 5 −1

−1 −1 2

]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(35)

Example 7. Consider matrixM as follows:

M =
[
[
[

[

0 1 4 5

4 6 7 9

8 2 −4 4

10 3 1 12

]
]
]

]

= [
A B
C D] = [

A B
C A + B − C] .

(36)

This matrix can be decomposed as

eig (M)

= eig (A + B) ∪ eig (D − B)

= eig (A + B) ∪ eig (A − C) ,

eig (A + B) ∪ eig (A − C)

= eig([ 4 6
11 15
]) ∪ eig([−8 −1

−6 3
]) ,

(−0.3107, 19.3107) ∪ (−8.5208, 3.5208) .

(37)

Eigenvalues of M calculated by the decomposition method
were proposed in this paper. MatrixM has a complex pattern
than all of the canonical forms. So, it is obvious that canonical
forms are a special form of proposed method:

eig (M) = (19.3107, −8.5208, −0.3107, 3.5208) . (38)

Example 8. Consider the directed graph (S) and its adjacency
matrix in Figure 1.

Adjacency matrix of the graph (S) is written as

Adj (S) =

[
[
[
[
[
[
[

[

0 1 0 0 0 0

0 0 1 1 1 0

1 0 0 0 1 0

0 0 0 0 1 0

0 1 0 1 0 1

0 0 0 1 1 0

]
]
]
]
]
]
]

]

= [
A B
C D] . (39)
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1

2

3 4

5

6

(a)

4

5

61

2

3

1
−1

(b)

Figure 1: (a) Graph (S) and (b) decomposed form of graph (S).

This matrix can be decomposed as

eig (Adj (S))

= eig (A + B) ∪ eig (D − B)

= eig (A + B) ∪ eig (A − C) ,

eig (A + B) ∪ eig (A − C)

= eig([

[

0 1 0

1 1 1

1 1 0

]

]

) ∪ eig([

[

0 1 0

1 1 1

1 1 0

]

]

) ,

[

[

2.1479

−0.5739 + 0.3690i
−0.5739 − 0.3690i

]

]

∪ [

[

0.7549

−0.8774 + 0.7449i
−0.8774 − 0.7449i

]

]

→ eig (Adj (S)) =

[
[
[
[
[
[
[

[

2.1479

0.7549

−0.8774 + 0.7449i
−0.8774 − 0.7449i
−0.5739 + 0.3690i
−0.5739 − 0.3690i

]
]
]
]
]
]
]

]

.

(40)

The decomposed and healed form of graph (S) is presented in
Figure 1(b). It is noted that the graph (S) has more complex
pattern than those decomposable by known canonical forms.
It is obvious that previous canonical forms I, II, and so forth
are unable to decompose graph (S).

11. Concluding Remarks

The main contribution of this paper is to generalize some
previously developed canonical and symmetry forms and
to provide a powerful means for decomposing matrices.
This aim is achieved by the similarity transformation and
by using the algebraic Riccati matrix equation. In this
paper, we showed that the canonical forms defined in the
previously works are special cases of the proposed method.
The present method simplifies the numerical operations
required for calculating the eigenvalues and eigenvectors of
the corresponding matrices. Here, some useful methods are
developed for the application of canonical and symmetry
forms. Applications of the present methods can be used
to solve different problems such as calculating the natural
frequencies of vibrating systems and finding buckling loads
of structures. It can also be employed in other fields of
engineering where eigenvalues and eigenvectors of matrices
are required.
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