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Second and third order digital integrators (DIs) have been optimized first using Particle SwarmOptimization (PSO)withminimized
error fitness function obtained by registering mean, median, and standard deviation values in different random iterations. Later
indirect discretization using Continued Fraction Expansion (CFE) has been used to ascertain a better fitting of proposed integer
order optimized DIs into their corresponding fractional counterparts by utilizing their refined properties, now restored in them
due to PSO algorithm. Simulation results for the comparisons of the frequency responses of proposed 2nd and 3rd order optimized
DIs and proposed discretized mathematical models of half integrators based on them, with their respective existing operators, have
been presented. Proposed integer order PSO optimized integrators as well as fractional order integrators (FOIs) have been observed
to outperform the existing recently published operators in their respective domains reasonably well in complete range of Nyquist
frequency.

1. Introduction

In fractional calculus (FC) initially the development of
mathematical models of fractional order integrators (FOIs)
and fractional order differentiators (FODs) [1, 2] started
presumably for searching different generalizing approaches
for switching from integer order to the fractional order
domain. The frequency response of ideal fractional order
differ-integrator (𝑠

±𝛼) is

𝐻fractional (𝑗𝜔) = (𝑗𝜔)
±𝛼

, (1)

where 𝑗 = √−1 and 𝜔 gives angular frequency in radians.
Variable “𝛼” defines the order of fractional order operators
and its value lies in between 0 and 1.

Due to its exotic nature FC has strengthened its grasp
over different research areas such as statistical modeling,
mechanical system analysis [3], control [4], automated con-
trol [5], instrumentation [6], signal processing [7], and radio
engineering and image processing [8, 9]. At present time,
FC is also extensively spreading its niche in different design

methods for improving fractional order controllers by frac-
tional integral and derivative functions [10, 11]. An important
design method which has undoubtedly helped in sharpening
up the focus of an efficient formulation of new blocks of
fractional operators is “linear interpolation” method [12–
16]. This most vastly followed tri-step method involves the
following steps. (1) First step deals with linear interpolation
of two existing digital integrators. (2) In second step, a new
fractional order integrator is formulated by discretization of
integer order integrator developed in first step by anyone of
the two existing discretization (direct and indirect) schemes.
(3) In the third step, this expanded series is truncated
up to some arbitrary order (𝑁), which defines the order
of the new fractional operator (𝑠

±𝛼). Direct discretization
[17] works with the help of different expansion techniques
such as Taylor Series Expansion (TSE) [18], Power Series
Expansion (PSE) [19, 20], and Continued Fraction Expansion
(CFE) [21, 22], whereas for indirect discretization [23–26]
different rational approximations have been developed by
many mathematicians, namely, Carlson and Halijak [27],
Steiglitz [28], Khovanskii [29], Roy [30], Oustaloup et al. [31],



2 Journal of Optimization

andMaione [32], which proved like boon for the development
of fractional integrators/differentiators.

In spite of the efficient and systematic nature of dif-
ferent previously mentioned approximations, still there
existed a dissent about performance of these approximations,
when these were later adapted by well-known discretiza-
tion schemes for obtaining FOIs. Moreover development of
new approximations requiredmany exhaustivemathematical
applications to make them perform in finite dimensional
form in proper range of frequencies during discretization.
Instead of deriving new methods of rational approximations,
authors have suggested here an alternate solution in which
the integrator operator (used as 𝑠-𝑧 transform) itself should
be pushed near boundaries of an optimal solution (near ideal
response) before converting it to fractional system. Reason
behind this is that every minute dispensation in properties
of this integer order operator will directly propel into its
noninteger order counterpart. The main novelty proposed by
this paper is to put together unique combination of opti-
mized integer order operators and an accurate approximation
technique for configuring their efficient fractional order (fo)
operators. The current scenario of design methods for deriv-
ing optimal operators [33–41], is cumulatively proceeding
towards “not so distant” phase of perfect optimization with
negligible errors. So, another motivating point behind the
approach proposed in this paper is to trespass all disadvan-
tages of existing conventional design methods of FOIs by
using refined capabilities of an efficient optimization scheme.

The frequency response of ideal integer order digital
integrators (DIs) is

𝐻int (𝜔) = (
1

𝑗𝜔
) , where |𝜔| ≤ 𝜋, (2)

and the frequency response of ideal integer order digital dif-
ferentiators (DDs) is

𝐻diff (𝜔) = 𝑗𝜔, where |𝜔| ≤ 𝜋, (3)

where 𝑗 = √−1, 𝜔 is the angular frequency in radians, and
“𝑇” is the sampling period.

In recent novel advancements, different optimization
algorithms, namely, Linear Programming (LP) [33, 34],
Genetic Algorithm (GA) [35–37], Simulated Annealing (SA)
[38, 39], and pole-zero (PZ) optimization [40, 41], have
been used for obtaining more refined integer order differ-
integrators. Jain et al. [35] have recently derived optimal
models of recursive DIs and DDs by GA algorithm while
Upadhyay [41] has developed these operators by analyzing
poles and zeros of existing recursive DDs by PZ optimization
technique for obtaining better results for frequency responses
over wideband of complete frequency spectrum. Al-Alaoui
[39] has done a credible work in improving design process
of DIs and DDs based on Newton-Cotes integration rules by
using linear interpolation and SA.

This paper attempts to find the optimal solutions of
DIs by using an efficient modified application of Parti-
cle Swarm Optimization (PSO) technique [42–44], before
discretizing them to their fractional mathematical models.

Values of mean, median, and standard deviation in different
random iterations have been continuously registered using
PSO for the optimization of 2nd and 3rd order DIs with
minimized error fitness function. Later these optimized DIs
are discretized by CFE of indirect discretization scheme [23],
for finding half integrator models of different orders. The
simulation results of magnitude responses, phase responses,
and relative magnitude errors for the proposed optimized
DIs have been compared with all the recently published
integrators optimized by different optimization algorithms,
namely, LP [34], GA [35], SA [39] and PZ [41]. Frequency
responses of the proposed FOIs based on 2nd and 3rd order
optimized DIs have been also compared with their existing
fractional models [2, 17] in complete frequency range.

The paper is organized as follows. Section 2 deals with
the brief description of original and modified PSO algo-
rithm for optimizing DIs along with its trade-off con-
ditions, and the resultant 2nd and 3rd order optimized
integrators thus derived have been presented in this sec-
tion. Comparisons of proposed and existing DIs are also
given in the same section. These optimized operators have
been discretized by indirect discretization using CFE tech-
nique of indirect discretization for deriving models of FOIs
in Section 3. Section 4 presents the simulation results of
comparisons of proposed half integrators with responses
of ideal and the existing models. Section 5 concludes the
paper.

2. PSO Algorithm for Optimizing 2nd and 3rd
Order Integer Order Integrators

2.1. Outline of Basic Functionality of Original PSO Algorithm.
In conventional PSO algorithm [42–44], first a popula-
tion of random solutions has been initialized and different
generations are updated for searching optimal values. In
this algorithm, the potential solutions, called particles, fly
through the problem space by following the current optimum
particles. The position of each particle encodes a possible
solution to the given problem. The velocity of the particle is
the parameter to be added to the current position to find the
newposition of the next generation.The velocity and position
are updated for all particles in every generation unless an
optimal solution is found. The particles keep track of its
coordinates in the problem space which are associated with
the best solution (fitness) it has achieved so far. These values
are called pbest and the best element among all the pbest
values of all the particles is called gbest. The velocities are
initialized to zero and after finding the two best values, the
particle updates its velocity and positions in accordance with
the following update equations:

V (𝑖) = V (𝑖 − 1) + 𝑐
1
𝑟
1

(𝑝pbest − 𝑝 (𝑖)) + 𝑐
2
𝑟
2

(𝑝gbest − 𝑝 (𝑖)) ,

𝑝 (𝑖 + 1) = 𝑝 (𝑖) + V (𝑖) ,

(4)

where V(𝑖) is the current particle velocity, V(𝑖 − 1) is previous
particle velocity, 𝑝(𝑖) is current particle position, 𝑝(𝑖 + 1) is
the position of particle in next generation, 𝑝pbest is the best



Journal of Optimization 3

Define the solution space, fitness  
function, and population size

Initialise position, velocity, 

For each particle

Evaluate fitness function 

Next particle

orNext iteration

Solution is gbest

Update velocity
and position

Yes 

No 

If fitness (x) better than

pbest and gbest

fitness (gbest)
gbest = x

No iteration = max. no. iteration

fitness (gbest) is good enough

− |H(e
j𝜔
)|)2d𝜔

If fitness (x) better than
fitness (pbest)

pbest = x
Eint = ∫

𝜋

0
(1/𝜔

Figure 1: Flowchart of modified PSO algorithm.

position the particle has seen, 𝑝gbests is the best position the
swarm has seen, 𝑐

1
, 𝑐
2
are constants set to 2, and 𝑟

1
, 𝑟
2
are the

random numbers between 0 and 1.

2.2. Parameters Used for Optimization and Trade-Offs between
Multiple Parameters during Convergence of Optimized Digital
Integrators. Amathematical model of transfer function (TF)
of optimized digital integrator (DI) can be described in
generalized form as

𝐻 (𝑧) = (
𝐵
𝑀

(𝑧)
𝑏𝑀 + ⋅ ⋅ ⋅ + 𝐵

1
(𝑧)
𝑏1 + 𝐵

0
(𝑧)
𝑏0

𝐴
𝑁

(𝑧)
𝑎𝑁 + ⋅ ⋅ ⋅ + 𝐴

1
(𝑧)
𝑎1 + 𝐴

0
(𝑧)
𝑎0

) , (5)

where𝐴
𝑖
and 𝐵

𝑗
, are arbitrary constants whereas 𝑎

𝑖
and 𝑏
𝑗
are

real numbers with (𝑖 = 0, 1, . . . , 𝑁) and (𝑗 = 0, 1, . . . , 𝑀).

Transfer functions (TFs) of 2nd and 3rd order DIs which
have been optimized using PSO in this paper are given in (6)
and (7), respectively:

𝐻PSO 2nd opt (𝑧) = (
𝐵
2
𝑧2 + 𝐵

1
𝑧 + 𝐵
0

𝐴
2
𝑧2 + 𝐴

1
𝑧 + 𝐴

0

) , (6)

𝐻PSO 3rd opt (𝑧) = (
𝐵
3
(𝑧)
3

+ 𝐵
2
(𝑧)
2

+ 𝐵
1
𝑧 + 𝐵
0

𝐴
3
(𝑧)
3

+ 𝐴
2
(𝑧)
2

+ 𝐴
1
𝑧 + 𝐴

0

) . (7)

The coefficients of the previously mentioned TFs are gener-
ated by random iterations of PSO algorithm as it takes real
numbers as particles.
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Table 1: Transfer functions and fitness values of worst and average cases of 2nd order PSO optimized DIs.

TFs of worst cases of 2nd order DIs along with their fitness
function values (F.V.)

TFs of average cases of 2nd order DIs along with their fitness
function values (F.V.)

Transfer function F.V. Transfer function F.V.

𝐻
1
(𝑧) = (

0.373324𝑧2 + 0.427523𝑧 + 0.397575

𝑧2 − 0.042561𝑧 − 0.999916
) 0.643052 𝐻

1
(𝑧) = (

0.22896𝑧2 − 0.825829𝑧 − 0.502494

𝑧2 − 0.776284𝑧 − 0.181729
) 0.382107

𝐻
2
(𝑧) = (

−0.929251𝑧2 + 0.381076𝑧 − 0.75834

𝑧2 − 0.725805𝑧 − 0.306558
) 3.90016 𝐻

2
(𝑧) = (

−0.336478𝑧2 − 0.82224𝑧 + 0.101197

𝑧2 − 0.818946𝑧 − 0.147828
) 0.407093

𝐻
3
(𝑧) = (

0.541699𝑧2 + 0.241831𝑧 + 0.506633

𝑧2 − 0.0552516𝑧 − 1
) 4.73234 𝐻

3
(𝑧) = (

0.0849835𝑧2 + 0.752164𝑧 + 0.756218

𝑧2 − 0.167219𝑧 − 0.882869
) 0.50102

𝐻
4
(𝑧) = (

−0.354583𝑧2 − 0.833923𝑧 − 0.813869

𝑧2 − 0.0637125𝑧 − 1
) 5.89578 𝐻

4
(𝑧) = (

−0.39729𝑧2 − 0.795585𝑧 − 0.130415

𝑧2 − 0.722962𝑧 − 0.318656
) 0.618717

𝐻
5
(𝑧) = (

0.353852𝑧2 + 0.203374𝑧 + 0.466221

𝑧2 − 0.0406162𝑧 − 1
) 18.799 𝐻

5
(𝑧) = (

0.284382𝑧2 + 0.949776𝑧 + 0.363676

𝑧2 − 0.401952𝑧 − 0.648204
) 0.737534

Magnitude response of the optimized DI is

𝐻mag = |𝐻 (𝑤)| =
abs (numerator)
abs (denominator)

. (8)

Phase response of the optimized DI is

𝐻phase = arg |𝐻 (𝑤)| . (9)

Relative magnitude error (dB) or RME value is given by

RME = 20 log
10



𝐻ideal (𝜔) − 𝐻approx (𝜔)

𝐻ideal (𝜔)



= 20 log
10



(1/𝑗𝜔) − 𝐻approx (𝜔)

(1/𝑗𝜔)



,

(10)

where𝐻ideal(𝜔) is themagnitude of ideal value of the operator
and 𝐻approx(𝜔) is the value of the digital integrator that is
approximated.

In the recently published literature on digital and frac-
tional operators most of the researchers have focused on
formulating the fitness function for optimization technique
based on only single parameter [38–41] that is magnitude
error because practically if phase and magnitude are opti-
mized for a multiparameter problem the solution is always
stuck in a trade-off due to their contradictory nature. The
reason behind this is that when the optimal solution starts
converging towards the best results of one parameter (mag-
nitude response) it simultaneously degrades optimality of
second parameter (phase responses) after certain number of
iterations. Solution for such trade-offs is to choose domi-
nating parameter in problem under consideration. In this
paper the design strategy to find optimized DIs is kept more
concerned for minimum magnitude response error, which
is comparatively more significant characteristic. The fitness
function used to approximate a digital integrator is taken as
the mean square error of the transfer function and it is given
as

𝐸int = ∫
𝜋

0

(
1

𝜔
−


𝐻 (𝑒
𝑗𝜔

)

)
2

𝑑𝜔. (11)
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Figure 2: Comparison ofmagnitude responses of proposed 2nd and
3rd order optimized DIs with existing [26, 34, 39, 41] optimized
models.

Aim of PSO optimization is to search the best optimal
solution (TF of DI) with minimized mean square error.

2.3. Modified PSO Algorithm for Derivation of Optimized
DIs. In this paper, a slight modification in the original
PSO algorithm has been introduced in velocity, taking into
account the given problem of deriving the best feasible
optimized DIs with very small magnitude response errors
without worsening their corresponding phase responses. In
modified PSO used in this paper, the maximum velocity
which constraints the movement of swarms to the range is
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divided by a factor of ten after a certain number of iterations.
Here we have used dynamic velocity control variant of
PSO in which velocity is scaled down after every specific
number of generations.Thismodification results in improved
performance as compared to the original algorithm. In this
paper the parameters used for PSO algorithm for finding
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Figure 5: Comparison of magnitude responses of proposed half
integrators based on 2nd and 3rd order optimized DIs with existing
[2, 17] models.

optimized solutions of 2nd and 3rd order DIs are as follows:
particle range = (−1, 1), learning factors (𝑐

1
and 𝑐

2
) = 2,

diversity factor = 1, maximum velocity factor = 0.5, swarm
size = 200, and number of generations = 200. The flowchart
of modified PSO has been given in Figure 1.

Intel Core 2 Duo CPU T6600 @2.20GHz (Installed
Memory (RAM) of 4GB) has been used for simulations.
Transfer functions of worst and average cases of 2nd and 3rd
orderDIs have been given inTables 1 and 2, respectively, along
with their corresponding fitness function values (F.V.).

In this paper when the code was run in C++ for 100
iterations, the best optimized (with least mean square error)
results for 2nd and 3rd order proposed DIs have been
observed for 200 generations using 200 particles. Transfer
functions (TFs) of proposed optimized integrators have been
given next in pole zero form in (12) and (13), respectively.

TF of proposed 2nd order optimized integrator is

𝐻PSO 2nd opt (𝑧) = (
(0.8651 (𝑧 + 0.1042) (𝑧 + 0.6276))

((𝑧 − 1) (𝑧 + 0.5547))
) .

(12)

TF of proposed 3rd order optimized integrator is

𝐻PSO 3rd opt (𝑧)

= (
(0.8656 (𝑧 + 0.1057) (𝑧 + 0.2021) (𝑧 + 0.503))

((𝑧 + 0.38) (𝑧 + 0.2522) (𝑧 − 0.9997))
) .

(13)

Proposed 2nd and 3rd order DIs optimized here by PSO
have been compared with the recently published integrators
optimized by different optimization algorithms, namely, LP
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Figure 6: Comparison of RME values of proposed half integrators
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[34], GA [35], SA [39], and PZ [41], for validating efficient
performance of proposed PSO. Comparisons of bode dia-
grams (i.e., magnitude versus the frequency (𝑤) and phase
(degrees) versus frequency (𝑤)) and RME responses (in dB)
have been presented in Figures 2, 3 and 4 respectively.

Results for performance values (RME) for each opti-
mization method have been compared in Table 3. It can
be observed from Figure 3 that the proposed PSO method
clearly outperforms existing SA [39] and LP [34] techniques
and gives comparable results for PZ [41] and GA [35] meth-
ods. The 2nd order DI, namely, 𝐻PSO 2nd opt(𝑧) given in (12),
outperforms Al-Alaoui 3-segment and 4-segment optimized
DIs in complete spectrum. 𝐻PSO 2nd opt(𝑧) excels Jain-Gupta-
Jain DI [35] in frequency range over 0 ≤ 𝜔 ≤ 0.5𝜋 radians
and 2.58 ≤ 𝜔 ≤ 3𝜋 radians. PSO optimized proposed 3rd
order DI, namely, 𝐻PSO 3rd opt(𝑧), clearly outperforms the
existing Al-Alaoui optimized 3-segment, 4-segment [39], and
Upadhyay [41] DIs in almost complete range with RME of ≤

−41 dB. 𝐻PSO 3rd opt(𝑧) given in (13) gives comparable results
with GA optimized [35] operator. Proposed optimized DIs
are observed to satisfy stability criterion and show linearly
decreasing phase responses (see Figure 4).

Proposed DIs optimized by PSO clearly excel operators
optimized by SA [39], LP [34], and PZ [41] techniques, but
lie in close vicinity of the GA [35] responses. So a statistical
test has been done for comparing performances of PSO
and GA for validating superiority of the proposed modified
algorithm. The products of number of particles and number
of generations (𝑁

𝑝
∗ 𝑁
𝑔
) have been varied from (50 ∗ 50) to

(100 ∗ 100) and then to (200 ∗ 200) for different iterations
and values of mean, median, and standard deviation have
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Figure 7: Comparison of phase responses of proposed half integra-
tors based on 2nd and 3rd order optimized DIs with existing [2, 17]
models.

been registered for all the worst, average, and best results of
2nd and 3rd order optimized DIs (see Table 4). From this
table it is clear that PSO technique performs better than GA
method and also it was noticed that with the increase in
values of 𝑁

𝑝
, 𝑁
𝑔
, and number of iterations, the response of

resultant DIs comes closer to the ideal response as mean,
median, and standard deviation values go on decreasing with
efficientminimization of error function. In this paperwe have
considered values of root mean square error.

3. Discretization of
Proposed 2nd and 3rd Order Optimized
DIs for Half Integrator Models

Theoptimized integer order DIs derived in Section 2 are used
as 𝑠-to-𝑧 transformations for CFE based indirect discretiza-
tion [2, 23, 24] scheme. Formula given by Khovanskii in [29]
has been used for different rational approximations of FOIs.
That is

(𝑠)
±𝛼

=
1

1−

𝛼𝑠

1+(1+𝛼) 𝑠−

(1 + 𝛼) 𝑠 (1 + 𝑠)

2+(3+𝛼) 𝑠−

2 (2 + 𝛼) 𝑠 (1 + 𝑠)

3 + (5+𝛼) 𝑠−

×
3 (3 + 𝛼) 𝑠 (1 + 𝑠)

4 + (9 + 𝛼) 𝑠−

4 (4 + 𝛼) 𝑠 (1 + 𝑠)

5 + (9 + 𝛼) 𝑠−

×
5 (5 + 𝛼) 𝑠 (1 + 𝑠)

6 + (11 + 𝛼) 𝑠−

6 (6 + 𝛼) 𝑠 (1 + 𝑠)

7 + (13 + 𝛼) 𝑠−
.

(14)

Infinite series of (14) can be terminated up to 2, 4,
and 6 terms, and CFE based indirect discretization used in
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Table 3: Comparisons of RME values of the proposed PSO optimized DIs with other integer order existing integrators optimized by different
optimization techniques.

𝜔 (𝜋 rad)
Al-Alaoui
3-segment

(SA)

Al-Alaoui
4-segment

(SA)

Jain-Gupta-Jain
(GA)

Upadhyay
(P-Z)

Gupta-Jain-Kumar
(LP)

Proposed
2nd order
DI (PSO)

Proposed
3rd order
DI (PSO)

0.25 −72.03 −60.18 −54.46 −48.31 −71.06 −72.03 −63.82
0.5 −49.15 −41.21 −59.47 −51.65 −59.89 −59.68 −73.04
0.75 −37.25 −34.02 −80.04 −61.71 −63.91 −53.27 −71.45
1.0 −30.29 −30.34 −57.28 −57.28 −49.94 −49.88 −64.63
1.25 −22.72 −32.96 −53.84 −48.71 −39.33 −48.71 −68.2
1.75 −11.64 −35.05 −53.85 −47.91 −31.46 −62.62 −54.2
2.0 −8.24 −19.11 −60.53 −52.89 −31.43 −49.98 −49.94
2.25 −6.92 −15.99 −53.84 −61.5 −34.5 −42.77 −53.66
2.75 −18.19 −19.73 −37.54 −37.76 −45.88 −55.55 −40.61
3.0 −4.17 −18.11 −35.52 −36.44 −30.14 −41.34 −45.01

Table 4: Statistical test for comparison of proposed PSO and GA techniques for approximations of 2nd and 3rd order digital integrators.

Genetic algorithm Modified PSO algorithm
Approximating 2nd order digital integrator for comparing PSO and GA

𝑁
𝑝

∗ 𝑁
𝑔

50 ∗ 50 100 ∗ 100 200 ∗ 200 50 ∗ 50 100 ∗ 100 200 ∗ 200

Mean 0.915405 0.230096 0.0874599 0.614370 0.201256 0.0936231
Median 0.482815 0.194402 0.075695 0.491575 0.114377 0.0488172
Standard deviation 0.737526 0.131617 0.0400587 0.43579 0.137471 0.042671

Approximating 3rd order digital integrator for comparing PSO and GA
𝑁
𝑝

∗ 𝑁
𝑔

50 ∗ 50 100 ∗ 100 200 ∗ 200 50 ∗ 50 100 ∗ 100 200 ∗ 200

Mean 0.915406 0.230096 0.0874599 0.633554 0.221398 0.0969881
Median 0.1478565 0.069402 0.02937085 0.1801123 0.1207528 0.0861992
Standard deviation 0.737526 0.131617 0.0400587 0.491451 0.152073 0.0530145

[24] has been adopted for deriving half integrators fitted in
continuous-time domain (see Table 5). Also 2nd order opti-
mized DI. resulted in 2nd, 4th, and 6th order FOIs whereas
3rd order optimized DI when substituted for different terms
resulted in 3rd and 6th order half integrators. In the TFs of
derived proposed half integrators given in Table 5, order of
optimized DIs and order of FOIs are used as subscripts of
symbol “𝐻”.

4. Comparisons of Proposed FOIs Based on
2nd and 3rd Order Optimized DIs with the
Existing Models

Simulation results of comparison of magnitude responses,
RME and phase responses of half integrators (see Table 5)
based on different 2nd and 3rd order optimized DIs (given in
(12) and (13)) with the existing half integrators given in [2, 17]
and ideal half integrator have been presented in Figures 5–7.

Comparison of RME values of proposed and existing
FOIs has been presented in Table 6. It is observed from
Figure 6 that the proposed 2nd and 3rd order FOIs, namely,
𝐻
2nd fo 2(𝑧) and 𝐻

3rd fo 3(𝑧), only lag in performance but
still these outperform the existing [2, 17] models in higher
frequency spectrum.The6th order operator𝐻

2nd fo 6(𝑧) is the

best among the proposed FOIs and it clearly outperforms all
the existing models [2, 17] in complete frequency spectrum
with RME of ≤−40 dB. Proposed 𝐻

2nd fo 2(𝑧) and 𝐻
3rd fo 3(𝑧)

outperform Gupta-Madhu-Jain half integrator [17] in fre-
quency range over 0.88 ≤ 𝜔 ≤ 3𝜋 radians. 𝐻

2nd fo 4(𝑧),
𝐻
2nd fo 6(𝑧), and 𝐻

3rd fo 6(𝑧) half integrators excel Krishna
half integrator [2] in almost complete range. All the proposed
FOIs are observed to be stable and follow linear phase curve
in almost complete frequency spectrum (see Figure 7).

5. Conclusions

This paper attempts to focus on a simple yet unaddressed
fact which till date has remained in the backdrop as the
optimization of an integer order operator before converting
it into its fractional the order (fo) counterparts. Proposed
FOIs validate that properties of an efficiently optimized DI
pass directly into its fractional domain when it is used as 𝑠-
to-𝑧 transformation during indirect discretization. Here, 2nd
and 3rd order integer order integrators have been explored
by PSO algorithm for finding their optimal solutions for a
minimized error fitness function. The simulation results of
integer order operators have revealed the effectiveness of
the proposed modified PSO algorithm, because of their low
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Table 5: Mathematical models of proposed half integrators based on 2nd and 3rd order PSO optimized DIs.

Mathematical models of half integrators based on 2nd and 3rd order PSO optimized DIs
Name of PSO optimized DIs Transfer functions of FOIs derived by indirect discretization of CFE

𝐻PSO 2nd opt(𝑧)

𝐻2nd-fo-2(𝑧) = (
0.9302 (𝑧 − 0.1825) (𝑧 + 0.5869)

(𝑧 − 0.7422) (𝑧 + 0.5604)
)

𝐻2nd-fo-4(𝑧) = (
0.93011 (𝑧 − 0.003372) (𝑧 + 0.5633) (𝑧 + 0.6071) (𝑧 − 0.6396)

(𝑧 − 0.9034) (𝑧 − 0.293) (𝑧 + 0.5788) (𝑧 + 0.5566)
)

𝐻2nd-fo-6(𝑧) = (

(
0.93011 (𝑧 − 0.8073) (𝑧 − 0.3427) (𝑧 + 0.616)

(𝑧 + 0.5758) (𝑧 + 0.5587) (𝑧 + 0.04899)
)

(
(𝑧 + 0.5936) (𝑧 + 0.5649) (𝑧 + 0.5556)

(𝑧 − 0.5924) (𝑧 − 0.9502) (𝑧 − 0.1107)
)

)

𝐻PSO 3rd opt(𝑧)

𝐻3rd-fo-3(𝑧) = (
0.93046 (𝑧 − 0.1852) (𝑧 + 0.2354) (𝑧 + 0.433)

(𝑧 − 0.742) (𝑧 + 0.3892) (𝑧 + 0.2492)
)

𝐻3rd-fo-6(𝑧) = (

(
0.93038 (𝑧 − 0.6395) (𝑧 + 0.4678) (𝑧 + 0.3939)

(𝑧 + 0.2476) (𝑧 + 0.223) (𝑧 − 0.008033)
)

(
(𝑧 − 0.9031) (𝑧 − 0.2946) (𝑧 + 0.2512)

(𝑧 + 0.2397) (𝑧 + 0.383) (𝑧 + 0.4194)
)

)

Table 6: Comparisons of RME values of the proposed half integrators based on optimized DIs with the existing models.

𝜔

(𝜋 rad)

Proposed half integrators based on 2nd order
PSO optimized DI

Proposed half integrators based on 3rd
order PSO optimized DI

Gupta-Madhu-
Jain half
integrator

Krishna half
integrator

𝐻2nd-fo-2(𝑧) 𝐻2nd-fo-4(𝑧) 𝐻2nd-fo-6(𝑧) 𝐻3rd-fo-3(𝑧) 𝐻3rd-fo-6(𝑧)

0.25 −15.79 −24.55 −43.25 −15.79 −29.26 −35.53 −17.42
0.5 −17.52 −38.74 −55.85 −17.52 −38.97 −53.62 −28.31
0.75 −25.82 −41.56 −85.14 −25.81 −42.61 −53.65 −35.56
1.0 −58.3 −58.3 −55.44 −64.01 −74.75 −45.26 −42.05
1.25 −31.25 −57.34 −53.48 −31.13 −50.67 −38.93 −37.13
1.75 −28.94 −81.15 −75.32 −29.82 −58.25 −33.59 −40.57
2.0 −32.62 −75.83 −55.54 −32.62 −73.25 −34.88 −46.46
2.25 −41.43 −57.13 −48.99 −41.15 −58.93 −43.69 −55.28
2.75 −32.99 −59.6 −59.6 −36.33 −46.94 −32.6 −29.8
3.0 −29.56 −56.03 −47.75 −28.27 −46.74 −33.74 −24.3

orders and very lessmagnitude errors as compared to existing
ones. Proposed FOIs based on the optimizedDIs present very
less RME values of the order of −40 dB and show linear phase
curves in almost full band of Nyquist frequency.
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