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A class of stochastic differential equations given by𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡))𝑑𝑡+𝑔(𝑥(𝑡))𝑑𝑊(𝑡), 𝑥(𝑡
0
) = 𝑥
0
, 𝑡
0

≤ 𝑡 ≤ 𝑇 < +∞, are investigated.
Upon making some suitable assumptions, the existence and uniqueness of solution for the equations are obtained. Moreover, the
existence and uniqueness of solution for stochastic Lorenz system, which is illustrated by example, are in good agreement with the
theoretical analysis.

1. Introduction

Stochastic differential equations (SDEs) play an important
role in characterizing many social, physical, biological, and
engineering problems. They are important from the view-
point of applications since they incorporate (natural) ran-
domness into the mathematical description of the phenom-
ena and provide a more accurate description of it. Therefore,
the theory of SDEs has developed quickly, the investigation
for SDEs has attracted considerable attention of researchers,
and many qualitative theories of SDEs have been obtained
(see [1–9] and the references therein).

The existence and uniqueness of solution are among the
most basic and key topics in qualitative theory of SDEs. In
the last two decades, the existence and uniqueness of solution
for SDEs have been considered in many publications such
as [10–14] and the references therein. Especially, Mao had
investigated the stochastic differential equations:

𝑑𝑋 (𝑡) = 𝑓 (𝑋 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑋 (𝑡) , 𝑡) 𝑑𝐵
𝑡
, 𝑋 (𝑡

0
) = 𝑋

0
,

(1)

on the closed interval [𝑡
0
, 𝑇], 𝑡

0
≤ 𝑇, in his book [14], and

obtained that if Lipschitz condition


𝑓 (𝑋, 𝑡) − 𝑓 (𝑋, 𝑡)



2

∨

𝑔 (𝑋, 𝑡) − 𝑔 (𝑋, 𝑡)



2

≤ 𝐾

𝑋 − 𝑋



2

, 𝑋, 𝑋 ∈ R
𝑑
, 𝑡 ∈ [𝑡

0
, 𝑇] ,

(2)

and linear growth condition:

𝑓 (𝑋, 𝑡)

2

∨
𝑔 (𝑋, 𝑡)


2

≤ 𝐾 (1 + ‖𝑋‖
2
) ,

(𝑋, 𝑡) ∈ R
𝑑

× [𝑡
0
, 𝑇] ,

(3)

hold, then (1) had a unique solution 𝑋(𝑡) satisfying 𝑋(𝑡) ∈

M2([𝑡
0
, 𝑇], R𝑑). Furthermore, Mao [14] also discussed

stochastic functional differential equations with finite delay:

𝑑𝑋 (𝑡) = 𝑓 (𝑋
𝑡
, 𝑡) 𝑑𝑡 + 𝑔 (𝑋

𝑡
, 𝑡) 𝑑𝐵

𝑡
,

𝑋
𝑡0

= 𝜉, 𝑡
0

≤ 𝑡 ≤ 𝑇 < +∞,

(4)

where 𝑋
𝑡

= {𝑋(𝑡 + 𝜃) : −𝜏 ≤ 𝜃 ≤ 0} could be considered
as a 𝐶([𝑡

0
, 𝑇], R𝑑)-value stochastic process. The initial value

𝑋
𝑡0

= 𝜉 = {𝜉(𝜃) : −𝜏 ≤ 𝜃 ≤ 0} is an 𝐹
𝑡0
-measurable
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𝐶([𝑡
0
, 𝑇], R𝑑)-value random variable such that E‖𝜉‖

2
< ∞.

For (4), if uniform Lipschitz condition

𝑓 (𝜑, 𝑡) − 𝑓 (𝜙, 𝑡)

2

∨
𝑔 (𝜑, 𝑡) − 𝑔 (𝜙, 𝑡)


2

≤ 𝐾
𝜑 − 𝜙


2
, 𝐾 > 0,

(5)

for any 𝜑, 𝜙 ∈ 𝐶([𝑡
0
, 𝑇]; R𝑑), 𝑡 ∈ [𝑡

0
, 𝑇], and linear growth

condition
𝑓 (𝜑, 𝑡)


2

∨
𝑔 (𝜑, 𝑡)


2

≤ 𝐾 (1 +
𝜑


2
) ,

(𝜑, 𝑡) ∈ R
𝑑

× [𝑡
0
, 𝑇] , 𝐾 > 0,

(6)

are satisfied, then (4) had a unique solution 𝑋(𝑡); moreover,
𝑋(𝑡) ∈ M2([𝑡

0
, 𝑇], R𝑑).

We also mention that, following Mao [14], many papers
were devoted to improving the results of Mao [14] by
weakening the Lipschitz conditions on coefficients (e.g., see
Jiang and Wang [15], Fei [16], Caraballo et al. [17], Wu et
al. [18], Jiang and Shen [19], Taniguchi [20], Fan and Jiang
[21], Bao and Hou [22], Ren et al. [23], Taniguchi [24], Wang
and Huang [25], Lin [26], Xie [27], Fei [28], Ren and Zhang
[29] and Zhang [30], etc.). In particular, Caraballo et al. [17],
Taniguchi [20], Bao and Hou [22], and Taniguchi [24] have
studied the existence and uniqueness of solutions to SDEs
under the non-Lipschitzian condition.

To the best of our knowledge, most of the results
on existence theory for SDEs focused on the case of the
coefficient satisfying linear growth condition; however, the
results on existence theory for SDEs without linear growth
condition were discussed seldom. In this paper, without
linear growth condition, some new criteria ensuring the
existence and uniqueness of solutions for a class of SDEs
are firstly established. These criteria improve, complement a
number of existing results, andhandle some cases not covered
by known criteria. The results obtained in this paper not
only improve the previous conclusion in the case of linear
growth condition, but also can be applied in the existence and
uniqueness of solution for the stochastic Lorenz system for
weather forecasting, some other systems, and so on.

The rest of this paper is organized as follows. In Section 2,
some relating notations and preliminary facts are introduced.
Section 3 obtains the existence and uniqueness of solution for
a class of SDEs without linear growth condition. In Section 4,
an interesting examples is given to show the effectiveness of
our results.

2. Preliminaries

This section is concerned with some notations and prelimi-
nary results which are used in what follows.

In this paper, we adopt the symbols as follow:R𝑛 denotes
the usual 𝑛-dimensional Euclidean space, ‖ ⋅ ‖ denotes norm
in R𝑛. If 𝐴 is a vector or a matrix, its transpose is denoted by
𝐴
𝑇; if 𝐴 is a matrix, its trace norm is represented by ‖ ⋅ ‖ =

√trace(𝐴𝑇𝐴). Let (Ω,F,P) be a complete probability space
with a filtration {F

𝑡
}
𝑡∈[𝑡0 ,+∞)

satisfying the usual conditions
(i.e., it is increasing and right continuous).F

𝑡0
is independent

of the 𝜎-field generated by {𝑊(𝑡) − 𝑊(𝑡
0
) : 𝑡
0

≤ 𝑡 ≤ 𝑇}

and contains all P-null sets. 𝑊(𝑡) is a given 𝑚-dimensional
standard Brownian motion.

Consider 𝑛-dimensional stochastic differential equations:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡)) 𝑑𝑡 + 𝑔 (𝑥 (𝑡)) 𝑑𝑊 (𝑡) ,

𝑥 (𝑡
0
) = 𝑥
0
, 𝑡
0

≤ 𝑡 ≤ 𝑇 < +∞,

(7)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
⊤, 𝑥
0

= (𝑥
1
(𝑡
0
), 𝑥
2
(𝑡
0
),

. . . , 𝑥
𝑛
(𝑡
0
))
⊤ is independent of F

𝑡
, and satisfies E‖𝑥

0
‖
2

<

+∞, 𝑊(𝑡) is an 𝑚-dimensional Wiener process, 𝑓(𝑥(𝑡)) =

(𝑓
1
(𝑥(𝑡)), 𝑓

2
(𝑥(𝑡)), . . . 𝑓

𝑛
(𝑥(𝑡)))

⊤, 𝑔(𝑥(𝑡)) is a 𝑛 × 𝑚 matrix.
Our purpose is to find the solution for (7). Hence, we will
show the existence, uniqueness theorem and the properties
of solution for (7) in the next section. Moreover, to illustrate
the effectiveness of our results, we prove the existence and
uniqueness of solution for the stochastic Lorenz system.

To guarantee the existence and uniqueness of solution for
(7), the following conditions, instead of Lipschitz and linear
growth conditions, are described.

(𝐻
1
) 𝑓(𝑥(𝑡)) satisfies the Lipschitz condition; moreover,

⟨𝑓 (𝑥) , 𝑥⟩ ≤ 𝑘
1

+ 𝑘
2‖𝑥‖
2
; (8)

(𝐻
2
) 𝑔(𝑥(𝑡)) satisfies the Lipschitz condition and the

linear growth condition:

𝑔 (𝑥)

2

≤ 𝑘
2

(1 + ‖𝑥‖
2
) , (9)

where ⟨⋅, ⋅⟩ denotes the inner product ofR𝑛 and 𝑘
1
, 𝑘
2
, and 𝑘

are constants.

3. The Existence and Uniqueness Theorem

In this section, we start to study the existence and uniqueness
of solution for (7) without linear growth condition. To
complete ourmain results, we need to prepare several lemmas
which will be utilized in the sequel.

Lemma 1. Let (𝐻
1
) and (𝐻

2
) be satisfied. Setting 𝜒

𝑁
∈

𝐶
1
(R𝑛,R) with

𝜒
𝑁

(𝑥) = {
1, 𝑓𝑜𝑟 ‖𝑥‖ ≤ 𝑁,

0, 𝑓𝑜𝑟 ‖𝑥‖ ≥ 𝑁 + 1,
(10)

and 𝑓
𝑁

(𝑥) = 𝜒
𝑁

(𝑥)𝑓(𝑥), and then the modified stochastic
differential equations:

𝑑𝑥
𝑁

= 𝑓
𝑁

(𝑥
𝑁

) 𝑑𝑡 + 𝑔 (𝑥
𝑁

) 𝑑𝑊
𝑡
,

𝑥
𝑁

(𝑡
0
) = 𝑥
0
, 𝑡
0

≤ 𝑡 ≤ 𝑇 < +∞,

(11)

possesses a continuous almost sure unique F
𝑡
measurable

solution process.

Proof. As the truncation function 𝜒
𝑁

∈ 𝐶
1
(R𝑛,R), 𝑓

𝑁
(𝑥)

remains differentiable and its derivative is both continuous
and has a compact support. Hence 𝑓

𝑁
(𝑥) is bounded and sat-

isfies linear growth condition as well as Lipschitz condition.
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According to (𝐻
2
), 𝑔(𝑥) satisfies linear growth condition and

Lipschitz condition. Therefore, the assertion follows by the
usual existence and uniqueness theorem (see Gihman and
Skorohod [31], p. 37–47).

Lemma2 (see [32]). Let𝐶,𝐷 be both positive and semidefinite
Hermite matrix, and 𝑘 is a positive integer; then

trace (𝐶𝐷)
𝑘

≤ ( trace (𝐶))
𝑘
( trace (𝐷))

𝑘
. (12)

We compute the 𝑝th norm of the solution for (11) as
follows. By Itô formula w.r.t. the function ℎ(𝑥) = ‖𝑥‖

𝑝
=

(∑
𝑛

𝑖=1
𝑥
2

𝑖
)
𝑝/2 for 𝑝 being even, one obtains

𝑑
𝑥
𝑁


𝑝

= 𝑝
𝑥
𝑁


𝑝−2

(𝑓 (𝑥
𝑁

) , 𝑥
𝑁

) 𝑑𝑡

+ 𝑝 (
𝑝

2
− 1)

𝑥
𝑁


𝑝−4trace (𝑥

𝑁
𝑥
𝑇

𝑁
𝑔 (𝑥
𝑁

)

× 𝑔
𝑇

(𝑥
𝑁

)) 𝑑𝑡

+
𝑝

2

𝑥
𝑁


𝑝−2trace (𝑔 (𝑥

𝑁
) 𝑔
𝑇

(𝑥
𝑁

)) 𝑑𝑡

+ 𝑝
𝑥
𝑁


𝑝−2

𝑥
𝑇

𝑁
𝑔 (𝑥
𝑁

) 𝑑𝑊 (𝑡) .

(13)

According to Lemma 2, one has

trace (𝑥
𝑇

𝑁
𝑥
𝑁

𝑔
𝑇

(𝑥
𝑁

) 𝑔 (𝑥
𝑁

)) ≤
𝑥
𝑁


2𝑔 (𝑥

𝑁
)

2
. (14)

Together with (𝐻
1
), the differential of the 𝑝th norm is given

by

𝑑
𝑥
𝑁


𝑝

= (𝑝𝑘
1

𝑥
𝑁


𝑝−2

+ 𝑝𝑘
2

𝑥
𝑁


𝑝

) 𝑑𝑡

+
𝑝 (𝑝 − 1)

2

𝑥
𝑁


𝑝−2𝑔 (𝑥

𝑁
)

2
𝑑𝑡

+ 𝑝
𝑥
𝑁


𝑝−2

𝑥
𝑇

𝑁
𝑔 (𝑥
𝑁

) 𝑑𝑊 (𝑡) + 𝜉 (𝑡) 𝑑𝑡,

(15)

where 𝜉(𝑡) ≤ 0 is an adapted process that compensates all the
estimation made and could be computed explicitly.

Lemma 3. Let 𝑝 ∈ N be even, and then there exists a constant
𝐶
𝑝

= 𝐶(𝑇, 𝐸‖𝑥
0
‖
𝑝

, 𝑝) independent of 𝑁 such that 𝐸‖𝑥
𝑁

‖
𝑝

<

𝐶
𝑝
for 𝑡 ∈ [𝑡

0
, 𝑇].

Proof. For 𝑀 ∈ N, define stopping time 𝜏
𝑀

= inf{𝑡 ∈ [𝑡
0
, 𝑇] :

‖𝑥
𝑁

(𝑡)‖ ≥ 𝑀}. Note that

∫

𝑡∧𝜏𝑀

𝑡0

𝑓 (𝑠) 𝑑𝑠 ≤ ∫

𝑡

𝑡0

𝑓 (𝑠 ∧ 𝜏
𝑀

) 𝑑𝑠 for 𝑓 (𝑡) ≥ 0. (16)

Since ‖𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)‖
𝑞

≥ 𝑀
𝑞 for all 𝑞 > 0, using (𝐻

2
) and

the above inequality, one concludes that integrand of the
stochastic integral is bounded; hence,

E(∫

𝑡∧𝜏𝑀

𝑡0

𝑝
𝑥
𝑁 (𝑠)


𝑝−2

𝑥
𝑁(𝑠)
𝑇

𝑔 (𝑥
𝑁 (𝑠)) 𝑑𝑊 (𝑠)) = 0. (17)

Form (𝐻
2
), we get the following inequality:

E
𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ E
𝑥 (𝑡
0
)

𝑝

+ ∫

𝑡

𝑡0

[(𝑝𝑘
1

+
𝑘
2
𝑝 (𝑝 − 1)

2
)

× E
𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

𝑝−2

+ (𝑝𝑘
2

+
𝑘
2
𝑝 (𝑝 − 1)

2
)

× E
𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

𝑝

] 𝑑𝑠.

(18)

Let 𝑑
1

= 𝑝𝑘
2

+ 𝑘
2
𝑝(𝑝 − 1)/2, 𝑑

2
= 𝑝𝑘
1

+ 𝑘
2
𝑝(𝑝 − 1)/2, then

(18) becomes

E
𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ E
𝑥 (𝑡
0
)

𝑝

+ ∫

𝑡

𝑡0

(𝑑
1
E

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

+ 𝑑
2
E

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝−2

) 𝑑𝑠,

(19)

which implies

E
𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

2

≤ E
𝑥 (𝑡
0
)

2

+ ∫

𝑡

𝑡0

(𝑑
1
E

𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

2

+ 𝑑
2
) 𝑑𝑠.

(20)

Gronwall inequality implies that there exists a constant 𝐶
2

such that

sup
𝑡∈[𝑡0 ,𝑇]

E
𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

2

≤ 𝐶
2
. (21)

By inductive method, there exist a constant 𝐶
𝑝
such that

E
𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

𝑝

≤ E
𝑥 (𝑡
0
)

𝑝

+ ∫

𝑡

𝑡0

(
𝑑1

E
𝑥
𝑁

(𝑠 ∧ 𝜏
𝑀

)

𝑝

+
𝑑2

 𝐶
𝑝−2

) 𝑑𝑠 ≤ 𝐶
𝑝

.

(22)

It remains to show that the stopping time satisfies 𝜏
𝑀

→ 𝑇

for 𝑀 → +∞. By the continuity of the solution 𝑥
𝑁

(𝑡) in 𝑡,
the norm ‖𝑥

𝑁
(𝑡 ∧ 𝜏
𝑀

)‖
𝑝 is bounded; therefore, it converges

𝜔-wise to ‖𝑥
𝑁

(𝑡)‖
𝑝 as 𝑀 → +∞. Since the norm is

nonnegative and bounded for all 𝑀 ∈ N, for 𝑡 ≤ 𝑇, Fatou
Lemma implies that

E
𝑥
𝑁

(𝑡)

𝑝

≤ E( lim
𝑀→+∞

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

)

≤ lim inf
𝑀→+∞

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ 𝐶
𝑝

.

(23)
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Lemma 4. Let 𝑝 ∈ N be even, and then there exists a
constant 𝐶

𝑝
= 𝐶(𝑇, 𝐸‖𝑥

0
‖
𝑝

, 𝑝) independent of 𝑁 such that
Esup
𝑡∈[𝑡0 ,𝑇]

‖𝑥
𝑁

(𝑡)‖
𝑝

< 𝐶
𝑝
for 𝑡 ∈ [𝑡

0
, 𝑇].

Proof. From (15), it follows that

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

2

=
𝑥 (𝑡
0
)

2

+ ∫

𝑡∧𝜏𝑀

𝑡0

2𝑘
2

𝑥
𝑁

(𝑠)

2
𝑑𝑠

+ ∫

𝑡∧𝜏𝑀

𝑡0

(2𝑘
1

+
𝑔 (𝑥
𝑁

(𝑠))

2
) 𝑑𝑠

+ ∫

𝑡∧𝜏M

𝑡0

2𝑥
𝑇

𝑁
(𝑠) 𝑔 (𝑥

𝑁 (𝑠)) 𝑑𝑊 (𝑠)

+ ∫

𝑡∧𝜏𝑀

𝑡0

𝜉 (𝑠) 𝑑𝑠,

(24)

which implies

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

2

≤
𝑥 (𝑡
0
)

2

+ ∫

𝑡∧𝜏𝑀

𝑡0

2
𝑘2


𝑥
𝑁 (𝑠)


2
𝑑𝑠

+ ∫

𝑡∧𝜏𝑀

𝑡0

(2
𝑘1

 +
𝑔 (𝑥
𝑁

(𝑠))

2
) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑀

𝑡0

2𝑥
𝑇

𝑁
(𝑠) 𝑔 (𝑥

𝑁 (𝑠)) 𝑑W (𝑠) .

(25)

Taking to the power 𝑝/2 to obtain an expression for
‖𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)‖
𝑝, one has

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤



𝑥 (𝑡
0
)

2

+ ∫

𝑡∧𝜏𝑀

0

2
𝑘2


𝑥
𝑁

(𝑠)

2
𝑑𝑠

+ ∫

𝑡∧𝜏𝑀

𝑡0

(2
𝑘1

 +
𝑔 (𝑥
𝑁

(𝑠))

2
) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑀

𝑡0

2𝑥
𝑇

𝑁
(𝑠) 𝑔 (𝑥

𝑁
(𝑠)) 𝑑𝑊 (𝑠)



𝑝/2

.

(26)

According to | ∑
𝑘

𝑖=1
𝑎
𝑖
|
𝑚

≤ 𝑘
𝑚−1

∑
𝑘

𝑖=1
|𝑎
𝑖
|
𝑚 for 𝑚 ≥ 1, one

obtains

E sup
𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ 4
(𝑝−2)/2

E
𝑥 (𝑡
0
)

𝑝

+ 4
(𝑝−2)/2

E



∫

𝑇

𝑡0

2
𝑘2


𝑥
𝑁

(𝑠)

2
𝑑𝑠



𝑝/2

+ 4
(𝑝−2)/2

E



∫

𝑇

𝑡0

(2
𝑘1

 +
𝑔 (𝑥
𝑁

(𝑠))

2
) 𝑑𝑠



𝑝/2

+ 4
(𝑝−2)/2

E sup
𝑡∈[𝑡0 ,𝑇]



∫

𝑡∧𝜏𝑀

𝑡0

2𝑥
𝑇

𝑁
(𝑠) 𝑔 (𝑥

𝑁
(𝑠)) 𝑑𝑊(𝑠)



𝑝/2

= 4
(𝑝−2)/2

𝐸
𝑥 (𝑡
0
)

𝑝

+ 𝑈
1

+ 𝑈
2

+ 𝑈
3
.

(27)

Since the solution 𝑥
𝑁

(𝑡) for (11) is F
𝑡
measurable for 𝑡 ≥ 𝑡

0

and continuous in 𝑡, the norm ‖𝑥
𝑁

(𝑡)‖ is F
𝑡

⊗ B([𝑡
0
, 𝑡])-

measurable (see Wentzell [33], p. 89, p. 18). Therefore,
applying (𝐻

2
), together with Hölder inequality to remove

the powers outside the deterministic integrals 𝑈
1
and 𝑈

2
,

changing expectation and integration by Fubini theorem and
using Lemma 3, one obtains

𝑈
1

= 4
(𝑝−2)/2

E



∫

𝑇

𝑡0

2
𝑘2


𝑥
𝑁 (𝑠)


2
𝑑𝑠



𝑝/2

≤ 𝐶
1

𝑝
,

𝑈
2

= 4
(𝑝−2)/2

E



∫

𝑇

𝑡0

(2
𝑘1

 +
𝑔 (𝑥
𝑁 (𝑠))


2
) 𝑑𝑠



𝑝/2

≤ 4
(𝑝−2)/2

𝑇
(𝑝−2)/2

× ∫

𝑇

𝑡0

(2
𝑘1


𝑝/2

+ 𝑘
𝑝

+ 𝑘
𝑝

𝐶
2
) 𝑑𝑠,

(28)

which is bounded by a constant 𝐶
2

𝑝
. To further estimate the

stochastic integral 𝑈
3
, using the Burkholder-Davis-Gundy

(see Mao [14], p. 7), one obtains

𝑈
3

= E sup
𝑡∈[𝑡0 ,𝑇]



∫

𝑡

𝑡0

𝑥
𝑇

𝑁
(𝑠) 𝑔 (𝑥

𝑁
(𝑠)) 𝑑𝑊 (𝑠)



𝑝/2

≤ 𝑘
𝑝
E



∫

𝑇

𝑡0

𝑥
𝑁

(𝑠) 𝑔 (𝑥
𝑁

(𝑠))

2



𝑝/4

𝑑𝑠,

(29)

with the constant

𝑘
𝑝

=

{{{{{

{{{{{

{

(
64

𝑝
)

𝑝/4

, for 0 < 𝑝 < 4,

(
𝑝
𝑝/2+1

2𝑝/2+2(𝑝/2 − 1)
𝑝/2−1

)

𝑝/4

, for 𝑝 ≥ 4.

(30)

For 𝑝 = 2, using √𝑥 ≤ 1 + 𝑥 and, for 𝑝 > 2, Hölder inequality
to remove the powers outside the integral on the right side of
(29), afterwards, one proceeds similar to handle the Lebesgue
integrals𝑈

1
and𝑈

2
, which leads to a constant𝐶

3

𝑝
. Combining

the above discussion, one obtains

E sup
𝑡∈[𝑡0,𝑇]

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ 4
(𝑝−2)/2

E
𝑥
0


𝑝

+ 𝐶
1

𝑝
+ 𝐶
2

𝑝
+ 𝐶
3

𝑝
≤ 𝐶
𝑝

.

(31)

To complete the proof one needs to show 𝜏
𝑀

→ 𝑇 for
𝑀 → +∞. Mentioning that the solution 𝑥

𝑁
(𝑡) is continuous

in 𝑡, thusE sup
𝑡∈[𝑡0 ,𝑇]

‖𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)‖
𝑝 is bounded and converges
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𝜔-wise, for 𝑀 → +∞, to E sup
𝑡∈[𝑡0,𝑇]

‖𝑥
𝑁

(𝑡)‖
𝑝. Moreover,

Fatou Lemma and (31) imply

E sup
𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡)

𝑝

= E lim
𝑀→+∞

sup
𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ lim inf
𝑀→+∞

E sup
𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑀

)

𝑝

≤ 𝐶
𝑝

.

(32)

Now, we state our first main result.

Theorem 5. Let (𝐻
1
) and (𝐻

2
) be satisfied, and then (7)

possesses a unique almost sure continuous solution process.

Proof. It is easy to see that the uniqueness follows from the
Lipschitz condition fulfilled by the coefficients (see Remark 2
in Gihman and Skorohod [31], p. 45).

In the following, we only need to prove the existence of
solution for (7).

Note that Lemma 1 ensures the existence of a solution
𝑥
𝑁

(𝑡) for (11). We firstly show that 𝑥
𝑁

(𝑡) converges to a
function 𝑥

0
(𝑡) for 𝑁 → +∞.

Again let 𝜏
𝑁

denote the stopping time 𝜏
𝑁

= inf{𝑡 ∈

[𝑡
0
, 𝑇] : ‖𝑥

𝑁
(𝑡)‖ ≥ 𝑁} for 𝑁 ∈ N. FromChebyshev inequality

and Lemma 4, it follows that

P {𝜏
𝑁

< 𝑇} ≤ P
{

{

{

sup
𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡)

𝑝

≥ 𝑁
}

}

}

≤
E (sup

𝑡∈[𝑡0 ,𝑇]

𝑥
𝑁

(𝑡)

𝑝

)

𝑁𝑃

≤
𝐶 (𝑇, 𝐸

𝑥
0


𝑝

, 𝑝)

𝑁𝑃
→ 0,

as 𝑁 → +∞.

(33)

Note that this states slightly more than convergence in
probability of 𝜏

𝑁
→ 𝑇. One can find, for almost every𝜔 ∈ Ω,

an 𝑁
0
(𝜔) such that 𝜏

𝑁0(𝜔)
= 𝑇. Moreover, one has 𝜏

𝑁
 ≥ 𝜏
𝑁

and 𝑥
𝑥0

𝑁

(⋅, 𝜔) = 𝑥

𝑥0

𝑁
(⋅, 𝜔) (almost sure) on [𝑡

0
, 𝜏
𝑁

] for all 𝑁


≥

𝑁 (seeGihman and Skorohod [14], p. 4).Thus, if 𝜏
𝑁

= 𝑇, then
𝜏
𝑁
 = 𝑇 for all 𝑁


≥ 𝑁. From the above discussion, it follows

that the set {𝜔 : 𝜏
𝑁

(𝜔) = 𝑇} is monotonously increasing and
converges to Ω, for 𝑁 → +∞. We point out once more that
if 𝜏
𝑁0(𝜔)

= 𝑇, then one can express, for almost𝜔 ∈ Ω, the limit
function by 𝑥(⋅, 𝜔) = 𝑥

𝑁
(⋅, 𝜔) for all 𝑁


≥ 𝑁
0
(𝜔). (Actually

𝑥
𝑥0

𝑁
(⋅) is only a version of 𝑥(⋅) on [𝑡

0
, 𝜏
𝑁

]; i.e., there exists an
exceptional P-null set N(𝑁). Note that there are countable
many such null sets, so that the union over all the P-null set
is again a null set.) Therefore, 𝑥

𝑁
(𝑡) converges uniformly in 𝑡

to𝑥
0
(𝑡), togetherwith𝑥

𝑁
(𝑡) is continuous in 𝑡,𝑥0(𝑡) is further

continuous in 𝑡.
Secondly, we further show that the limit function 𝑥

0
(𝑡) is

a real solution for (7).
For 𝑡 = 𝑡

0
, this is true because 𝑥

𝑁
(𝑡
0
) = 𝑥
0
for all 𝑁 ∈ N.

For 𝑡 ∈ (𝑡
0
, 𝑇], one considers the limit function of 𝑥

𝑁
(𝑡) for

𝑁 → +∞. According to 𝑓
𝑁

(𝑥
𝑁

(𝑡 ∧ 𝜏
𝑁

)) = 𝑓(𝑥(𝑡 ∧ 𝜏
𝑁

)) and

𝑥
𝑁

(𝑡 ∧ 𝜏
𝑁

) = 𝑥(𝑡 ∧ 𝜏
𝑁

) for 𝑡 ≤ 𝑇, the almost sure convergence
of 𝜏
𝑁
to 𝑇 implies

P
{

{

{

sup
𝑡∈[𝑡0 ,𝑇]



∫

𝑡

𝑡0

(𝑓 (𝑥
𝑁

(𝑠)) − 𝑓 (𝑥 (𝑠))) 𝑑𝑠

+ ∫

𝑡

𝑡0

(𝑔 (𝑥
𝑁

(𝑠)) − 𝑔 (𝑥 (𝑠))) 𝑑𝑊 (𝑡)



> 0
}

}

}

≤ P {𝜏
𝑁

< 𝑡} → 0, as 𝑁 → +∞.

(34)

Therefore, 𝑥
0
(⋅) is a solution for (7) on [𝑡

0
, 𝑇]. The proof is

completed.

Under the assumptions (𝐻
1
) and (𝐻

2
), the solution has

some important properties.

Corollary 6. The solution 𝑥(𝑡) for (7) has the following
properties.

(i) 𝑥(𝑡) is a F
𝑡

× B([𝑡
0
, 𝑇])-measurable homogeneous

Markov process.
(ii) Let E‖𝑥

0
‖
𝑝

< +∞ for a fixed even 𝑝, and then there
exists a constant 𝐶

𝑝
= 𝐶(𝑇, 𝐸‖𝑥

0
‖
𝑝

, 𝑝) such that

E sup
𝑡∈[𝑡0 ,𝑇]

‖𝑥 (𝑡)‖
𝑝

≤ ‖𝑥 (𝑡)‖
𝑝

≤ 𝐶
𝑝

, ∀𝑡 ∈ [𝑡
0
, 𝑇] . (35)

Furthermore, for every deterministic and bounded set 𝐵 ⊂ R𝑛,
the constant sup

𝑥0∈𝐵
𝐶
𝑝
is finite (𝑥

0
is deterministic).

Proof. (i) Because the coefficients 𝑓
𝑁

(𝑥
𝑁

), 𝑔(𝑥
𝑁

) of (11) are
independent of𝜔, 𝑡 respectively, and fulfill both linear growth
condition and Lipschitz condition, the solution 𝑥

𝑁
(𝑡) is a

homogeneous Markov process by Theorem 1 in Gihman and
Skorohod [31] (Section 10). Therefore, the solution 𝑥(𝑡) of
system (7) is also a homogeneousMarkov process since 𝑥

𝑁
(𝑡)

uniformly converges to 𝑥(𝑡).

(ii) From the proof of Lemma 4, it is to see that there
exists the constant 𝐶

𝑝
in (ii). Note that E‖𝑥(𝑡)‖, 𝑡 ∈ [0, 𝑇],

can be bounded by a probably more accurate constant using
Lemma 3. Every bounded set 𝐵 is contained in a ball of
appropriate radius 𝑅 and center zero. Setting ‖𝑥

0
‖ = 𝑅, the

assertion follows from the linear dependence of the bounding
constant (cf. (23) and (31) resp.).

Corollary 7. Let 2𝑘
2

+ 𝑘
2

< 0, and then there exists a constant
𝐶(E‖𝑥

0
‖
2
) such that

sup
𝑡∈(𝑡0,+∞)

𝐸‖𝑥 (𝑡)‖
2

< 𝐶 (𝐸
𝑥
0


2
) . (36)

Proof. The assumptions imply that the constant 𝑑
1
in the

proof of Lemma 3 is negative. Hence, there exist a bounded
constant only depending on the initial condition, but not on
𝑡.



6 The Scientific World Journal

4. Applications

In this section, we prove the existence and uniqueness
of solution for the stochastic Lorenz system for weather
forecasting as an application to illustrate the effectiveness of
our results.

The Lorenz system was introduced by Lorenz [34]. For
the physical meaning of the system, the reader is referred to
Peitgen et al. [35]. Forces not described by those equations
are assumed to be random. We model these influences by
white noise.This leads to the stochastic Lorenz system which
has been described in detail in Arnold [36] and has been
intensively studied in [6, 37] and so forth.

Definition 8. Let 𝑥 = (𝑥, 𝑦, 𝑧)
⊤

∈ R3, 𝛽, 𝑟, 𝜎 > 0 be constants,
then the stochastic Lorenz system is defined by

𝑑𝑥 = (−𝐴𝑥 + 𝑓 (𝑥)) 𝑑𝑡 + 𝑔 (𝑥) 𝑑𝑊 (𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
,

(37)

the two parts of the drift are given by

𝐴 = (

𝜎 −𝜎 0

−𝑟 1 0

0 0 𝛽

) , 𝑓 (𝑥) = (

0

−𝑥𝑧

𝑥𝑦

) , (38)

and the noise term 𝑔(𝑥) : R3 → (3 × 𝑚) matrix satisfies
Lipschitz as well as linear growth condition.

Remark 9. If one considers the noise to act in Stratonovich
form, one talks about the Stratonovich Lorenz system. Note
that the Stratonovich and the corresponding Itô Lorenz
system are equivalent up to an additional drift term (see
Arnold [38], p. 181).

Theorem 10. The stochastic Lorenz system (37) exists a unique
solution.

Proof. Let𝑥


= 𝑥,𝑦 = 𝑦, 𝑧 = 𝑧−𝑟−𝜎, and𝜔 = (𝑥

, 𝑦

, 𝑧

)
⊤

∈

R3, and one has

𝑑𝜔 = (−𝐷𝜔 − 𝐵 + 𝑓 (𝜔)) 𝑑𝑡 + 𝑔 (𝜔) 𝑑𝑊 (𝑡) . (39)

The three parts of the drift are given by

𝐷 = (

𝜎 −𝜎 0

𝜎 1 0

0 0 𝛽

) , 𝑓 (𝜔) = (

0

−𝑥

𝑧


𝑥

𝑦


) ,

𝐵 = (

0

0

𝛽 (𝑟 + 𝜎)

) .

(40)

Obviously, the noise term 𝑔(𝜔) : R3 → (3 × 𝑚)

matrix remains satisfying Lipschitz as well as linear growth
condition. According to (40), one has ⟨𝑓(𝜔), 𝜔⟩ = 0.
Moreover,

⟨−𝐷𝜔 − 𝐵, 𝜔⟩ = −𝜎𝑥
2

− 𝑦
2

− 𝛽𝑧
2

− 𝛽 (𝑟 + 𝜎) 𝑧


≤ (−𝑎 +
1

2
) ‖𝜔‖
2

+
𝛽
2
(𝑟 + 𝜎)

2

2
,

(41)

where 𝑎 = min{𝜎, 1, 𝛽}. Hence according to Theorem 10,
system (39) exists a unique solution, so is system (37).

5. Conclusion

This paper considers the problems of existence and unique-
ness of solution for a class of stochastic differential equa-
tions whose nonlinear part does not satisfy linear growth
condition. Some new criteria ensuring the existence and
uniqueness of solution were presented.These criteria extend,
improve, complement a number of results about the existence
and uniqueness of solution, and handle some cases not
covered by known criteria. Furthermore, these criteria are
important in applications such as stochastic Lorenz system
for weather forecasting, some other systems, and so on.
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