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Leaf-cutter ants (Atta spp.) remove leaf litter and woody debris—potential fuels—in and around their nests and foraging trails.
We conducted single and three annual experimental fires to determine the effects of this leaf-cutter ant activity on the behavior
of low-intensity, slow-moving fires. In a transitional forest, where the southern Amazon forest meets the Brazilian savanna, we
tested whether leaf-cutter ant nests and trails (i) inhibit fire spread due to a lack of fuels, and (ii), thereby, reduce the total burned
area during these experimental low-intensity fires, particularly at forest edges where leaf-cutter ant abundance was higher. Fine-
medium fuel mass increased with an increase in distance from ant nest, and the mean area of bare soil was greater on nests than
on the forest floor. Between 60 to 90 percent of the unburned area was within 30 m of ant nests, and burned area significantly
increased with increasing distance to ant nests. In addition, the number of ant nests declined with increasing distance from the
forest edge, and, with exception of the first experimental fire, burned area also increased with increasing distance from the edge.
The present study provides new insight to fire ecology in Amazon environments.

1. Introduction

Leaf-cutter ants (Atta spp.) are considered conspicuous
herbivores in the neotropics [1, 2]. Their role in the ecosys-
tem, however, goes well beyond their herbivory because
their construction and maintenance of nests causes diverse
impacts to soil [3, 4] with consequences for recruitment
dynamics, [5–9] nutrient access [10, 11], and growth of
nearby vegetation [12].

Impacts caused by leaf-cutter ants, or bioperturbation,
are associated with their behavior of cultivating symbiotic
fungus in subterranean chambers linked through a network
of tunnels [13–15]. In order to build these chambers, worker
ants remove soil to depths up to 7 m [16] and deposit it on
the soil surface, forming a mound, a characteristic heap of
soil [15, 17, 18].

During ant nest excavation and expansion, the leaf
litter and nearby seedlings are buried or removed, which
effectively leaves the mound completely bare. Moreover, the
worker ants remove debris near the nest (and along foraging
trails) as part of their maintenance activities and thereby
leave the nest area free of small plants and debris [7, 19, 20].

Therefore, leaf-cutter ants are considered resilient to fire
because they (1) consume leaf biomass, often 12–17% of
annual production of a tropical forest [1, 21–23], which is
potential fuel; (2) construct subterranean nests out of non-
flammable materials, for example, soil; (3) clear trails to bare
mineral soil, which are effectively firebreaks for low-intensity
fires. Moreover, leaf-cutting ants regulate the temperature of
the fungus garden by opening or closing entrances to the nest
or by modifying the culture’s location inside the nest during
different times of the year [2, 24]. These combined effects
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may allow leaf-cutter ants to avoid immediate fire damage.
However, the longer-term consequences of fire, for example,
habitat modification, food availability, and so forth, are not
tested or discussed in this study.

Leaf cutter ants are more abundant in disturbed habitats
[25–28] with degraded edges [22, 29–31]. These habitats
are dominated by pioneers which have less defenses against
herbivory [25, 26, 32, 33]. Based on that assumption, we
propose to address the following questions: can leaf-cutter
ants inhibit fire and effectively protect nearby vegetation in
a forest that has experienced this type of disturbance? And if
the answer is yes, is this protection more effective at the forest
edge? In order to respond to these questions, we hypothesize
that leaf-cutter ant trails and nest building (i) blocks fire
spread by removing potential fuels and therefore (ii) reduces
the total burned area, especially at the forest edge, where they
are more abundant.

2. Methods

2.1. Study Site. The study was conducted in seasonally dry
forests of the southern Amazon basin on Tanguro Ranch,
Mato Grosso, Brazil (13◦04′35.39′′S, 52◦23′08.85′′W). The
forest biome is at the Cerrado-Amazônia ecotone, and
is described as the dry forests of Mato Grosso [34]. In
this region, a severe dry season occurs between May and
September, while the rainy season occurs between October
and April. Annual mean temperature is 23.5◦C with annual
precipitation between 1800 to 2000 mm [35].

This study is part of the “Savannization” project created
in 2004 by the Amazon Environmental Research Institute
(IPAM) and the Woods Hole Research Center (WHRC), with
the objective of evaluating the effects of repeated understory
wildfires on the susceptibility of forests to future fires. In the
context of this greater project, we worked within a 150 ha
experimental block divided into three 50 ha treatments,
defined as: plot (a) unburned control; plot (b) once-burned;
and plot (c) thrice-burned. The scale at which wildfires occur
in the Amazon required a large-scale ecosystem approach,
which makes adequate experimental replication challenging
[36]. A necessary limitation of this experiment is that we treat
sampling within the 50 ha treatment plots as independent,
which we acknowledge as a form of pseudoreplication that
is often associated with experimental fires [37]. Moreover,
conducting the experimental burns required that the burned
plots be adjacent, and therefore treatment was not randomly
assigned to each 50 ha block.

Three annual experimental burns were conducted in
August or September (2004–6), near the end of the dry sea-
son, when many escaped wildfires typically occur (see [35]
for a complete description of the site, experimental design,
and fire behavior). During all burns, mean daily temperature
ranged between 24 to 29◦C, and relative humidity ranged
between 51 to 57% (measured at the meteorological station).
Wind speed was low in the understory (<0.5 m/s) and had
little noticeable effect on fire behavior during all years. Fires
were set with kerosene drip torches; a total of 10 km of
fire lines were set per plot during three to four consecutive
days between 9 : 00 h and 16 : 00 h. During all years, fires

were extinguished at night and were relit on subsequent
days. Combining both burn plots, initial mean flame height
and fire spread rate (FSR; ±SE) were 31 (±1) cm and 0.21
(±0.01) m/min, demonstrating that these experimental fires
were low-intensity and slow-moving. It is worth noting that
fire intensity and spread significantly declined during the
second and third burn [35]. Compared with the first burn in
2004, mean flame heights declined by ∼10 cm in subsequent
burns, and the burned area declined by half in the third fire
[35].

2.2. Measurement of Fire Inhibition of Ant Nests and Trails.
In order to test the effect of ant nests on fire spread, two
measurements were taken: (i) quantification of the amount
of fine and small-medium woody fuels (defined here as
leaves and twigs with diameter ≤5 cm) which dry faster than
large woody debris on the forest floor on and near ant nest
mounds and soil, and (ii) calculation of the total area of bare
soil created by nests and trails.

Measurement of fuels was conducted between August
and September 2005, within several weeks before the exper-
imental fires of that year. For this part of the study, only the
experimental burn plots were used (plots (b) and (c)), and all
mature, inventoried Atta ant nests within the limits of these
two plots were utilized (plot (b) = 11 nests and plot (c) = 4
nests).

Maximum height of small twigs was measured within
a 40 cm diameter metal ring with increasing distance from
each ant nest. Six rings were distributed along a 15 m
transect, starting from the nest center (0 m) and extending 3,
6, 9, 12, and 15 m from the nest. After measuring fuel height,
all the leaf litter fuels within the 40 cm diameter ring were
collected and dried in an oven at 50◦C for 48 hours.

To quantify the amount of bare soil associated with ant
nests, a wooden frame (100 × 20 cm) was thrown in the
nest center and in the nest extremes point. The area within
the frame of covered and bare soil was noted. In addition,
the length and width of the foraging trails of six nests were
measured to calculate the average total area of bare soil
associated with a single nest and thereby infer the total forest
floor area that was inflammable due to an absence of fuels.

2.3. Relationship between Nest Abundance and Unburned
Areas. In order to determine whether ant nests reduce
the forest burned area, the annual burn plot (plot (c))
was selected because it was the only one that permitted
comparisons between years (2004, 2005, and 2006) and was
appropriate for the time period of the present study.

The location of the existing ant nests in the experimental
area was registered with an inventory conducted in February
of 2005. This inventory used the existing 31 transects (N-S
trails which were cut every 50 m in July 2004) in the 150 ha
area (each transect was 1 km in length and 40 m in width,
totaling a “scanned” area of 116 ha). All of the present ant
nests of Atta species that were seen within these transects
were registered, mapped, and classified.

Nests were classified as active (when ants responded to
the stimulus provided by a stick introduced into a nest
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opening) or inactive (when there was no response to this
stimulus or no observed signs of ant activity). Only nests
with active colonies were used because of the cleaning and
maintenance activities by worker ants for the upkeep of trails
and nest mounds.

Nests were also classified as mature (nest mound ≥
15 m2) or immature (nest without one big mound, with
dispersed small mounds). The species of Atta that were regis-
tered were: A. cephalotes, A. laevigata and A. sexdens, with this
last species being the most common (80% of active colonies).
The average area covered by mature nests was 40 m2 (±15.7),
with an estimated volume of removed soil of 6.9 m3 (±3.2).

2.4. Statistical Analyses. The effect of ant nests on the quan-
tity of combustible material was evaluated using regressions
with distance from nest as the independent variable and the
fuel parameters (height of small woody debris and weight of
leaf litter) as dependent variables. The distance from nest was
defined as the distance to the edge of the mound.

In order to test the relationship between nest presence
and unburned vegetation, the cumulative percentage of un-
burned area was calculated at 5 m intervals from each active
ant nest. It was then possible to conduct linear regressions
using distance from nest as an independent variable and
unburned area (log-transformed, base 10) as a dependent
variable. Linear regressions were used to test the effects of
distance from forest edge on nest number and unburned
area.

3. Results

3.1. Nests as Inhibitors of Fire Spread. The average height of
small woody debris on nests was 4.1 cm (±2.1). However, on
the forest floor, the values were highly variable. In general,
fuel height increased with increasing distance from the nest
(Figure 1).

Leaf litter mass also increases with distance from nest
(Figure 1). The least amount of leaf litter was documented on
top of nest mounds (33.8± 136.1 g), and the greatest amount
on the forest floor 15 m from ant nests (55.1 ± 12.1 g).

The average area of uncovered soil on top of ant nests
was 1.58 (±0.2) m2, which was significantly greater when
compared to that near or around ant nests (0.41 ± 0.2 m2;
t = −9, 116; P = 0, 000; N = 15).

The area of uncovered soil on top of mounds and
foraging trails averaged 19 m2 per nest. Considering the
number of nests with active colonies (269) inventoried in the
150 ha block, it can be inferred that 0.53 ha (or 0.35%) would
be under the protection of ants nests, if in fact all the colonies
had reached maturity.

3.2. Relationship between Nest Abundance and Unburned
Areas. Between 60 to 90% of the area that was unburned
during the experimental understory fires occurred within
approximately 30 m of leaf-cutter ant nests and declined with
increasing distance from nests (Figure 2).

The number of nests diminished with increasing distance
from the edge (Figure 3). Also it was noted that, with the
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Figure 1: Litter mass (g) and height (cm) of small woody debris
(≤5 cm) as a function of distance from leaf-cutter ant nests in a
forest at the Amazon-Cerrado transition. Black circles: litter mass;
gray circles: height of small woody debris, N = 6.
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Figure 2: Relationship between unburned area and distance to nests
in the 50 ha thrice-burned plot in a transitional forest near the
Amazon-Cerrado boundary, N = 200.
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Figure 3: Number of leaf-cutter ant nests in relation to distance
from the edge of a transitional forest at the Amazon-Cerrado
boundary, N = 10.

exception of the first experimental fire in 2004, there was
more unburned area at the edge that in the forest interior
(Figure 4).

4. Discussion

The reduction in spread of low-intensity fires (small flame
heights ∼30 cm) and thereby burned area, is associated with
the presence of ant nests. Although this study primarily
demonstrates a correlation, the shortage of leaf litter and
small-medium woody debris (combustible material), pro-
voked by leaf-cutter ant bioperturbation, likely provides
a mechanism whereby fire spread of low-intensity fires is
diminished. In this transitional forest, fuel quantity can be
more important in determining fire intensity and spread
than relative humidity and other microclimate variables,
which control fire behavior during the dry season of a typical
humid Amazon forest [38–41]. In fact, fuel mass determined
fire behavior in this transitional forest at the Amazon-
Cerrado boundary, where a slight decline in fuels after two
annual burns limited fire intensity and spread rates [35].

The capacity of leaf-cutter ants to diminish available
surface fuels at a fine scale can be extended to the landscape
scale where ant nest density is high, as is the case at forest
edges [22, 29–31]. The most important result of this study is
the documentation that ant nests and trails can function as
effective firebreaks at forest edges, which have been tradition-
ally known to be vulnerable to fire entry and spread [42–44].
Edge formation causes alterations in microclimate—such as
a decline in humidity and increase in temperature and wind
speed—all of which promote fuel drying and fire spread [45].
Further, edge formation dries out adjacent forest fragments
and increases available surface fuels, as much as from leaf
and branch fall due to plants that are subjected to increased
wind exposure [46, 47], as from the forest damage caused by
timber removal in these regions [44, 48].

Given this context, populations of leaf-cutter ants may
increase, as invertebrate herbivores are repeatedly observed
more in edges than forest interiors [22, 29, 30]. Ant nest
abundance in these edge areas must be related, in part, to
the founding queens’ choice [49], which could be driven by
their attraction to sunny areas when in nuptial flight.
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Figure 4: Relationship between unburned area and edge distance
in the 50 ha annual burn plot in a transitional forest at the Amazon-
Cerrado boundary, N = 4.

Beyond the founding queen’s dispersal choice, the major-
ity of ant nests in border areas also could be explained by
greater colony survival rates in these locations. Leaf-cutter
ants require a certain quantity of solar radiation to reach
their mounds, and, because of this, they may establish better
in locations without shade [14, 32].

Leaf-cutter ant nests occupy large areas, and their popu-
lations have a high turnover rate [21, 50]. This means that,
beyond the area free of debris that is potentially important
in protecting against fire, these deep nests represent frequent
and intense disturbance covering large areas in the forest,
beyond even what is visible. Fire-induced mortality rate
of plants from these mimicked understory fires, calculated
for this transitional forest, was the lowest documented for
Amazon forests [35]. A possible explanation for this low
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mortality was the lowered flammability related to a lack of
fuel mass during a third annual experimental burn [35],
which limited ignition of larger woody debris or standing
dead wood. The degree of flammability depends on the rate
of accumulation of fuels and production of litterfall [51]
which, in the study area, was substantially lower than in other
Amazon forests [35].

The reduction in fuels close to leaf-cutter ant nests could
also be influenced by other factors, such as the selectivity
of these ants to nest in areas with low leaf litter and woody
debris. However, even if other factors contribute to lowered
forest flammability and attenuate the damaging effects of
fire, the contribution of ant nests in protecting nearby
vegetation from low-intensity fires cannot be ignored. This
study demonstrates that the behavior of these leaf-cutter
ants diminishes the volume of fuels in the environment,
by creating, establishing, and maintaining their conspicuous
nests in the surface soil of a transitional forest at the Amazon-
Cerrado boundary.

This study provides new insights into fire ecology from
Amazon studies because the nest effects are off-setting, so
that edge areas with lots of nests may not be more susceptible
to low-intensity fire than interior plots, as had previous been
thought.

Further study should investigate how effective ant nests
and trails are at inhibiting more intense or faster fires, such
as those observed during more severe droughts. Atta is a
neotropical genus, and does not have an equivalent organism
in well-studied fire-prone ecosystems in Old World systems,
as South Africa or Australia; future study may also reveal
if there are analog behaviors in Old World invertebrate
species. It can be hypothesized from this work that increasing
fire frequency, associated with an expanding agricultural
frontier, will select for Atta species over wood-building taxa,
due to their fire-proof construction materials and firebreak
trails. This selection may leave lasting effects on arthropod
community structure and composition. Given the inherent
fire-protection that Atta provides, this provides an incentive
for farmers and ranchers to avoid using insecticides at
agriculture-forest edges. Further study should document the
abundance and distribution of Atta colonies in burned-over
forests through time and their influence on fire behavior of
more intense, repeated fires.
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Arquivos do Instituto Biológico, vol. 18, pp. 39–70, 1947.
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