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For a class of linear MIMO uncertain systems, a dynamic sliding mode control algorithm that avoids the chattering problem is
proposed in this paper. Without using any differentiator, we develop a modified asymptotically stable second-order sliding mode
control law in which the proposed controller can guarantee the finite time convergence to the sliding mode and can show that the
system states asymptotically approach to zero. Finally, a numerical example is explained for demonstrating the applicability of the
proposed scheme.

1. Introduction

Sliding mode control (SMC) has been successfully used in
controlling many uncertain systems [1, 2]. For a system
with the matched disturbance, SMC can obtain the perfect
disturbance rejection during the sliding mode. The control
objectives are attained by constraining the system dynamics
on a properly chosen sliding variable by means of discon-
tinuous control laws. In theory, SMC offers robust stability
to systems through high-gain control with the infinite fast
switching action. However, high-gain control designs suffer
from the drawback of peaking phenomenon, in which the
control input peaks to an extremely large value during the
transient stage. The peaking phenomenon can easily violate
the control saturation constraint. The SMC scheme is often
discontinuous and the feedback control input needs to switch
with infinite switching frequency. The discontinuous high
speed switching action results in the chattering problem
due to the inherent delay and other problems [1, 2]. The
chattering action may excite the unmodeled high order
dynamics, which probably leads to unforeseen instability [1–
5]. There are two major approaches reported to cope with
the chattering problem. The first approach is to insert a
fixed or variable boundary layer near the sliding variable
[6], so that a continuous control replaces the discontinuous
one when the system is inside the boundary layer. Another
approach to eliminate the chattering is carried out by adding
an auxiliary control input into the system such as using of

fuzzy control [7, 8] and adaptive fuzzy control [9]. These
mentioned methods [1–5] can give a chattering-free system,
but a finite steady-state error may exist. Hence, the property
of perfect disturbance rejection cannot be guaranteed.

Dynamic sliding mode control [10–14] where an inte-
grator is used in front of the system is a special approach
to eliminate the control chattering. The time derivative of
the control input is treated as the new control variable for
the augmented system in which the augmented system is
includes the original system and the integrator. Since no
boundary layer is used in the controller, the advantages
of a dynamic sliding mode controller are that chattering
reduction is obtained by using an integrator and the prop-
erty of perfect disturbance rejection is guaranteed. Hence,
dynamic sliding mode control not only removes some of the
fundamental limitations of the traditional approach but also
provides improved tracking accuracy under sliding mode.
The main problem in implementation of dynamic sliding
mode controller is the increasing information demand in
which the knowledge of the derivative of the sliding variable
is required. Bartolini et al. [11, 12] presented a suboptimal
version of the twisting algorithm [15, 16] to cope with the
chattering problem. However, this method requires at least
the knowledge of the sign of the derivative of the sliding
variable. Chen et al. [14] applied an LTR observer to over-
come the problem of sliding variable estimation. Recently,
Levant [15–17] presented the twisting algorithm to stabilize
second-order nonlinear systems but required the knowledge
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of the derivative of the sliding variable. The super twisting
algorithm [15, 16] does not require the output derivative
to be measured but it has been originally developed and
analyzed for system with relative degree one. Levant [17]
proposed an exact finite time convergence differentiator
which can successfully estimate the derivative of the sliding
variable but required a priori bounded trajectory.

For a linear MIMO system with the matched disturbance,
an alternative dynamic sliding mode controller for avoiding
the chattering problem is established in this paper. We
first present a modified second-order sliding mode control
method to stabilize the perturbed system. Introducing
a proportional-integral term of the sliding variable and
an integral sign function term into the control law, the
resulting control forces are chattering-free. Based on the
developed second-order sliding mode technique, it is shown
that the finite time convergence to the sliding mode is
provided theoretically and the zero steady-state error can
be guaranteed by applying the proposed control law. As a
result, the control accuracy is better than those performed
by the conventional boundary layer control [3–5]. Moreover,
a sufficient condition for the closed-loop stability is given
and the implementation of the proposed control algorithm
is simple. Comparing with the conventional dynamic sliding
mode controllers [10–14], the proposed method does not
need any observer structure to estimate the derivative of
the sliding variable. Finally, the feasibility of the proposed
method is illustrated by a numerical example.

The work of this paper is organized as follows. Section 2
describes a class of uncertain MIMO linear systems and
gives the problem formulation. Section 3 presents the mod-
ified second-order sliding mode method and develops the
dynamic sliding mode controller design. The simulation
result is included in Section 4. Section 5 offers a brief
conclusion.

2. Problem Formulation

Consider an uncertain system satisfying the matched condi-
tion of the form

ẋ(t) = Ax(t) + B(u(t) + d(t, x)), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input vector, y ∈ Rp is the output vector, and d ∈ Rm is
the unknown matched disturbance vector with the known
upper bounds ‖d(t, x)‖ ≤ a1 and ‖ḋ(t, x)‖ ≤ a2. Suppose
that the system states are accessible for measurement and the
pair (A, B) is stabilizable. Let the sliding variable be chosen
as

s(t) = Gx(t), (2)

where the matrix G ∈ Rm×n is designed to stabilize the
reduced-order system. To satisfy the reaching and sliding
condition, the control input for the conventional sliding
mode controller is designed as

u(t) = −(GB)−1(GAx(t) + γ sign(s(t))
)
, (3)

where γ > 0 is a high gain to design such that the system
reaches and slides on the sliding variable in finite time.
However, a phenomenon called chattering is generated due
to the discontinuous function sign(s(t)). It can be considered
as the undesired chattering effect produced by the high
switching action of the control input. As a result, the chat-
tering becomes the main implementation problem of SMC.
Numerous techniques have been proposed to eliminate this
phenomenon in SMC [3–14]. The one of the most common
solution to reduce the chattering is the boundary layer
techniques [3–5]. However, the boundary layer thickness has
the trade-off relation between the control performance and
the chattering migration. Another drawback with applying
the boundary layer methods [3–5] is the reduction of the
control accuracy.

For a linear MIMO system with the matched disturbance,
in this paper we propose a dynamic sliding mode control
algorithm in which the proposed procedure can effectively
reduce the chattering effect. We first develop a modified
second-order sliding mode control method to stabilize the
perturbed systems. Introducing a proportional-integral term
of the sliding variable and an integral sign function term
into the controller, the finite time convergence to the sliding
mode is guaranteed by applying the developed second-order
sliding mode technique. Moreover, all the states of the system
asymptotically approach to zero once the system is in the
sliding mode.

3. Dynamic Sliding Mode Controller Design

In this section, we propose a dynamic sliding mode control
algorithm which can successfully avoid the chattering in
the linear MIMO system with the matched disturbance.
A modified second-order sliding mode control algorithm
that does not require the derivative of the sliding variable
is presented. The proposed control law can guarantee the
finite time convergence to the sliding mode and stabilize the
reduced-order system in which the system states asymptoti-
cally approach to zero.

For the sliding variable (2), we design the dynamic sliding
mode controller as

u(t) = − (GB)−1

(

GAx(t) + L1s(t) + L2

∫ t

0
s(τ)dτ

+K
∫ t

0
sign(s(τ))dτ

)

,

(4)

where L1 ∈ Rm×m, L2 ∈ Rm×m, and K ∈ Rm×m are the
positive definite diagonal matrix given by

L1 = diag(l11, . . . , l1m), L2 = diag(l21, . . . , l2m),

K = diag(k1, . . . , km).
(5)
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Taking the time derivative of (2) and substituting the control
input (4) into it can obtain

ṡ(t) = Gẋ(t) = GAx(t) + GB(u(t) + d(t, x))

= − L1s(t)− L2

∫ t

0
s(τ)dτ −K

∫ t

0
sign(s(τ))dτ

+ GBd(t, x).

(6)

Further differentiating (6) with time yields the following
dynamics:

s̈(t) + L1ṡ(t) + L2s(t) = −K sign(s(t)) + f(t), (7)

where f(t) = GBḋ(x, t) = [ f1 · · · fm]T ∈ Rm. According to
the linear algebraic theory, we have ‖f(t)‖ = ‖GBḋ(x, t)‖ ≤
a2‖GB‖ and | fi(t)| ≤ ‖f(t)‖ for 1 ≤ i ≤ m.

Lemma 1. Consider the unperturbed system as

σ̈(t) + l1σ̇(t) + l2σ(t) = −k sign(σ(t)), (8)

where the gains l1, l2, and k are positive constants. If the
parameters l1 > 0 and l2 > 0 are chosen to satisfy the condition
l2 < l21/4, then σ(t) and σ̇(t) asymptotically converge to zero in
finite time for a sufficiently large value of k.

Proof. Since the condition l2 < l21/4 holds, the roots of the
characteristic equation, s2 + l1s + l2 = 0, are real, distinct,
and negative. Assume now for simplicity that the initial
conditions are σ(t0) = 0 and σ̇(t0) > 0. Thus the trajectory
enters the half-plane σ(t) > 0 (quadrant I), as shown in
Figure 1. When σ(t) > 0, we from (8) obtain σ̈(t) + l1σ̇(t) +
l2σ(t) = −k and know its equivalent point as (σ , σ̇) =
(−k/l2, 0). Let the function g(t) be generated by

g(t) = σ̇(t) + rσ(t) +
k

μ
sign(σ(t)), (9)

where μ + r = l1 and μr = l2. The parameters μ > 0 and
r > 0 are real constants. Since σ(t) > 0, it follows from σ̈(t) +
l1σ̇(t) + l2σ(t) + k = 0 that

dg(t)
dt

+ μg(t) = d

dt

(

σ̇(t) + rσ(t) +
k

μ

)

+ μ

(

σ̇(t) + rσ(t) +
k

μ

)

= σ̈(t) +
(
μ + r

)
σ̇(t) + μrσ(t) + k

= σ̈(t) + l1σ̇(t) + l2σ(t) + k = 0.

(10)

Hence, we can obtain g(t) = g(0)e−μt. It follows that the
upper bound of g(t) is |g(t)| ≤ Ce−μt where C > 0 is a
constant. Choose a Lyapunov function as V(t) = (1/2)σ2(t)
and then obtain its time derivative as

V̇(t) = σ(t)σ̇(t) = σ(t)

(

g(t)− k

μ
sign(σ(t))− rσ(t)

)

≤ C|σ(t)|e−μt − k

μ
|σ(t)| − rσ2(t).

(11)

σ̇
σ̇(t0)

σ

σ

(t0) < 0 σ(t0) > 0

−k
l2

k

l2

σ̇(t1)

Figure 1: Phase paths of the modified second-order sliding mode
system.

Since μ > 0, there exists a finite time, T1 > 0, such that
Ce−μt < (k/μ) − ρ for a sufficiently large gain k and t > T1,
where ρ > 0 is a constant. Hence,

V̇(t) ≤ −ρ|σ(t)| − rσ2(t) ≤ −ρ|σ(t)| for t > T1. (12)

The above equation implies that the function σ(t) converges
to zero in finite time. Let the trajectory of (8) intersect
next time with the axis σ(t) = 0 at the point σ̇(t1). Since
the roots of the characteristic equation, s2 + l1s + l2 = 0,
are stable, we know that the spiral trajectories converge
to the equivalent point and the behavior of σ̇(t) changes
monotonously. Hence,

|σ̇(t1)|
|σ̇(t0)| = q < 1. (13)

Extending the trajectory into the half plane σ(t) < 0 after
a similar reasoning achieves that the successive crossing the
axis σ(t) = 0 satisfies the inequality |σ̇(ti+1)|/|σ̇(ti)| = q < 1.
Therefore, its solutions cross the axis σ(t) = 0 from quadrant
II to quadrant I, and from quadrant IV to quadrant III.
Every trajectory of the system crosses the axis σ(t) = 0 in
finite time. After gluing these paths along the line σ(t) = 0,
we obtain the phase portrait of the system, as shown in
Figure 1. This algorithm features a twisting of the phase
portrait around the origin and an infinite number encircling
the origin occurs. According to Levant’s papers [14–16], the
total convergence time is estimated as

T ≤
∑
|σ̇(ti)| ≤ |σ̇(t0)|(1 + q + q2 + · · · ) = |σ̇(t0)|

1− q
. (14)

As a result, we can show that the trajectories perform
rotations around the origin while converging in finite time to
the origin of the phase plane. The finite time convergence to
the origin is due to switching between two different control
amplitudes as the trajectory comes nearer to the origin [18].
The proof of the theorem is finished.

Lemma 2. Consider the following system:

σ̈(t) + l1σ̇(t) + l2σ(t) = −k sign(σ(t)) + f (t), (15)
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where the function f (t) has the upper bound | f (t)| ≤ η and
η > 0 is a known constant. If the parameters l1 > 0 and l2 > 0,
and the gain k are chosen to satisfy the following conditions:

l2 <
l21
4

, k > η, (16)

then σ(t) and σ̇(t) converge to zero in finite time.

Proof. We take the parameters l1 and l2 to satisfy the
condition l2 < l21/4 and then obtain the characteristic
polynomial of system (15) having two distinct real roots
λ1,2 = −α,−β, where α > 0, β > 0, β > α, l1 = α + β, and
l2 = αβ. When the condition σ(t) > 0 holds, (15) becomes

σ̈(t) + l1σ̇(t) + l2σ(t) = −k + f (t). (17)

Let v1 = σ + (k/l2) and v2 = v̇1 = σ̇ . It follows that

v̇(t) =
[

0 1
−l2 −l1

][
v1(t)
v2(t)

]

+

[
0
f (t)

]

= Φv(t) + b f (t),

(18)

where

v =
[
vT1 vT2

]T ∈ R2, Φ =
[

0 1
−l2 −l1

]

, b =
[

0
1

]

.

(19)

Write the above dynamic equation as its solution in an
explicit form

v(t) = eΦtv(0) + eΦt

∫ t

0
eΦτb f (τ)dτ

= eΦtv(0) +
∫ t

0
eΦτb f (t − τ)dτ,

(20)

where

eΦt =

⎡

⎢
⎢
⎢
⎣

1
β − α

(
βe−αt − αe−βt

) 1
β − α

(
e−αt − e−βt

)

αβ

α− β

(
e−αt − e−βt

) 1
α− β

(
αe−αt − βe−βt

)

⎤

⎥
⎥
⎥
⎦
.

(21)

The upper bounds of v1(t) and v2(t) can be constructed as

|v1(t)| ≤ C1e
−αt +

1
β − α

∫ t

0

∣
∣∣e−ατ − e−βτ

∣
∣∣
∣
∣ f (t − τ)

∣
∣dτ

≤ C1e
−αt +

η

β − α

∫ t

0

∣
∣
∣e−ατ − e−βτ

∣
∣
∣dτ

= C1e
−αt +

η

β − α

∫∞

0

(
e−ατ − e−βτ

)
dτ

= C1e
−αt +

η

β − α

(
β − α

αβ

)

= C1e
−αt +

η

l2
,

|v2(t)| ≤ C2e
−αt +

η

β − α

(∫ t

0

∣
∣∣αe−ατ − βe−βτ

∣
∣∣dτ

)

≤ C2e
−αt +

η

β − α

×
(∫∞

0

∣
∣
∣αe−ατ − αe−βτ +

(
α− β

)
e−βτ

∣
∣
∣dτ

)

= C2e
−αt +

η

β − α

×
(∫∞

0

(
αe−ατ − αe−βτ

)
dτ +

(
β − α

)
∫∞

0
e−βτdτ

)

= C2e
−αt +

η

β − α

(

α
β − α

αβ
+
β − α

β

)

= C2e
−αt +

2αη
l2

,

(22)

where C1 > 0 and C2 > 0 are constants. It follows that

|v1(t)| ≤ C1e
−αt +

η

l2
, |v2(t)| ≤ C2e

−αt +
2ηα
l2

. (23)

Since v1 = σ + (k/l2), we can from (23) obtain

∣
∣∣
∣σ(t) +

k

l2

∣
∣∣
∣ ≤ C1e

−αt +
η

l2
. (24)

This part shows that the ball of radius r = η/l2 with center
located at (k/l2 , 0) is an attractor Bs1. Similar to the work, we
have, when σ(t) < 0, the ball of radius r, with center located at
(−k/l2, 0) as another attractor Bs2. Choose the gain kto satisfy
the inequality k > η and then we have

(
k

l2
− r

)
= k

l2
− η

l2
> 0,

(
− k

l2
+ r
)
= −k

l2
+
η

l2
< 0.

(25)

It follows from the above two inequalities that the two
attractors Bs1 and Bs2 do not intersect each other, and the
behavior of the perturbed system (15) will be qualitatively
similar to the behavior of the nominal system. Therefore, the
perturbed system converges to the origin in the same way
of the nominal system and the condition that σ(t) and σ̇(t)
converge to zero in finite time can be guaranteed. We finish
the proof of the lemma.

Theorem 3. Consider system (1) with the sliding variable (2)
and the control input (4). Let η = a2‖GB‖. If the elements of
these matrices L1, L2, and K satisfy the following conditions:

l2i <
l21i
4

, ki > η, for i = 1, . . . ,m, (26)

then one can show that the system states asymptotically
approach to zero.

Proof. We first express system (7) as a set of second-order
systems with the form

s̈i(t) + l1iṡ(t) + l2is(t) = −ki sign(si(t)) + fi(t)

for i = 1, . . . ,m,
(27)
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Figure 2: System states with applying the sign function.
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Figure 3: Control inputs with applying the sign function.

where | fi(t)| ≤ η for i = 1, . . . ,m where η = a2‖GB‖ > 0 is
a known constant. Applying the result of Lemma 2 into (27),
if the parameters l1i, li2, and ki can satisfy

l2i <
l21i
4

, ki > η, for i = 1, . . . ,m, (28)

then si(t) and ṡi(t) asymptotically converge to zero in finite
time according to Lemma 2. When the condition s(t) = 0 is
guaranteed, it follows from the concept of equivalent control
[1, 2] that the system dynamics in the sliding mode is

ẋ(t) =
(

A− B(GB)−1GA
)

x(t). (29)

Since the nonzero eigenvalues of the matrix A−B(GB)−1GA
are placed in the left-half plane, we can conclude that the
system states asymptotically approach to zero and finally
finish the proof of the theorem.

4. Numerical Example

To demonstrate the effectiveness of the proposed method,
we consider an unstable batch reactor where the matched

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Time (s)

x1
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x3
x4

Figure 4: System states with applying the saturation function.
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Figure 5: Control inputs with applying the saturation function.

disturbance is introduced into the system and its state space
form can be given by

ẋ(t) =

⎡

⎢
⎢
⎢
⎣

1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

⎤

⎥
⎥
⎥
⎦

x(t)

+

⎡

⎢
⎢
⎢
⎣

0 0
5.679 0
1.136 −3.146
1.136 0

⎤

⎥
⎥
⎥
⎦

⎛

⎝u(t) +

⎡

⎣
1.5 sin(0.5t)

1 cos
(
πt

2

)
⎤

⎦

⎞

⎠.

(30)

The sliding variable is chosen as

s(t) =
[
−0.0106 0.1684 0 0.0383
−0.1931 0.0155 −0.3179 0.2404

]

x(t), (31)

where the nonzero eigenvalues of the system in the sliding
mode are assigned as {−2,−3}. We design the conventional



6 Journal of Control Science and Engineering

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5
0

0.5

1

1.5

2

Time (s)

x1
x2

x3
x4

Figure 6: System states with applying the proposed method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

Time (s)

u1
u2

Figure 7: Control inputs with applying the proposed method.

sliding mode controller and the boundary layer controller,
respectively, as

u(t) = −
[
−0.1108 −0.5565 −0.02 0.0934
−0.6031 −0.3576 1.1415 −1.2726

]

x(t)

− 3 sign(s(t)),

u(t) = −
[
−0.1108 −0.5565 −0.02 0.0934
−0.6031 −0.3576 1.1415 −1.2726

]

x(t)

− 3 sat(s(t), 0.05).

(32)

The control input with applying the proposed algorithm is
given by

u(t) = −
[
−0.1108 −0.5565 −0.02 0.0934
−0.6031 −0.3576 1.1415 −1.2726

]

x(t)

− 10s(t)− 2
∫ t

0
s(τ)dτ − 3

∫ t

0
sign(s(τ))dτ.

(33)

Three cases are simultaneously simulated under the initial
condition x(0) = [1 2 − 2 1]T and the simulation is
carried out at a fixed step size of 1 milliseconds. The time
responses of the system states in the three cases are shown in
Figures 2, 4, and 6, respectively. As can be seen from these
figures, the proposed method obtains the zero steady-state
error. Figures 3, 5, and 7 show the control inputs in the three

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

Time (s)

s1
s2

Figure 8: Sliding variables with applying the proposed method.

cases, respectively. As illustrated, our control force does not
exhibit any chattering effects. The responses of the sliding
variable with applying the proposed method are given in
Figure 8. It is clear from the figure that our control law can
guarantee the finite time convergence to the sliding mode. As
a result, the simulation results verify the good performance
of the proposed strategy.

5. Conclusions

In this paper we have proposed a modified second-order
sliding mode control algorithm to avoid the chattering prob-
lem for a MIMO uncertain system. The developed approach
does not require the derivative of the sliding variable, thus
eliminating the requirement of designing a differentiator.
Under the proposed dynamic sliding mode controller, we
show that the finite time convergence to the sliding mode
is guaranteed and the system states can asymptotically
approach to zero. Simulation results demonstrate that the
proposed control scheme exhibits reasonably good system
performance.
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