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Chaos analysis and control of relative rotation nonlinear dynamic systemwithMathieu-Duffing oscillator are investigated. By using
Lagrange equation, the dynamics equation of relative rotation system has been established. Melnikov’s method is applied to predict
the chaotic behavior of this system. Moreover, the chaotic dynamical behavior can be controlled by adding the Gaussian white
noise to the proposed system for the sake of changing chaos state into stable state. Through numerical calculation, the Poincaré
map analysis and phase portraits are carried out to confirm main results.

1. Introduction

Chaos, as a kind of physical phenomenon, exists widely in
various nonlinear dynamic systems [1–5]. The main ideal of
chaos control approach is that one can use given unstable
periodic orbits or external excitations to force chaotic system
into stable system [6–9]. There are many ways to be used to
suppress chaos, such as parametric driven [10–12] and time
delayed approach [13, 14], and the Gaussian white noise as
random phase control is an interesting one. The control of
chaos we discuss in this paper is based on this case.

The theory of mechanics of relative rotation system was
established by Carmeli in 1986 [15]; bifurcation and chaos
of this system got rapid development in variety of areas. Shi
et al. [16] studied the chaotic behavior and its control for
a class of nonlinear dynamics equation of relative rotation
system. Liu et al. [17] found stability and bifurcation for a
coupled nonlinear relative rotation system with multitime
delay feedbacks. Therefore, this system plays an important
role in nonlinear dynamic systems.

Stochastic forces or random noise are themost frequently
control strategies to be used in suppressing chaos. Ramesh
andNarayanan [18] investigated the robustness in presence of
uniform noise and found that the system would lose control
while noise intensity was raided to a threshold level. Liu
et al. [19] explored the effect of bounded noise on chaotic

motion of Duffing oscillator under parametric excitation.Wu
et al. [20] studied stochastic chaos and its control by the
top Lyapunov exponent. Yin et al. [21] proved the peculiar
solitary waves are more likely to be chaos by using the
Melnikov theory and found that the system can be well
controlled when the frequency of the perturbation surpasses
the peculiar perturbation frequency with fixed parameters of
the unperturbed system. Noise, as random phase, has been
used in studying the control of chaos in the paper. So as a kind
of effective method of chaos control, whether in theory or in
the practical application, the noise has some of the research
significance.

In this paper, we explore chaos analysis and control
in relative rotation system with Mathieu-Duffing oscillator.
The paper is organized as follows. The dynamics equation
of relative rotation system is established in Section 2. In
Section 3, the prediction of chaotic motion is given by
Melnikov’s method. In Section 4, the Gaussian white noise
can increase or decrease the threshold values of chaos, so as
to realize the control of chaos.

2. Dynamics Equation of Relative Rotation
System with Mathieu-Duffing Oscillator

Mathieu-Duffing system is a class of typical vibration system,
and researching its nonlinear dynamic characteristics shows
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to be extremely essential. Considering Mathieu-Duffing
oscillator expression form as follows [22, 23]
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1
(𝑡) 𝑥 + 𝑁

2
(𝑡) 𝑥
3, (1)
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(𝑡) are linear torsional stiffness of the system. For

two quality relative rotation systems of Mathieu-Duffing
oscillator, the kinetic energy is
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where 𝐽
1
, 𝐽
2
are moment of inertia and 𝜃

𝑖
, ̇𝜃
𝑖
(𝑖 = 1, 2) are

rotational angle and speed of rotational angle, respectively.
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where 𝑇
1
, 𝑇
2
are generalized external force, 𝑞

1
, 𝑞
2
are

generalized coordinates, and 𝐴 is linear damping coefficient.
The Lagrange equation is
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Substituting (1)–(5) into Lagrange equation (7), we have
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where ̈𝜃
1
, ̈𝜃
2
are acceleration of rotational angle of moment of

inertia. Combining (8) and (9), we have
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Hence, the above equation turns to
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Equation (12) is dynamics equation of relative rotation system
with Mathieu-Duffing oscillator.

3. Melnikov’s Method Analysis

Melnikov’smethod [24–26] is an effective approach to predict
chaotic behavior, its basic idea mainly makes the dynamics
system into a Poincaré map system, and we obtain chaotic
properties by studying conditions of the mapping system
whether there exist homoclinic orbits or heteroclinic orbits.

Equation (12) can be transformed into first-order equa-
tion
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Small parameter 𝜀 is added to the nonlinear term of (13) and
it may be written as
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When 𝜀 = 0, the above equation turns into
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Equation (15) is a unperturbed Hamilton system and its
Hamiltonian is

𝐻(𝑥
1
, 𝑥
2
) =
1

2
𝑥2
2
+
1

2
𝑎𝑐𝑘2
0
𝑥2
1
+
1

4
𝑎𝑏𝑘2
0
𝑥4
1
. (16)



Mathematical Problems in Engineering 3

There exist heteroclinic orbits and they satisfy
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Then the parametric equations of two heteroclinic orbits are
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Melnikov function can be given by
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Substituting 𝑍
1
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4
into Melnikov function, we have
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When 𝜔
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Because of𝑀(𝑡
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Due to | sin(𝜔
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1
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There exists a sufficient small 𝜀, making 𝑀(𝑡
0
) = 0 and

𝜕𝑀(𝑡
0
)/𝜕𝑡
0

̸= 0; therefore, the system produces chaotic
behavior.

For system (13), taking parameters 𝑎𝑐𝑘2
0
= 4, 𝑎𝑏𝑘2

0
= −4,

𝑎𝑐𝑘
1
= 1, 𝑎𝑏𝑘

1
= −1, 𝜆 = 0.5, 𝐹 = 1.42, and 𝜔

1
= 𝜔
2
= 2

with the initial conditions 𝑥(0) = 1, 𝑥̇(0) = 0, the Poincaré
map and phase portraits were plotted by using the numerical
simulation in Figure 1.

From Figure 1, we can see that the Poincaré map has
chaotic attractors, phase portraits show nonoverlapping and
are disorganized, and these can prove that relative rotation
system with Mathieu-Duffing oscillator is chaos.
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Figure 1: (a) Poincaré map; (b) phase portraits.
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Figure 2: (a) Poincaré map with 𝜎 = 0.4; (b) phase portraits with 𝜎 = 0.4.

4. Chaos Control of Relative
Rotation System with Mathieu-Duffing
Oscillator Using Noise

Adding Gaussian white noise, (13) can be written as

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= −𝑎𝑐𝑘2

0
𝑥
1
− 𝑎𝑏𝑘2

0
𝑥3
1
− 𝑎𝑘
1
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1
𝑡) (𝑐𝑥
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+ 𝑏𝑥3
1
)
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+ 𝐹 cos (𝜔

2
𝑡 + 𝜎𝜉 (𝑡)) ,

(28)

where 𝜉(𝑡) denotes standard Gaussian white noise; it satisfies

𝐸𝜉 (𝑡) = 0,

𝐸𝜉 (𝑡) 𝜉 (𝑡 + 𝜏) = 𝜁 (𝜏) ,
(29)

where 𝜁(𝜏) is Dirac-Delta function and 𝜎 is the intensity of
noise.

Taking the same parameters and initial conditions as
Section 3. Equation (28) can be written:

𝑥̇
1
= 𝑥
2
,

𝑥̇
2
= −4𝑥

1
+ 4𝑥3
1
− cos (2𝑡) 𝑥
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1
− 0.5𝑥

2

+ 1.42 cos (2𝑡 + 𝜎𝜉 (𝑡)) .

(30)

Making the Poincaré map as

Σ 󳨀→ Σ,

Σ{(𝑥 (𝑡) , 𝑥̇ (𝑡)) | 𝑡 = 0,
2𝜋

𝜔
2

,
4𝜋

𝜔
2

, . . .} ⊆ R
2.

(31)
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Under the given initial conditions, the solution of differential
equation (30) is solved by the fourth-order Runge-Kutta
method and the solution is plotted for every𝑇 = 2𝜋/𝜔

2
. After

deleting the first 100 dots, we plot the Poincaré map by using
surplus 200 iteration dots, when the intensity of noise𝜎 = 0.4;
it is shown in Figure 2(a).

The Poincaré map appears to be a stable stochastic
attractor, which means that the system is stable. To further
verify the obtained results, we plotted the phase portraits.
Taking the same intensity of noise, the phase portraits are
shown in Figure 2(b). We can see from Figure 2(b) that the
phase portraits turned into a regular annulus. It is proved
that chaotic behaviorwas suppressed, and the systemchanged
chaos state into stable state.

5. Concluding Remarks

We investigate the chaos analysis and control of relative
rotation systemwithMathieu-Duffing oscillator in this paper.
By analysis of Melnikov’s method, we confirm chaotic behav-
ior of this system under the given parameters and initial
conditions. Adding the Gaussian white noise to phase of
system, we plot the Poincaré map and phase portraits under
the intensity of noise 𝜎 = 0.4. We get that the Poincaré map
changed chaotic attractors into a stable attractor, and phase
portraits also displayed regular state, so the relative rotation
system with Mathieu-Duffing oscillator eventually becomes
stable.
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