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We propose a new distance metric, based on the linkage of genes, in the search space of genetic algorithms. This second-order
distance measure is derived from the gene interaction graph and first-order distance, which is a natural distance in chromosomal
spaces. We show that the proposed measure forms a metric space and can be computed efficiently. As an example application, we
demonstrate how thismeasure can be used to estimate the extent to which gene rearrangement improves the performance of genetic
algorithms.

1. Introduction

Distance metrics are fundamental tools for organizing search
spaces, because the introduction of a metric is the simplest
way to induce a topology [1]. Different metrics produce
different topologies and thus change the shape of the search
space. When a space is to be searched by a genetic algorithm
(GA), a good distance metric facilitates navigation of the
space [2–5] and can also improve the effectiveness of search
[6–12]. Hamming distance is a popular metric in a discrete
space that is to be searched by a GA. Hamming distance has
also been widely used in analyses of solution spaces [13–15].

Fitness distance correlation (FDC), proposed by Jones
and Forrest [14], is a measure of the effectiveness of a distance
metric in a space to be searched by a GA. An FDC is
obtained by measuring the correlation between fitness and
the distance to the nearest global optimum for a number of
sample solutions. FDC coefficients range from −1 to 1, where
higher values suggest increased difficulty in maximizing
fitness and decreased difficulty in minimizing fitness. When
a GA is hybridized with a local optimization, the population
consists entirely of local optima, and it is then more useful to
determine FDCs of local-optimum spaces.

In this paper, we propose a new distance measure which
takes account of gene interaction and show that it forms
a metric space. We use this metric to compute FDCs of
search space and show that FDCs obtained in this way have
improved correlation with the improvement in GA perfor-
mance that can be obtained by gene rearrangement. The
remainder of this paper is organized as follows. In Section 2,
we review gene rearrangement in GAs. In Section 3, we
propose a new distance measure for GAs, show that it forms
a metric space, and demonstrate an application. Finally, we
draw conclusions in Section 4.

2. Gene Rearrangement

Holland’s schema theorem [16] shows that schemata (i.e.,
groups of genes) with high fitness, short defining length, and
loworder have high probabilities of survival in a standardGA.

These durable schemata are called building blocks. They
make a major contribution to fitness and have a high degree
of mutual interaction. The performance of a GA is strongly
dependent on the survival and reproduction of these building
blocks.
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The survival probability of a gene group through a
crossover is strongly affected by the positions of genes in
the chromosome. Schemata consisting of genes in scattered
positions tend to be too long to survive. Thus, the strategy
used for placing genes significantly affects the performance
of a GA. Inversion is an operator which changes the location
of genes while a GA is running [17], and the process of
rearranging genes dynamically to improve performance is
called linkage learning [18]. Messy GA [19] is an example of a
technique that implicitly uses dynamic gene rearrangement.

It has been observed that the performance of GAs on
problems with a locus-based encoding can be improved by
rearranging the indices of the genes before running the GA.
Static gene rearrangement was first suggested by Bui and
Moon [20, 21], who rearrange genes within a chromosomal
representation to improve the quality of schemata and to help
the GA to preserve the better schemata. Many studies on the
static rearrangement of gene positions [20–24] have showed
performance improvements. However, the improvement in
performance achieved in this way has been shown to vary
greatly between problem instances. This motivated us to
develop a distance metric to improve our ability to estimate
how much improvement in the performance of a GA on a
particular problem instance can be expected through gene
rearrangement.

3. A Linkage-Based Distance Measure

3.1. Second-Order Distance Measure. The most usual first-
order distance measure in discrete space is the Hamming
distance which is also a natural distance in chromosomal
space, although there are other first-order distance measures,
such as the quotient metric in redundant encoding [11]. We
now define a second-order distance measure derived from
first-order distance. Given a problem instance 𝑝, consider
the unweighted undirected graph 𝐺𝑝 representing first-order
gene interaction [23], which is the pairwise interaction of
genes. For convenience, we will assume that each gene has
an interaction with itself, so that {𝑔, 𝑔} ∈ 𝐸(𝐺𝑝) for each
gene 𝑔 ∈ 𝑉(𝐺𝑝). Let 𝐴𝑝 be the adjacency matrix of 𝐺𝑝 and
consider 𝐴𝑝 as a binary matrix over Z2 [25–27].

Definition 1. Suppose that the inverse of𝐴𝑝 exists as a binary
matrix over Z2; that is, 𝐴𝑝 ∈ 𝐺𝐿𝑛(Z2). One defines the
second-order distance measure 𝑑(2)

𝑝
as follows:
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where ⊕ is a vector summation operator, which performs a
Boolean XOR (i.e., 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and
1+1 = 0) in each coordinate, and ‖ ⋅ ‖ is a norm derived from
the first-order distance metric 𝑑(1) (i.e., ‖ ⋅ ‖ = 𝑑(1)(⋅, 0)).

Theorem 2. 𝑑(2)
𝑝

is a metric.

Proof. It is enough to show the following four conditions [1].
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(iv) Triangle inequality: consider
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If the inverse of 𝐴𝑝 does not exist, we can extend the
scope of the distance metric using the following well-defined
formulation:

𝑑
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. (5)

We note that if the inverse of 𝐴𝑝 exists, then 𝑧 := 𝐴
−1

𝑝
(𝑥 ⊕ 𝑦),

which implies (𝑥 ⊕ 𝑦) ⊕ 𝐴𝑝𝑧 = 0, and hence arg min𝑧‖(𝑥 ⊕
𝑦) ⊕ 𝐴𝑝𝑧‖ = 𝐴

−1

𝑝
(𝑥 ⊕ 𝑦). Our second-order distance and its

extension can be computed in 𝑂(𝑛3) by a variant of Gauss-
Jordan elimination [28], where 𝑛 is the number of genes.
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Figure 1: (a) An example of a first-order gene interaction graph 𝐺𝑝 and (b) distances between two example chromosomes 𝑥 and 𝑦.

3.2. An Application. Intuitively, our measure of the distance
between two chromosomes can be understood as the min-
imum number of bits that must be changed to transform
one chromosome into the other in the genetic process using
optimal gene rearrangement.

Given an undirected graph 𝐺 = (𝑉, 𝐸) with edge weights
(𝑤𝑖𝑗)(𝑖,𝑗)∈𝐸, the max-cut problem is that of finding a subset
𝑆 ⊂ 𝑉 which maximizes the sum of the edge weights which
traverse the cut (𝑆, 𝑉 \ 𝑆) [29–31]. Consider the 6-node max-
cut problem instance 𝑝, which is to maximize the following
expression:

𝑥1 ⊕ 𝑥2 + 𝑥2 ⊕ 𝑥3 − 𝑥4 ⊕ 𝑥5 − 𝑥5 ⊕ 𝑥6, (6)

where a vertex V𝑖 belongs to the position 𝑥𝑖 ∈ {0, 1} and ⊕ is
the Boolean XOR operator. In this problem instance, edges
{V1, V2} and {V2, V3} increase the fitness and edges {V4, V5}
and {V5, V6} reduce the fitness. In the max-cut problem, we
can consider that the given graph removing edge weights
shows the first-order gene interaction (see, e.g., Figure 1(a)).
Figure 1(b) shows an example in which the Hamming and
second-order distances between two chromosomes 𝑥 and
𝑦 are obtained by optimal gene arrangement of the gene
interaction graph 𝐺𝑝. In this example,

𝐴𝑝 =
(
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(7)
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)

𝑇, 𝐴−1
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(𝑥 ⊕ 𝑦) = (
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)

𝑇,
and hence ‖𝐴−1

𝑝
(𝑥 ⊕ 𝑦)‖ = 2. If we use the normalized

Hamming distance (developed for the 2-grouping problem)
[32, 33] as the first-order distance measure, the FDC of this
problem is −0.50. But when our second-order distance is
used, the FDC becomes −0.95.

Given a graph 𝐺 = (𝑉, 𝐸) and its adjacency matrix 𝐴 =

(𝑎𝑖𝑗), the graph bipartitioning problem is that of minimizing
the following expression:
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(8)

where 𝑎𝑖𝑗 ∈ {0, 1}, a vertex V𝑖 belongs to the position 𝑥𝑖 ∈

{0, 1}, and 𝛾 is a positive constant introduced to penalize
unbalanced partitions. If we ignore the second balancing
term altogether, we can regard the given graph as the first-
order gene interaction graph of the given problem instance.
Bui and Moon [21] tried gene rearrangement in a GA for
graph bipartitioning and obtained dramatic improvements in
performance for some graphs. We hypothesized that FDCs
calculated using our second-order distance would help iden-
tify graphs that could benefit most from gene rearrangement,
in terms of GA performance. Figure 2 shows the relationship
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Table 1: Effect of gene rearrangement on FDCs computed using first- and second-order distance.

Graph FDC with 𝑑(1) FDC with 𝑑(2)
𝑝

Improvement (%)† from [21]
G500.2.5 0.369 0.033 3.495
G500.05 0.449 −0.002 −0.487
G500.10 0.221 0.005 2.674
G500.20 0.288 0.004 0.117
G1000.2.5 0.241 0.035 0.469
G1000.05 0.239 0.001 1.167
G1000.10 0.311 0.009 3.362
G1000.20 0.468 0.021 1.201
U500.05 0.297 0.438 82.258
U500.10 0.437 0.416 47.649
U500.20 0.593 0.267 65.198
U500.40 0.860 0.620 67.143
U1000.05 0.188 0.385 97.144
U1000.10 0.344 0.362 50.340
U1000.20 0.582 0.291 45.341
U1000.40 0.765 0.507 80.668
†Change in GA performance obtained by gene rearrangement.
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Figure 2: Correlation of gene rearrangement with FDC values computed using first- and second-order distance.

between FDC and the performance improvement of a GA
on 16 benchmark graphs (8 random graphs and 8 random
geometric graphs) that were used in [34–40].

Here, the performance improvement means the differ-
ence in percentage between the average performances of a
GA with and without gene rearrangement (data from [21]).
The FDC values were approximated from 10,000 randomly
generated local optima. When the first-order (normalized
Hamming) distancewas used, therewas little correlationwith
the change in performance, but our second-order distance
provided a clear correlation (see Figure 2(b) and Table 1).

4. Concluding Remarks

In most previous work, distances among chromosomes in
GAs have usually been first-order distances, and in partic-

ular Hamming distance. We have proposed a second-order
distance measure for GAs, which we consider to be more
meaningful. We have showed that this distance measure
forms a metric space and that it can be computed efficiently.

Using second-order distance allows us to see problem
spaces from a different viewpoint. We have demonstrated its
value in predicting the effectiveness of gene rearrangement,
and we envisage it providing further understanding of the
working mechanism of GAs.
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