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We propose a robust method for tracking nonlinear target with the fusion unscented Kalman filter (FUKF). We noticed that when
some outliers exist in the measurements of the sensors, they cannot track the target accurately by using the standard Kalman filters.
The robust statistics theory is used in this paper to solve this problem. The measurement noise variance which is at the time of the
outlier is restructured through minimizing the designed cost function. Then, the standard fusion unscented Kalman filter is used
to track the target in order to avoid the bias brought by the linear approximation. Compared to the traditional tracking method
and Huber robust method (HFUKE), this method has a more accurate performance and can track the target efficiently while the
outliers exist. Last, simulation examples in three different conditions are given and the simulation results show the advantages of

the proposed method over the fusion unscented Kalman filter (FUKF) and the Huber robust method (HFUKEF).

1. Introduction

Multisensor networks have received increasing attentions
in recent years, due to the huge potential in applications,
such as communication, signal process, routing and tracking,
and many other areas. It is well known that the standard
Kalman filter (KF) is an available method to estimate the
state parameters of the linear system given by the equation
set composed of the dynamic model and the measurement
model. And many methods have been presented to extend
the KF to the nonlinear dynamic and measurement models
by forming a Gaussian approximation to the posterior state
distribution such as the extended Kalman filter (EKF) [1] and
the unscented Kalman filter (UKF) [2]. However, the Taylor
expansion is used in the EKF method to approximate the
nonlinear system by ignoring the nonlinear part of the Taylor
expansion. These crude approximations in the EKF will lead
to a poor accuracy in estimating the states. As a promising
alternative for EKF, UKF does not need to ignore any infor-
mation of the system, in which the probability distribution of
the model state is approximated by a set of deterministically
chosen sample points known as sigma points and propagated
through the nonlinear process and measurement equations.

Not needing to calculate the Jacobian/Hessian matrices, the
UKEF is much easier to implement and performs better than
the EKE. The UKF has been successfully applied to many
practical problems [3].

Unfortunately, in practice, the distribution of the noise is
not strict Gaussian distribution. The noise is characterized
by too many elements which would generate high-intensity
noise realizations, named outliers. The contaminated Gaus-
sian noise and observation outliers appear naturally in many
areas of engineering, such as hardware discontinuities in dig-
ital control systems, tracking in aerospace applications, and
power system state estimation especially tracking in under-
water environment. Because the Kalman filters do not take
these outliers into account, the Kalman filters perform very
poorly when the outliers appear. In other words, the standard
Kalman filters may not be robust enough if the covariances
of the process and measurement noise are changed [4].
In order to solve this problem, many methods have been
proposed. For example, the Gaussian sum approach assumes
the noise probability distribution function to be known a
priori and it is computationally intensive with increasing
order of state variables [5]. The proposed particle filter in [6]
can also achieve robust estimation. But they still may not be



feasible for real-time implementation in many applications.
An eflicient way to solve the non-Gaussian distribution
problem is to apply robust statistical theory which relies on
Huber’s generalized maximum likelihood methodology. The
Huber technique has long been used in dynamic filtering
problem, including underwater vehicle tracking. It is a
combined minimum /; and /,-norm estimation technique
and it exhibits robustness with respect to deviations from
the assumed Gaussian distribution. The Huber technique
has been directly applied into the linear Kalman filter and
the extended Kalman filter. The document [7] has proposed
an algorithm called Huber-based unscented filtering (HUEF),
which applies Huber technique into unscented Kalman filter.
However, this algorithm also approximates the nonlinear
measurement equation as linear equation, which will result
in a loss of accuracy.

In this paper, we have analyzed the linearized Huber-
based Kalman filter and find out how the Huber cost function
affects the Kalman gain and the estimation states. The effect
can be viewed to modify the measurement noise covariance.
Under the normal circumstance, the measurement noise
covariance remains unchanged, while at the time that outliers
appear, the measurement noise covariance is changed to
restrain the outliers. Based on the above principles, a robust
unscented Kalman filter is proposed. The measurement noise
covariance is reconstructed using Huber technique at each
step. Then, the standard process of unscented Kalman filter
without linear approximation is used for estimating. The
proposed method can perform better than both standard
unscented Kalman filter and the linearized Huber-based
filter.

This paper is organized as follows: Section 2 presents
the mathematical model of the multisensor tracking sys-
tem using centralized fusion algorithm. Section 3 analyzes
the linear Huber-based Kalman filter and shows the effect
that Huber cost function brings to the Kalman gain and
the estimation states. In Section 4, the new Huber-based
nonlinear Kalman filter is proposed and the algorithm is
concluded to a brief realization. Simulations in three different
conditions are given to demonstrate the superiority of the
proposed algorithm in Section 5. Then, Section 6 concludes
the performance of the proposed algorithm.

2. Mathematical Model of the Centralized
Fusion System

In this section, the structure of the centralized fusion system
is modeled. In the multisensor network tracking system,
each sensor of the system detects the target and gains the
measurement information of the target and then translates
the information to the fusion center. The fusion center then
collects information from all of the sensors in the system
to form a whole measurement of the target. So each senor’s
measurement is sufficiently used and there is not any loss
of the measurements. The performance of this method is
optimal. Based on the above, the frame diagram is shown in
Figure 1.

In the target tracking problem, the motion of the target is
often considered as a dynamic function:
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X1 = f (o) + Tewg 1

where x;, € R" is the n-dimensional state of the motion target
at time step k, I}, € R™ is the processing noise distribution
matrix, and w;, € R” is the noise sequence with the covariance
Sk It is assumed that the noises at each time are independent
of each other; that is,

cov [wk, wj] = Qk(?kj’ Qk >0,

2)
cov [xg, w] =0,
where &y is Kronecker delta function; that s,
0) k ¢ j)
8kj = (3)
1, k=j.

There are N sensors that observe the target; the measure-
ment functions are as follows:

z;'c+1 = h;;+1 (xk+1) + V;c+1’ i= 1’2’ . 'N’ (4)

where z;‘( .1 € R™ is the measurement value of sensor i at time
step k + 1 and v}; .1 € R™ is the corresponding measurement
noise with its covariance being R, ; and mean being zero. All
of the noises are supposed to be independence. Thus, in the
centralized algorithm, all the measurements are sent to the
fusion center and fused as a whole measurement. Generally,
we define the following:

T
Zpp1 = [(ziH)T (ziH)T (Zzlc\il)T] ’

hk+1 (xkﬂ)

1 T (2 T N ol ©)
= [(hk+1 (xk+1)) (hk+1 (xk+1)) ' (hk+1 (xk+1)) ] >
T T 17T
Vi1 = [(Vllm) (Viﬂ) o (Vllc\h) ]
So, the equivalent generalized measurement function is
Zrs1 = My (xk+1) *+ Vir1- (6)
And we can get
E (Vk+1) =0,
Ryyy = cov (Vk+1’ Vk+1) (7)

. 1 2 N
= dlag (Rk+1’ Rk+1’ s Rk+1) :

Then, we can apply the filtering algorithm to (1) and (6).
If there is not any outlier in the measurement of the sensors,
the traditional centralized Kalman filtering will be optimal
to track the target. But in many situations, the existence of
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outliers is unavoidable. In these cases, the traditional Kalman
filter will become invalid.

3. Linear Huber-Based Kalman Filter

In this section, the linear Huber-based Kalman filter has
been analyzed. And the effects of the Huber cost function
on the filter have been found out. In the linearized space, the
tracking systems (1) and (6) can be written as

X1 = Frxp + @p )

Zi = Hep Xpen + Vi

where F, and H, are the linear processing function and
observation function. Let Xj denote the estimation of
the state x;, and let P denote the corresponding error
covariance. Then, the standard linear Kalman filter can be
derived as [8]

Xk = FeXipo
T
Pk = FePgeFe + Qg
T T -1
Ky = Pk+1|ka+1 (Hk+1Pk+1|ka+1 + Rk+1) > )

Xierier1 = Xeatk T Kierr (Zerr = Hirn X i) »
Pk+1|k+1 = Pk+1|k - Kk+1Hk+1Pk+1|k'

From the above, we can see that X1 can also be seen
as a particular weighted least squares solution. Combine the
prediction with the observations as follows:

Zier1 Hk+1 Vi1
][ ] w
Xier 1]k L 01k
where Oxy, |, is the error between the true state and its

prediction and I, is the n-dimensional identity matrix.

Define
v
s:[ ol ] (1)
5xk+1|k
Then,
R 0
E(s . sT) = [ kol ] . (12)
0 P
T
Let S, = E(e-¢").
Define
—1/2 Zier1
Yirt = St [A : (13)
Xke+1k
Eert = Sen & (14)
175 [ Hin
My, =S [1 * ] . (15)
nxn

Multiplying (10) by S, we can obtain
Yir1 = My Xpeqy + Eirr- (16)

In order to achieve the robust tracking, we use M-
estimate to minimize a so-called cost function that increases
slowly with the error e, ;, where

€kt1 = Vir1 — M1 Xk (17)

and ey, ; is the ith component of ¢ , .
In the Huber method, we often define the cost function as

m+n

J (xk+1) = Z P (ek+1,i) . (18)
i=1

Then, the problem is to find X, that let the cost
function J(xy,,) get the minimum. That is,

Rir1jkr1 = arg min J (g, ). (19)

In (18), p can usually be defined as

1
Eelzﬁl,i’ |ek+1,i| <u

p (i) = 1, (20)
u |ek+1,i| - Eu > |ek+1,i| Z U.

To minimize the cost function, let the differential of
J(x,1) be equal to zero, and then we can get

n

Z¢ (ek+1,i)

i=1

e,y
k+1,i _ 0, (21)
axk+1

where ¢ = p' named the influence function. We have

ek 1Li |ek l,‘| <u
¢ (exi1,) = o o , (22)

usgn (ek+1,i) > |ek+1,i| 2 U.
Then, we define w(ey, ;) = Plex,1;)/exr1,5 We get

L lewer] <

@ (1) = | usgn (€xs1s) (23)

Cpeti sl 2

Thus, by defining the matrix ¥ = diag[w(e,;)], (21) can
be written as

T
My ¥ (M1 X1 = Yier) = 0. (24)
The solution is [8] as follows:

- T -1

Xe+1lk+1 = (Mk+l\PMk+1) M ¥ yeis (25)
T -1

Pear = (Mg YMir) - (26)

By applying the above method, the linear motion system
can be efficiently tracked in the condition that the outliers
exist. But obviously, this algorithm cannot be used in the
nonlinear tracking system directly. The most direct process to
apply this algorithm is to linearize or statistically linearize the
nonlinear function. But that may lead to a low accuracy, cum-
bersome derivation. And to evaluate the Jacobian/Hessian
matrixes may be very complex. Our research is to find an
algorithm that does not need linearized approximation.



Review the algorithm above; we decompose ¥ into two
parts ¥, and ¥, corresponding to the state prediction and
measurement prediction residuals. That is,

V= ¥y 0 27
_[o \P] @7

Substitute (13), (15), and (27) to (25); we can obtain

—~ —~ ! o~
Xier1fesr = Xirrpe T Kiy (Zis1 — Hk+1xk+1|k)’ (28)
' 12 y-1pl/2 T
Prevtker = (I - Kk+1Hk+1)Pk+1|k\Px Pk+1|k > (29)
where
!
Kk+1

512 wy-lpl/2 LT 12 g-1p1/2 T,.T
= Pt Bebie Hien <Hk+1Pk+1|k\Px Pk He (30)

-1
172 g1 ( p1/2\T
+Rk+1\ij (Rk+1) )

In fact, the true state is unknown; so the error dxy, . is
set to zero; so ¥, = I,,..,,; thus, (29) and (30) can be

Pk+1|k+1 = (I - KI,<+1Hk+1) Pk+1|k>

) T T
Kir1 = BerpeHipy (Hk+1Pk+1|ka+1 (31)

-1
PR (RE))

Compared to the standard Kalman filter, we can see that
the change brought by Huber methodology only reflects on
the covariance of the measurement noise. Due to this, we
can extend this algorithm to the nonlinear tracking system
by reformulating the measurement noise for UKF algorithm.

4. Nonlinear Robust Kalman Filter

Due to the analysis in the previous section, we know that
we can achieve robust tracking only by reformulating the
measurement noise. Now, consider the nonlinear dynamic
tracking system as follows:

X1 = i (x0) + Wy
(32)

Zier1 = Py (xk+1) + Viy1-

Qy> Ry is also the covariance of wy, and v.
Define quantities as follows:

ék = R;l/zzk,
Iy (xp) -

Let 8 = z; — gi(xy); then, the cost function is

(33)
g (x) = R

1) =3P (8. e
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In this paper, in order to get a more robust performance,
we choose

P (Sk,i)

1
5% [Okil <ur (35)

T (1 12 1l
u (1+ ” )exp(l L) |64] = u.

Then, we can obtain

1, I(Sk,il <u,

5 < ‘ 36
w (3,) exp(l_w), oon 09

u

Also define ¥ = diag[w(5y;)]; thus, the reformulated
covariance of the measurement noise is

~ T
R =R¥. (R) . (37)

Then, the standard unscented Kalman filter is applied
with the new measurement noise covariance. The algorithm
is as follows.

(1) Time Update. Calculate sigma points:

Skl
(38)
= [xklk X + |+ A) By X — /(n+ 1) Pklk] .
Compute the propagated sigma points:
Ve = f (i) - (39)
Compute the predicted state and covariance:
2n
Xirk = szgm))’mk,p
i=0
’ (40)

2n
~ ~ T
P = ngc) (Yklk,i - xk+1|k) (Vklk,i - xk+1|k) + Q.
i=0

(2) Measurement Update. Compute the reformulated mea-
surement noise covariance R;.
Calculate sigma points:

Serlk
(41)
= [ Xt Xerre + V(” +A) P Xpaape — (1 +A) Pk+1|k] .
Compute the propagated sigma points:
Yertik = h Crer) - (42)

Compute the predicted mean and the predicted covari-
ance of the measurement and the cross-covariance of the state
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and the measurement:

2n

= _ (m)

Zlet1|k = Zwi Yic+11k,i>
i=0

2n
_ _ T
Py = wac) Vst = Zreak) Veries = Zrsaiie)
i=0 (43)

+ Ry,

2n © T
Pszk = Zwic (Ek+1|k,i - fk+1|k) (Yk+1|k,i - 2k+1|k) .

i=0

Compute the filter gain and the estimated state and its
covariance:

-1
Ky = P;akzkpzk >
Kistfkrr = Xratfk T Kier (21 = Zraai) > (44)

T
Pk+1|k+1 = Pk+1|k - Kk+1PZk (Kk+1) >

where
"= i A
wgc>=(n”)+(1—a2+ﬁ), (45)
w™ = w = (nof}t)’ =1L2...,n,
and A = ocz(n + k) — n; often we choose « = 0.01, ¥ = 0, and
B=2.

Obviously, this algorithm does not linearize the process
function and the measurement function. So, the accuracy of
UKEF remains, and because of the reformulated measurement
noise covariance, this algorithm also has the robust perfor-
mance.

In the proposed algorithm, the selection of the cost
function is different from the traditional Huber method.
From the above, the function w can be seen as a reweighting
function and its varying trend is as in Figure 2.

From Figure 2, we can obtain that when the error
lu| < I, the reweighting function remains unchanged.
For these time steps, the proposed algorithm is just as the
standard unscented Kalman filter. When the error |u| >
I,, the reweighting function is a decreasing function, the
reformulated measurement noise covariance is less than the
real measurement noise, and thus the robust performance is
achieved. And we can easily notice that the proposed method
is decreasing faster than Huber method; so the proposed
method has a better performance than the Huber method.
Moreover, when the error |u| > I,, that means the error is too
large to be considered. Then, the reweighting function of the
proposed method is almost equal to zero. That means to
throw these outliers. However, the Huber method also allo-
cates a weight to the error, and that will lead to a low accuracy.

5. Simulations and Analysis

This section compares the performance of the proposed
algorithm against the standard UKF and the Huber-based

w(u)

—=— Huber method
—+— Proposed method

FIGURE 2: The reweighting functions vary with |u].

UKE. The target moves with a constant angular velocity w;

the state vector X = [x, %, y, 7]"; we can get that the system
function is

X)) =Aw)X () +Bwlt), (46)
where
010 0
000 -
A(w) =
000 1
[0 w 0 0 -
"0 0 (47)
i) 1 0
(@)= 0 0
[0 1

and w(t) represents the process noise sequence.
We can get its discrete form as follows:

T 1- T
w 0 cosw

1 sin — -
w w
X 0 coswI 0 -—sinwT
el 1 - coswT sinwT k
w w
0 sinwl 0 coswT
- T2 -
o, (48)
2
+ T2 wk
0 P
2
L0 T |
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FIGURE 3: The track after one time process.
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and the covariance of the noise is as follows:

[ 2 (wT - sinwT) 1-coswT 0 wT - sin wT
w? w? w?
1- c02s T T _wT - 521n T 0
Q=S a()) T =sinwl 2 («T —wsin wT) 1-coswT (49)
w? w? w?
_ wT—;zmwT 0 l—i)ozsz T |

The measurement functions of the sensors are as in
Table 1:

Z=H(x)+, (50)

where i (x) = [hi, hg]T and v/ is the measurement noise, and

i 2 2
B =\ o = %)+ O = 1)
Vm — Vi

hy = arctan =*—=,
X — Xi

(51)

where (x,,, ¥,,,) is the position of the target and (x;, y;) is the
position of the ith sensor.

First, we use the mixed Gaussian distribution to simulate
the outliers. The probability density function is

pdf (v;() =(1-¢)N(0,0q) +&N(0,0,). (52)

Let the simulation time K = 100; the initial position of the
target is X, = [1,0.5,1,0.3]". The times of the Monte-Carlo
experiment are M = 50. Define the root mean square error:

M

1 . .
ONCTEE YD

i=1

RMSE (k) =

The values of the variables are as follows.

Case 1. When ¢ = 0 (i.e., the noise is Gaussian distribution),
the result of the tracking process after one time is as in
Figure 3.

And after 50 times’ Monte-Carlo experiment, the root
mean square error of each variable is as in Figures 4, 5, 6, and
7.

We can see from Figures 4, 5, 6, and 7 that the RMSE of
the proposed algorithm is almost the same as the centralized
UKF and is less than the centralized HUKEF. Because the
centralized HUKEF has linearized the measurement function
and lost its accuracy, the proposed algorithm does not need
to be linearized.
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FIGURE 6: RMSE of x-velocity.

Case 2. When ¢ = 0.01, that means the outliers exist in the
measurement value. The result of the tracking process after
one time is as in Figure 8.

0.7

RMSE

60 80 100

—— Centralised UKF
—— Centralised HUKF
—— Proposed algorithm

FIGURE 7: RMSE of y-velocity.
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FIGURE 8: The track after one time process.

And after 50 times’ Monte-Carlo experiment, the root
mean square error of each variable is as in Figures 9, 10, 11,
and 12.

From Figures 9, 10, 11, and 12, we can see that, in the
processing, there are three outliers which are pointed out in
Figure 8. At these points, the outliers turned up, the error
of the centralized UKF raised rapidly. So the estimation was
unbelievable. And the centralized HUKF and the proposed
algorithm can also remain in the period that is believable. The
error is much less than the centralized UKE. And we can also
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FI1GURE 10: RMSE of y-position.

observe that the proposed algorithm is more accurate than
the centralized HUKE

Another condition is that when the measurement envi-
ronment changes, the measurement noise is changed. But this
is unknown for the filter. Similarly, we should reformulate
the measurement noise covariance to adjust the changes. In
the simulation, we set that the measurement environment
changes in the period from step 50 to step 80. The simulation
results are as in Figure 13.
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FIGURE 12: RMSE of y-velocity.

And after 50 times’ Monte-Carlo experiment, the root
mean square error of each variable is as in Figures 14, 15, 16,
and 17.

We can see that in the period steps 50 to 80, the
centralized UKF cannot track the target very well and the
error is very large. And the other two algorithms can track the
target partly. And obviously, the performance of the proposed
algorithm is better than the centralized HUKE.
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6. Conclusion

In this paper, we have proposed a robust tracking method
for the nonlinear tracking system without linear approx-
imation by analyzing the Huber-based Kalman filter for
linear system. The proposed algorithm uses the standard
unscented Kalman filter but replaces the measurement noise
covariance by a new one which is reformulated through

RMSE
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—=— Proposed algorithm

FIGURE 15: RMSE of y-position.
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FIGURE 16: RMSE of x-velocity.

minimizing the so-called cost function. And in this paper,
we design a new equation for the cost function and indicate
its advantages over the previous function. Simulation results
illustrate that the proposed algorithm has a more accurate
and more robust performance than the standard unscented
Kalman filter and the traditional Huber-based Kalman
filter.
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