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There is currently a growing body of research examining the effects of the fusion of domain knowledge and data mining. This
paper examines the impact of such fusion in a novel way by applying validation techniques and training data to enhance the
performance of knowledge-based expert systems. We present an algorithm for tuning an expert system to minimize the expected
misclassification cost. The algorithm employs data reserved for training data mining models to determine the decision cutoff of the
expert system, in terms of the certainty factor of a prediction, for optimal performance. We evaluate the proposed algorithm and
find that tuning the expert system results in significantly lower costs. Our approach could be extended to enhance the performance
of any intelligent or knowledge system that makes cost-sensitive business decisions.

1. Introduction

Expert systems have been used to solve different types of
problems, such as interpretation, prediction, design, plan-
ning, monitoring, diagnosis, debugging, repair, and control
[1]. They have been applied to several domains, such as
medicine, geology, chemistry, engineering, computer sys-
tems, auditing, marketing, sales, and finance [1, 2]. Business
applications for which expert systems have been developed
include financial analysis, credit rating, sales, foreign ex-
change trading, trade advising, tax planning, auditing, and
labor management [3, 4].

Over the years, prediction expert systems have witnessed
widespread use in finance and related domains. Those sys-
tems use stored knowledge acquired from financial experts
to make predictions on stock prices, bankruptcy, credit wor-
thiness, financial markets, and so forth. Prediction problems
can be classified into two types: classification and regression.
Expert systems used for a classification problem classify the
outcome of a problem into one out of multiple categories.
In the finance domain, the focus has been mainly on the
binary classification problem, which involves classifying the
outcome into one of two possible categories (e.g., good loan
or bad loan, high or low risk of insolvency, etc.).

The measure that has been commonly used for evaluating
the effectiveness of financial expert systems is classification
accuracy. Using this measure implies that the lower the
number of errors a system makes, the better it is. However,
in many financial problems, such as credit evaluation and
bankruptcy prediction, the costs for different types of
misclassification errors are not the same [5–7]. Hence, the
accuracy measure, which assumes equal costs, is not a valid
criterion to use for such problems, where the focus should be
on minimizing the overall misclassification cost [8, 9].

In a binary classification problem, a specific instance or
case can belong to one of two classes: positive or negative.
Tests are conducted to detect if a case is positive (e.g.,
bankrupt firm, bad credit, etc.) or negative. A false positive
results when the test results are positive but the case actually
belongs to the negative class. A false negative results when
the test is negative but the case actually belongs to the
positive class. For classification problems having unequal
costs associated with the two types of errors, the focus should
be on minimizing the overall misclassification cost. It is
important for an expert system to correctly identify true
positives and true negatives, instead of simply finding the
total number of correct or wrong answers.
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Data mining and knowledge engineering have remained
largely independent fields, although, of late, there has been
a movement toward examining the fusion of the two [10].
Researchers, (e.g., [7, 9, 11]) have studied the impact of
incorporating some form of domain knowledge—embedded
in an expert system or acquired from a human expert—
into the data mining process. Machine learning algorithms
typically used in data mining have been applied to learn rules
for an expert system based on examples provided by experts
[12]. Our study examines the impact of the fusion in a novel
way by applying validation techniques and data employed for
data mining to enhance the performance of knowledge-based
expert systems.

In this paper, we present an approach for enhancing the
performance of a knowledge-based expert system by apply-
ing a data mining cross-validation technique. We propose an
algorithm that applies the expert system to classify cases in
the training sample, estimates the expected misclassification
cost under a range of certainty factor cutoffs, and determines
the optimal cutoff with respect to expected misclassification
cost. We evaluate the efficacy of the approach by comparing
the performance of the tuned expert system with that of
the original, untuned version. We also generate a receiver
operating characteristic (ROC) curve to visually depict the
performance of the expert system classifiers, tuned using a
range of decision thresholds. The evaluation yields promising
results; tuning the expert system results in significantly lower
costs.

With the growing influence of business intelligence
applications in management decisions, our study makes
an important contribution by presenting an approach that
could be applied to any knowledge system dealing with
uncertainty. While the certainty factor algebra is germane to
expert systems, the algorithm that we have developed could
be applied to tune any intelligent or knowledge system that
generates uncertain conclusions and operates under unequal
misclassification costs.

The paper is organized as follows. Section 2 presents
the background. Section 3 describes the problem domain.
Sections 4 and 5 describe the development of an expert sys-
tem, and the computation of certainty factors by the expert
system. In Section 6 we present the proposed approach
for enhancing the performance of an expert system and in
Section 7 we present the results of an empirical evaluation.
We discuss the results of the study in Section 8 and finally
conclude the paper in Section 9.

2. Background

In the 1970s, artificial intelligence (AI) scientists focused on
techniques such as representation and search to make com-
puter programs intelligent. In the late 1970s, AI researchers
made a major breakthrough by incorporating high-quality,
specific knowledge of a given problem area into computer
programs. Those programs, called expert systems, emulate
human experts in a narrow problem domain by storing and
applying their knowledge.

The process of building an expert system is known
as knowledge engineering. It involves a knowledge engineer

eliciting procedures, strategies, and rules of thumb from
a domain expert and transferring this heuristic knowledge
into a computer program [1]. The resulting expert system
solves problems in much the same way as the expert
does, by using short-cuts and tricks and ignoring irrelevant
information. It uses the stored knowledge to achieve high
performance.

Human experts develop their knowledge through years
of experience in solving problems in a narrow area. Because
experts usually find it difficult to articulate the heuristics or
rules of thumb that they apply, knowledge engineers need to
overcome what is known as the knowledge acquisition bottle-
neck. The more competent human experts become, the less
able they are in describing the knowledge they use to solve
problems [13]. Several knowledge acquisition techniques—
such as interviews, protocol analysis, observation, and focus
groups—are available for facilitating knowledge transfer
from experts.

The expert system development life cycle includes the
following phases: identification, conceptualization, formal-
ization, implementation, and testing [1]. In the identification
phase, the type and scope of the problem, along with the
required resources, are identified. In the conceptualization
phase, the knowledge engineer and the domain expert
conceptualize the problem in terms of the concepts, relations,
control mechanisms, subtasks, and strategies related to the
problem-solving activity. In the formalization phase, those
concepts are formalized within the framework of an expert
system development tool, selected based on the knowledge
representation technique considered to be most appropriate
for the problem. If-Then rules are the most popular means
for representing knowledge. In the implementation phase, the
formalized knowledge is translated into an operational com-
puter program. Finally, in the testing phase, the performance
and utility of the expert system are evaluated.

Testing involves both verification and validation. While
verification is defined as building the system right, validation
is defined as building the right system [14]. Verification
entails checking the knowledge base for logical completeness
and consistency, as well as addressing engineering issues,
such as efficiency, maintainability, portability, and reliability
[15]. In contrast, validation focuses on evaluating the ex-
pert system with respect to performance (e.g., accuracy,
correctness of reasoning, and Turing test) as well as
usage (e.g., usability, dialog, and explanation quality). But
the prerequisite for extensive usage-oriented validation is
an acceptable level of performance by the expert system
[15].

Validation has usually focused on assessing an expert sys-
tem’s performance relative to some acceptable performance
level, such as a given level of accuracy. A typical validation
session entails running a set of carefully chosen test cases
on the expert system and having domain experts validate
the results with respect to accuracy. Other criteria, such as
explanation capability, usability, and depth, breadth, and
correctness of reasoning, have also been used. But the focus
of validation has been on “accurate performance” [15].
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Research in expert system validation has largely ignored
the issue of costs and benefits even though it was identified
as a major concern long ago [16]. In estimating costs,
one needs to factor in the uncertainty inherent in expert
system reasoning, represented as certainty factors of rule
conclusions. Recognizing the fact that there has been no
systematic treatment of weights for rules in management
expert systems, O’Leary [17] provides an empirical approach
for verifying knowledge bases with certainty factors. So far,
however, a similar approach for validating uncertainty in
expert systems has not been proposed.

Researchers in the data mining field have started address-
ing the issue of unequal costs. Based on his investigation into
the learning of Bayesian and decision tree classifiers under
different misclassification costs for a two-class problem,
Elkan [18] recommends that classifiers learn from the
training data as given, and then determine the optimal
decision thresholds empirically. Sinha and May [8] analyze
the performance of five popular data mining methods on a
binary credit classification problem. Instead of classification
accuracy, they employ misclassification cost as a basis for
comparison. They also propose a method for tuning the
models by empirically determining optimal decision thresh-
olds under a set of costs and prior probabilities. Use of the
proposed tuning method resulted in improved performance
for all the methods examined in their study. In a recent study,
Bansal et al. [19] extend the idea to tune regular regression
models for lowering misprediction costs.

ROC curves, which were originally used in signal detec-
tion theory, are being increasingly used in data mining
research for analyzing classifier performance [8, 20–22].
ROC curves are useful for visualizing a classifier’s perfor-
mance [23], especially vis à vis other classifiers. Provost et al.
[21], for example, use ROC analysis to investigate whether
a dominating model exists in ROC space; if such a model
does not exist, none of the models under investigation can
be considered to be best under all target scenarios. Sinha and
May [8] use ROC analysis to compare the performance of
models built using different methods and use the ROC results
to determine optimal classifiers.

The focus of an expert system is on the knowledge
acquired from a human expert in a given problem domain.
In contrast, data mining methods do not use domain
knowledge but try to learn new patterns from the available
data. While expert systems are knowledge driven, data mining
systems are data driven. Expert systems and data mining,
therefore, are radically different in their approaches, and
that may be the reason why they have remained largely
independent fields. Lately, however, upon the realization that
the two approaches could play complementary roles, there
has been a growing interest in examining the effects of their
fusion. Dybowski et al. [10] stress that in domains where
both data and expertise are available, the fusion of domain
knowledge and data mining is an interesting issue. Studies,
(e.g. [9, 24–27]), that incorporated domain knowledge in
some fashion into the data mining process have produced
encouraging results. Decision tree learning algorithms have
been successfully used in inducing rules from expert-
provided examples for building expert systems [12].

3. Problem Domain

The problem domain for this study is that of bank loans for
automobiles. Evaluation and approval of loan applications
is becoming even more critical for banks in the midst of
the current financial crisis. Increasing loan losses in the
third quarter of 2008 left credit unions barely in the black
[28]. Nationally, with mounting loan losses, the number
of problem banks on the FDIC’s official list reached, in
November 2008, 171, the most since 1995 [29].

Two types of attributes are present in a loan application:
application attributes and credit bureau characteristics.
The application attributes relate to the items on the loan
application itself, such as years in current residence, years
in previous residence, monthly income, and monthly pay-
ments. However, other major attributes for making lending
decisions are not available in the application; they come from
the credit bureau report. The credit bureau characteristics
include attributes such as the months on file, number of
satisfactory trades, number of major trades, and number of
minor trades.

The months on file attribute represents the total number
of months the credit bureau has maintained a record on the
applicant. Typically, the longer the number of months on
file, the more credit history the applicant has. In a credit
report, instances of credit are represented in a trade line,
which stores the vital statistics of each instance of borrowing.
A new trade line is opened every time the borrower obtains a
different loan or credit card.

Trades that have a sufficient payment history are rated on
a scale of 1 to 9. Those trades for which all payments were
received in a timely manner (i.e., none of them was received
more than 29 days past the due date) are called satisfactory
trades and receive a rating of 1, the best possible rating. If one
of the payments for a loan was late and the late time period
was between 29 and 60 days (exclusive), the loan would be
classified as minor with a rating of 2. If any of the payments
was received 60 days or more past the due date, the loan is
classified as major with a rating of 3 or more, depending on
how bad the payment history is. A rating of 9 indicates that
the loan was “charged off” and was considered uncollectible
by the creditor. The worst rating attribute indicates the worst
rating among all the trade lines associated with the borrower.

4. Expert System Development

The loan expert system was developed using a backward-
chaining expert system shell. The expert system has close to
100 rules, structured in the following format (see Figure 1).

The If part of the rule is called the premise of the rule.
The Then part is called the rule conclusion. In a backward-
chaining system, the inference engine works backward from
the conclusion. It hypothesizes a conclusion and works
backward toward the hypothesis-supporting facts. To satisfy
a hypothesis, it checks if all the conditions in the premise
hold true. A condition may be supported by a fact or input
provided to the expert system; if not, the inference engine
treats that condition as an intermediate hypothesis, and
checks the knowledge base to determine if there is any other
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If condition1

condition2

........
conditionn

Then conclusion

Figure 1

rule that can help support the hypothesis. If it finds one,
then the conclusion of that rule becomes the new hypothesis
to prove and the same process is repeated. In this way, the
inference engine builds a chain of goals and subgoals, starting
with the main goal or hypothesis and working backward. If
after exploring all possible avenues, a hypothesis cannot be
supported, then the rule fails.

The expert used for developing the expert system was a
loan officer with over 15 years of experience and a strong
reputation when it came to loan charge-offs. A knowledge
engineer interviewed the expert several times to acquire his
knowledge. At the beginning, unstructured interviews were
used to develop an initial understanding of the domain.
A generic loan application was used to identify the main
steps and factors involved in the decision. The initial set
of interviews was followed with more specific, structured
interviews which elicited detailed knowledge of how lending
decisions are made.

When the expert reviews a loan application, the first
thing he considers is the credit report. His assessment of the
credit history is based upon attributes such as the number of
trades rated as satisfactory, the number of major derogatory
trades, the number of minor derogatory trades, and the
months the applicant has been on file. Provided below are
two examples of rules acquired from the expert for rating the
applicant’s credit history (see Figure 2).

Rule-24 states that if the applicant had no major or minor
derogatory trades, had more than 10 satisfactory trades,
and was never declared bankrupt, then her credit rating
is excellent. A certainty factor (cf) is associated with the
rule, reflecting the expert’s confidence in the conclusion (see
Section 5 for a detailed discussion of certainty factors).

After rating the applicant’s credit, the expert reviews
attributes on the loan application itself, such as years in
current and previous residence, years with current and
previous employer, monthly income, monthly payments,
price of the car, down payment, and so forth, and makes a
decision on whether the loan should be approved or denied.
Two examples of rules for making loan decisions are given
below (see Figure 3).

A consultation with the loan expert system starts with
the goal to determine the value for recommendation, which
could be “approve” or “deny.” Since the recommendation is
not available as a fact in the knowledge base, the inference
engine tries to find rules that have “recommendation” in the
conclusion.

Suppose rule-38 is the rule it finds first. It checks and
finds that there are no facts currently in the knowledge base
to satisfy the first condition: credit rating. Because the value
of credit rating is not known, the inference engine creates
“credit rating” as a subgoal and tries to find rules that could

Rule-4: If number of minor trades >= 3 and
number of minor trades <= 6

Then credit rating = fair cf .60
Rule-24: If number of major trades = 0 and

number of minor trades = 0 and
number of satisfactory trades > 10 and
bankruptcy = no

Then credit rating = excellent cf .99

Figure 2

Rule-38: If credit rating = fair and
years in current residence > 1 and
years employed by current employer <= 2 and
debt-to-income ratio > .36

Then recommendation = deny loan cf .90
Rule-71: If credit rating = excellent and

debt-to-income ratio <= .36 and
years employed by current employer >= 2 and

Then recommendation = approve loan cf .90

Figure 3

help achieve that subgoal. Suppose it finds rule-4. If the
number of minor trades is between 3 and 6, the rule fires
concluding that credit rating is fair. Control then returns to
rule-38, which then checks if the remaining conditions in its
premise are true or not. If rule-4 had failed to match the facts,
rule-38 would have called other rules that could conclude a
value of “fair” for credit rating.

5. Certainty Factors

The most widely used approach for representing uncertainty
in expert systems is that of certainty factors (CFs). The
MYCIN system [30], which was developed in the mid
1970s to help physicians diagnose and treat infectious blood
diseases, pioneered the use of CFs. The uncertainty in expert
systems stems from two sources: (1) the uncertainty of a
fact or hypothesis that experts need to reason about, and
(2) the uncertainty in the validity of inference rules used
by experts [31]. The CF associated with a hypothesis, or an
intermediate hypothesis, represents the degree of belief based
on all the evidence that has been used so far. The CF for a rule
represents the degree of belief in the rule’s conclusion based
on its premise.

Consider rule-38 from the auto loan expert system again.
The rule states that if all the conditions in the premise hold,
then the expert’s recommendation is to deny the loan, but he
is 90% certain, not absolutely certain, of the conclusion. This
is an example of the second type of uncertainty discussed
above. An example of the first type of uncertainty is:

credit rating = fair cf .70 (1)

which represents the belief that the credit rating of the
applicant is fair, but only to a degree of 70%. Note that
though credit rating is part of the premise of rule-38, it could
be a hypothesis (conclusion) of another rule, such as the one
shown below (see Figure 4).

This rule states that if the number of minor trades that
the applicant has had is between 3 and 6, then the expert is
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Rule-4: If number of minor trades >= 3 and
number of minor trades <= 6

Then credit rating = fair cf .60

Figure 4

only 60% sure that the credit rating is fair. Note that when
this rule fires, its conclusion satisfies the first condition of
rule-38. That is typical of a rule-based expert system in which
when a rule fires, its conclusion becomes the evidence for the
next one in the chain.

The evidence for a rule does not necessarily have to
be a conclusion derived from another rule. It could simply
be a fact or situation known to the expert system. During
a consultation session, the loan expert system uses as
inputs values for variables such as years in residence, years
employed, number of minor trades, and debt-to-income
ratio. If the credit bureau report states that the number of
minor trades the applicant has had is 5, then the expert
system uses the following fact as an input:

minor trades = 5. (2)

When no CF is associated with a fact or situation, the expert
system employs the default certainty of 100%. That is, the
expert system interprets the input as:

minor trades = 5 cf 1.00. (3)

A consultation with the expert system is geared toward
determining the values of the goals (hypotheses) of the
consultation. The final goal is to find the recommendation
for the loan application, which is whether the loan should be
approved or denied. To reach that goal, the expert system has
to first achieve an intermediate goal, which is to determine
the credit rating of the applicant.

As new evidence comes in, the CFs are used to update
the beliefs in the hypotheses. Given that uncertainty can arise
from the two sources identified above, the confidence in the
conclusion generated from a rule’s firing is a combination of
the rule’s CF and the certainty of the rule’s premise.

Let P(H) represent the a priori or unconditional prob-
ability of hypothesis H. Based on accumulating evidence,
P(H) can increase or decrease across a range of values from 0
to 1. In the context of expert systems, P(H) can be interpreted
as the subjective degree of belief in H. With the arrival of
new evidence E, the belief in H is updated. The conditional
probability P(H | E)—that is, the probability that H is true
given that E is true—represents the updated belief. P(H | E)
greater than P(H) implies that E increases the expert’s belief
in H while P(H | E) less than P(H) implies that E decreases
the belief.

The certainty factor approach is grounded in three
measures of uncertainty: (1) MB(H , E), the increased belief
in H based on E, (2) MD(H , E), the increased disbelief in H
based on E, and (3) CF(H , E), the combination of MB and
MD into a single certainty measure [31]. The definitions of
these measures, from Stefik [31], are reproduced below (see
Figure 5).

If P(H) = 1, MB(H, E) = 1,
else MB(H, E) = [max[P(H | E), P(H)] – P(H)] / [1 – P(H)].
If P(H) = 0, MD(H, E) = 1,
else MD(H, E) = [min[P(H | E), P(H)] – P(H)] / [0 – P(H)].
CF(H, E) = MB(H, E) – MD(H, E)

Figure 5

If both CF1, CF2 > 0,
Then CF-noted = CF1 + CF2∗ (1−CF1)
If both CF1, CF2 < 0,
Then CF-noted = CF1+ CF2∗ (1 + CF1)
If CF1 < 0 < CF2,
Then CF-noted = (CF1 + CF2) / [1−min(|CF1|, |CF2|)]

Figure 6

From the above definitions, we find that the values of MB
and MD range from 0 to 1, while those for CF range from−1
to 1. When H is absolutely certain, MB = 1, MD = 0, and CF
= 1. When P(H) = 0, MB = 0, MD = 1, and CF = −1. A CF
of 1 indicates absolute certainty in the validity of a fact or
rule, while a CF of −1 indicates that a fact or hypothesis is
definitely wrong. A CF of 0 can be interpreted as a complete
lack of evidence in a fact or hypothesis.

If the a priori belief in the hypothesis is small, that is,
P(H)≈ 0, then CF(H, E)≈ P(H | E). The CF of a hypothesis
confirmed by evidence can therefore be roughly interpreted
as the conditional probability based on that evidence.

Evidence for or against a hypothesis may come from
multiple sources. Suppose E1 and E2 are two pieces of
evidence that confirm or reject hypothesis H. Let CF1

= CF(H, E1) and CF2 = CF(H, E2). The expert system
combines the two pieces of evidence in the following way
(see Figure 6) where CF-noted is the certainty factor stored
for the hypothesis in the cache. The cache is a repository of
all conclusions made during a consultation with the expert
system.

If the premise of a rule is uncertain, the expert system
factors in that uncertainty into the uncertainty of the rule
(CFrule) by taking the product of the two uncertainties, that
is,

CF-noted = CFrule ∗ CFpremise. (4)

If the premise itself is a conjunction of conditions—that
is, AND conditions—then the certainty of the conjunction
noted is the minimum of the CFs, that is,

CF-noted = min(CF1, CF2, . . . , CFn). (5)

In rule-38, for example, if credit rating = fair cf .70 and
all the other conditions are true with absolute certainty, then
the certainty for the conclusion (deny loan) is

CF-noted = .90∗min(.70, 1, 1, 1) = .63. (6)

On the other hand, if the premise is a disjunction of
conditions—that is, OR conditions—then the rule fires
multiple times, once for each condition, and the CF of the
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conclusion is computed based on the equations shown above
for combining evidence.

As in MYCIN, our expert system uses a threshold CF
of .20 for a rule to fire. That means that if CFpremise < 20, the
rule fails. Having such a threshold helps the inference engine
avoid pursuing hypotheses that are not likely to be true.

It is important to note the following points regarding
the computation of CF. The final CF for a hypothesis is
independent of the order in which evidence is found. As
positive evidence accumulates, the resulting CF approaches
but cannot exceed 1. Similarly, with mounting negative
evidence, the resulting CF approaches but cannot go lower
than −1. Once the certainty of a conclusion reaches 1 or −1,
it cannot be changed by additional incoming evidence. If 0 is
combined with any CF, it leaves the CF unchanged.

6. Enhancing the Performance of
an Expert System

In this section, we describe the proposed approach for
enhancing the performance of an expert system. We first
define the performance measure used to evaluate the perfor-
mance of an expert system. We next present an algorithm for
tuning an expert system for optimal performance.

6.1. Performance Measurement. In general, a binary classifi-
cation problem is described by a pair 〈X ,Y〉, where X = X1×
X2 × · · · × Xm is the domain of an m-dimensional vector of
variables x = 〈x1, x2, . . . , xm〉, called features or independent
variables, and Y = {0, 1} is the domain of a binary variable
y, called class or dependent variable. An expert system built
for solving such a classification problem essentially provides
a mapping, f : X → Y , consisting of a set of mapping rules
for predicting the value of y based on the value of x.

The prediction made by an expert system is subject to
two types of errors. A false positive error is made when the
expert system misclassifies an actual negative case as positive
(i.e., y = 0, f (x) = 1). A false negative error occurs when
the expert system misclassifies an actual positive case as a
negative (i.e., y = 1, f (x) = 0). The performance of an expert
system f can be measured by its expected misclassification
cost, which is defined as

C
(
f
) = C01pp01 + C10

(
1− p

)
p10, (7)

where p = Pr[y = 1] is the prior probability of a positive
case, (1 − p) is the prior probability of a negative case,
p01 = Pr[ f (x) = 0|y = 1] and p10 = Pr[ f (x) = 1|y = 0]
are false negative and false positive error rates, respectively,
and C01 and C10 are the unit costs of false negative and
false positive errors, respectively. Since the assignment of the
unit costs of the two types of errors is often subjective, the
ratio between the two costs is more interesting than their
absolute values. Let r = C01/C10 denote the cost ratio of
false negative to false positive, an adjusted measure for the
expected misclassification cost can be defined, by setting
C10(1− p) constantly at one, as

C′
(
f
) = C

(
f
)

C10
(
1− p

) = r p
(
1− p

) p01 + p10. (8)

Table 1: Confusion matrix of an expert system on a sample of
solved cases.

Predicted class

1 0 Sum

Actual class
1 n11 n01 n1

0 n10 n00 n0

n

An advantage of using this adjusted measure is that it
is invariant with regard to different settings of p and r as
long as the weight ratio between the two classes, r p/(1 − p),
holds constant. For example, the two settings, p = 0.2,
r = 4 and p = 0.5, r = 1, yield the same performance
measure. The conditional probabilities, p01 and p10, can be
estimated by the corresponding sample proportions based
on a sample of previously solved cases (also referred to as
instances or examples), each of which is a pair 〈x, y〉, where
x = 〈x1, x2, . . . , xm〉 ∈ X and y ∈ Y . A confusion matrix (a
template is shown in Table 1) can be constructed based on the
classification outcomes of the expert system on the provided
sample. Let n1 (n0) denote the number of positive (negative)
cases in the provided sample, and n01 (n10) denote the
number of positive (negative) cases misclassified as negative
(positive). Then the conditional probabilities, p01 and p10,
can be estimated as

p̂01 = n01

n1
, p̂10 = n10

n0
. (9)

The expected misclassification cost of the expert system can
therefore be estimated based on the provided sample as

Ĉ
(
f
) = r p

(
1− p

) p̂01 + p̂10 = r p
(
1− p

)
n 01

n 1
+
n10

n0
. (10)

The prior probability p can be estimated by the propor-
tion of positive cases in a representative sample; otherwise,
it could be (subjectively) estimated by domain experts. The
domain experts should also be able to assign a value for cost
ratio r based on their experience.

Note that classification error rate (or inversely, accuracy),
a measure that has been frequently employed in the past,
is a special case of expected misclassification cost under
the situation where the two prior probabilities, as well as
the two types of misclassification costs, are equal. However,
these assumptions are not realistic in domains such as credit
evaluation. First, for a profitable bank, the prior probability
of a bad loan is usually much lower than that of a good loan.
Second, the cost of misclassifying a bad loan as good (false
negative) is much more than that of misclassifying a good
loan as bad (false positive). Hence, expected misclassification
cost is a more appropriate performance measure to use than
overall accuracy for cost-sensitive decisions, such as credit
evaluation [18, 21, 32].

6.2. Performance Tuning. The prediction of an expert system
typically involves uncertainty. As we discussed earlier, the
most widely used technique for representing uncertainty in
expert systems is the certainty factor approach. The CF of
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a prediction made by an expert system ranges from −1 to
1, where 1 indicates that a hypothesis is certainly true, −1
indicates that a hypothesis is certainly false, and 0 indicates
a complete lack of evidence for or against the validity of
the hypothesis. In binary classification problems, since the
CF of a negative prediction is the same as that of a positive
prediction, with only the sign reversed, we will henceforth
use CF to refer to only the certainty factor of a positive
prediction.

For the credit evaluation problem, a prediction is con-
sidered to be positive when the loan is considered to be
bad and denied. When the expert system denies a loan, the
prediction is positive and the CF is equal to the certainty
factor computed by the system. When the expert system
approves a loan, the CF is equal to the certainty associated
with the approval decision, with the sign reversed, because
we use CF to refer only to a positive (deny) prediction. If the
expert system gives multiple predictions, the certainty factors
provided by the expert system along with the predictions are
consolidated into a single CF using the method previously
described in Section 6. When the CF is greater than or equal
to 0, the loan is denied; otherwise, when the CF is negative,
the loan is approved. The default threshold for approving a
loan is therefore 0. The default cutoff of 0 may be reasonable
for cost-insensitive classification problems—where the two
types of misclassification errors are equally costly and the
prior probabilities of the two classes are equal—but may
not produce optimal performance with respect to expected
misclassification cost for cost-sensitive problems.

The cost-sensitive performance of an expert system can
be visualized using the ROC curve, which has been widely
used with learned classification systems [20]. Given a sample
of solved cases and a selected cutoff, a confusion matrix can
be constructed in the form of Table 1. Based on the confusion
matrix, we define sensitivity as being equal to n11/n11 + n01,
which is the true positive rate, and specificity as being equal
to n00/n00 + n10, the complement of the false positive rate.
A series of sensitivity and specificity values can be obtained
by varying the cutoff. An ROC curve plots sensitivity against
1-specificity across the cutoffs and allows us to visualize the
aggregate performance of the expert system. Given the prior
probabilities of the two classes and the costs of the two types
of misclassification errors, we can determine an optimal
cutoff (corresponding to a point on the ROC curve) that
minimizes the expected misclassification cost.

We propose a method for tuning an expert system by
determining the optimal cutoff for cost-sensitive problems,
such as credit evaluation. We have developed an algorithm
for tuning an expert system for optimal performance (see
Algorithm 1). Given an expert system, a sample of n solved
cases, a cost ratio between the two types of errors, and
the prior probabilities of the two classes, the algorithm
applies the expert system to classify the cases in the sample,
estimates the expected misclassification cost under each
possible cutoff, and finds the cutoff that results in the lowest
expected misclassification cost.

The procedure starts with a loop that goes through all the
n cases in the given sample (S[i], i = 1, 2, ...,n), applying the
expert system to classify each case, getting the CF value for

each case (stored in S[i].CF), and counting n1, the number
of positive cases (bad loans) and n0, the number of negative
cases (good loans). The cases are then sorted based on the
CF values in ascending order. Another loop is then used to
go through all the cases and find the best cutoff. During each
iteration, the cutoff is assumed to be the average of the CF
values of two neighboring cases (stored in the variables τ1

and τ2). For the first iteration, the cutoff is assumed to be
the minimum possible CF value, −1. For the last iteration,
the cutoff is assumed to be the maximum possible CF value,
1. The number of false positive errors, n10, and the number
of false negative errors, n01, are initially set to n0 and 0,
respectively, assuming that the cutoff is −1 and all cases are
classified as positive. The two numbers are then updated at
each iteration according to the actual outcome of the case
under consideration. The expected misclassification cost is
estimated using the previously defined formula and stored
in the variable Ĉ. The minimum expected misclassification
cost found so far is maintained in the variable C∗. The CF
values of the two neighboring cases that give the best cutoff
so far are stored in the variables τ∗1 and τ∗2 . The procedure
finally returns the average of τ∗1 and τ∗2 as the tuned cutoff for
CF.

The time complexity for classifying the n cases in the
sample using the expert system (i.e., the first loop) is O(n).
The time complexity for scanning through the n+1 possible
cutoffs (i.e., the second loop) is also O(n). The overall time
complexity of the algorithm is therefore dominated by that
of sorting the n cases according to their CF values, for which
sorting algorithms as efficient as O(n logn) exist.

7. Empirical Evaluation

We empirically compared the performance (i.e., expected
misclassification cost) of the expert system tuned using the
proposed method and that of the original expert system,
which uses the default cutoff of 0 for making classification
decisions. The problem domain is credit evaluation, and
the specific problem addressed is auto loan decisions. The
sample used for tuning the expert system is a balanced
sample, consisting of 110 positive cases (bad loans) and 110
negative cases (good loans). We varied the cost ratio r from
1 to 25 in steps of 1 and the prior probability p from 0.05 to
0.5 in steps of 0.05. We ran the proposed algorithm for each
combination of r and p. Note that our performance measure
is invariant with regard to different settings of p and r as long
as the weight ratio between the two classes, r p/(1− p), holds
constant. Our choices of r and p cover a reasonably wide
range of potential weight ratios (from 1 : 19 to 25 : 1).

Since the performance measure (i.e., expected misclas-
sification cost) derived based on the sample for tuning
the expert system can be overly optimistic, we used 10-
fold stratified cross-validation [33], a widely recommended
performance estimation method, to estimate the perfor-
mance of the tuned expert system. A stratified n-fold cross-
validation randomly divides (with stratification) a sample
into n subsets, called folds, and repeatedly selects each fold
for testing while the rest of the sample is used for tuning.
The average testing performance over the n runs is used as
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Expert System Tuning ( f , S, r, p)
Input:

f : An expert system. Given the input vector of a problem case, f suggests a CF value. By
default, the expert system makes a positive classification decision if the CF is positive and a
negative classification decision, otherwise.
S: A sample of n solved cases S[i](i = 1, 2, . . . ,n), each of which is a pair 〈x, y〉, where
x = 〈x1, x2, . . . , xm〉 ∈ X and y ∈ Y . In addition, let S[i] · CF denote the CF value suggested
by the expert system for the case S[i].

r: Cost ratio. r = C01

C10
.

p: Prior probability of the positive class.
Output: A tuned cutoff for the CF value.
BEGIN

n1:= n0:= 0.
FOR i := 1 TO n,

Classify S[i] using the expert system, that is, S[i].CF := f (S[i].x).
IF S[i] · y = 1, THEN

n1:= n1 + 1.
ELSE

n0:= n0 + 1.
Sort the cases in S on the CF value in ascending order.
C∗:=∝.
FOR i := 0 TO n,

IF i = 0, THEN
τ1:= τ2:= −1.

ELSE IF i < n, THEN
τ1:= S[i] · CF.
τ2:= S[i + 1] · CF.

ELSE
τ1:= τ2:= 1.

IF i = 0, THEN
n10:= n0; n01:= 0;

ELSE IF S[i] · y = 1, THEN
n01:= n01 + 1.

ELSE
n10:= n10– 1.

Assuming the cutoff of (τ1 + τ2)/2, compute the expected misclassification cost as

Ĉ = r p

(1− p)
n 01

n 1
+
n10

n0
.

IF Ĉ < C∗, THEN
C∗:= Ĉ; τ∗1 := τ1; τ∗2 := τ2.

RETURN (τ∗1 + τ∗2 )/2.
END.

Algorithm 1: Expert system tuning algorithm.

an estimate of the performance of the tuned expert system.
In addition, to get a more reliable estimate, we performed 10-
fold stratified cross-validation 20 times and took the average
over the 20 times as the final estimate.

Table 2 presents the confusion matrix generated by the
expert system with the default CF cutoff of 0 based on
the sample. Figure 7 shows the ROC curve generated by
the expert system based on the sample. Given a particular
combination of r and p, the proposed method identifies the
point on the curve that results in the minimum expected
misclassification cost.

Figure 8 contrasts the expected misclassification cost
of the turned expert system with that of the original

Table 2: Confusion matrix for the expert system.

Predicted class

1 0 Sum

Actual Class
1 81 29 110

0 30 80 110

220

untuned expert system. Since the original expert system
maintains the default cutoff of 0 for CF, its confusion matrix
remains the same and the expected misclassification cost
is simply a linear function of the weight ratio. When the
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weight ratio is close to 1 : 1, in the range of 1 : 3 to 3 : 1
(Figure 8(b)), tuning is not productive. However, when
the weight ratio is far from 1 : 1, below 1 : 3, or over 3 : 1
(Figures 8(a) and 8(c)), the performance of the tuned system
clearly dominates the performance of the original system;
the expected misclassification cost of the tuned system is
consistently lower than that of the original system. Paired
t-tests and two nonparametric tests—Wilcoxon and sign
tests—show that the tuned system yields significantly lower
costs than the original system (P < .001). The farther the
weight ratio is from 1 : 1, the greater is the influence of tuning
on performance.

We also compared the optimal cutoff found on the tuning
folds and the optimal cutoff found on the testing folds during
the cross-validation. Figure 9 shows a scatter diagram of the
cutoff values. The tuning cutoff and the testing cutoff are
highly correlated (r2 = 0.989), with a coefficient close to 1
(tuning cutoff = 1.165× testing cutoff− 0.048), indicating
that the cutoff found on the tuning folds is generalizable to
the testing folds, thus demonstrating the robustness of the
tuning method.

8. Discussion of Results

The results of the study strongly suggest that the auto
loan expert system could be effectively tuned for optimal
performance by applying the cross-validation technique
for data mining. The optimal cutoffs determined by the
proposed algorithm are based on data usually reserved for
training a data mining model. Those cutoffs are then applied
to an independent test set that was not used for determining
the cutoffs. Therefore, the expected misclassification cost
measure used in the study is an unbiased estimate of expert
system performance.

We used a default cutoff of 0 for expert system decisions.
Because the certainty of a conclusion in the −.2 ≤ CF ≤ .2
region is rather low—that is, there is very little support for or
against the hypothesis—this CF space has been categorized
as the “not known” region [17, 30]. Out of the 220 loan
cases on which the expert system was applied, only for two
did the final CF of the conclusion fall in that range. The
overall results of the study would have therefore remained
largely the same even if we had ignored the “not known”
region in our analysis. Changing the cutoff, say from 0 to
−.2, may have worked better for a specific weight ratio, but
in general the expert system would still generate suboptimal
performance results because the expected misclassification
cost is a linear function of the weight ratio. In contrast,
the expected misclassification cost for the tuned system
remains almost flat as the weight ratio increases, thereby
underscoring the efficacy of our approach.

The validation technique that we employed was applied
to cases with known outcomes, unlike prior work in
validation which has mostly focused on validation by experts.
While expert validation is a good idea, it is not possible for
a human expert to vouch for the accuracy of a conclusion
derived by the expert system. The fact that there is a good fit
between the cutoffs derived using the training data and the
test data suggest that our approach is generalizable to unseen
cases.

Uncertainties associated with expert system conclusions
were used to minimize misclassification costs. We used a
data mining validation technique for tuning the system,
by taking for granted the validity of the uncertainty of
a hypothesis derived by the system. Strictly speaking, our
approach, therefore, is aimed at validating the expert system
with respect to misclassification cost. Because tuning is done
post hoc, it does not affect any rules in the knowledge base,
so there is no need to explicitly update the original expert
system.

9. Conclusion

In this study, we have presented an empirical approach for
tuning an expert system for making cost-sensitive decisions.
The novel contribution of our work is in applying and
validating a performance evaluation approach developed
for data mining to tune expert systems for optimal cost
performance. An important implication of the study is that
although the empirical approach has been validated against
an expert system, it could easily be extended to optimize
any intelligent or knowledge system that generates uncertain
conclusions. With the business intelligence (BI) market
booming, we foresee the utility of the proposed approach for
a host of BI applications.

Our study opens up several avenues for future research.
First, the proposed tuning method could be extended to
tune expert systems that solve multiple-class problems. For
a p-class (p > 2) classification problem, p – 1 cutoffs
corresponding to the first p − 1 classes need to be tuned
(the cutoff for the last class is determined by the cutoffs of
the other p − 1 classes). A naı̈ve approach would be to scan
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Figure 8: Expected Misclassification costs of original and tuned expert systems.

through all permutations of the potential cutoffs of the p – 1
classes, resulting in a time complexity of O(np−1), where n is
the number of tuning cases. When p is large, more efficient
search algorithms such as hill-climbing, genetic algorithm,
tabu search, and simulated annealing can be used.

Second, currently the proposed algorithm uses expected
misclassification cost as a performance measure. This mea-
sure uses fixed costs for the different types of errors (false

positive and false negative). However, in many applica-
tions, costs/benefits are actually different for different cases,
depending on the actual outcomes. The current algorithm
can be extended to evaluate a performance measure that cap-
tures such case-dependent, variable cost/benefit decisions.

Third, we focused on a classification task in this study,
but future studies could examine if the results extend to
regression or value prediction tasks, such as sales forecasting.
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Finally, the proposed method can be extended to problems
with multiple dependent variables. In addition, the multiple
dependent variables may be a mixture of both categorical
variables and continuous variables.
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