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This paper addresses the problem of stability analysis of systems with delayed time-varying perturbations. Some sufficient
conditions for a class of linear time-varying systems with nonlinear delayed perturbations are derived by using an improved
Lyapunov-Krasovskii functional.Theuniformglobal asymptotic stability of the solutions is obtained in terms of convergence toward
a neighborhood of the origin.

1. Introduction

Theproblemof robust stability analysis of linear time-varying
systems subject to time-varying perturbations has attracted
the attention of many researchers. Explicit bounds for the
structured time-varying perturbations have been derived [1–
6] where the stability problem of linear systems subject to
delayed time-varying perturbations has been studied, while
only few papers [7–11] give stability conditions for linear
time-varying delay systems among those [10] dealing with
the exponential stability of perturbed systems. In [5], a new
sufficient delay dependent exponential stability for a class of
linear time-varying systemswith nonlinear delayed perturba-
tions is obtained based on a Lyapunov-Krasovskii functional.
Time delay systems can include mixed neutral, discrete (or
point) delays and distributed delays including Volterra-type
distributed dynamics [12, 13]. Also, delayed dynamics often
appears in real-life problems like, for instance, epidemic
propagation models [14, 15], since they affect the illness
propagation via the incubation process in the studied pop-
ulation and the vaccination period. Delays are also useful to
describe single-species population evolution models [16] and
are related to certain diffusion and competition predator-prey

models [17]. Conditions to preserve the asymptotic stability
compared to a delay-free nominal model description have
been widely studied in the literature including the case of
presence of possibly delayed perturbation dynamics. See, for
instance, [1–5, 7, 8, 11, 12, 18–22] and references therein. The
main novelty of this paper relies on the fact that the proposed
approach for stability analysis allows for the computation
of the bounds which characterize the exponential rate of
convergence of the solution towards a closed ball centered
at the origin, by extending the complexity of the system by
considering at the same time time-varying dynamics with
time-varying time differentiable in the delays in the nominal
part, by considering nonnecessarily zero lower-bounds for
the delays and by considering more general conditions than
just to be Lipschitz for the delayed, in general, nonlinear
dynamics. Note, for instance, that the nominal part of the
system has no delays in [5]; the lower-bound of the delays
of the perturbations is assumed to be zero while those per-
turbations are assumed to be Lipschitz in the state-variables.
In this paper, the nominal part is time-varying with time-
varying delays, the lower-bounds of the delays can exceed
zero, and the perturbations norms incorporate a time-varying
upper-bound apart from the Lipschiptz type one. In [9]
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a global-null controllability is required while the asymptotic
stability is not guaranteed to be of exponential type. In the
same way, the asymptotic stability is not guaranteed to be
exponential in [11]. Another novelty is that the delays are
time-varying time-differentiable and they are not required
to be known. Only lower and upper-bound of the delay
functions and their time-derivatives are required for stability
analysis. We will study a class of nonlinear system such that
the nonlinearity is bounded by some integrable functions
which are bounded, where the origin is not necessarily an
equilibrium point. We deal with the practical stability of the
origin (see [23]). The asymptotic stability is more important
than stability, also the desired system may be unstable and
yet the system may oscillate sufficiently near this state that
its performance is acceptable; thus the notion of practical
stability is more suitable in several situations than Lyapunov
stability. In this case all state trajectories are bounded and
approach a sufficiently small neighborhood of the origin. One
also desires that the state approaches the origin (or some suffi-
ciently small neighborhood of it) in a sufficiently fast manner.
This notion of practical stability was introduced by [24] for
nonlinear time-varying systems and studied for differential
equations with delays by [25] (see also the references therein).
Moreover, the authors in [26, 27] constructed stabilizing
controllers to obtain global convergence of solutions toward
a small ball for some classes of uncertain control systems.
In this paper some sufficient conditions are given to obtain
the exponential uniform stability of the solutions toward a
neighborhood of the origin based on a suitable Lyapunov-
Krasovskii functional. Two illustrative examples are given
to demonstrate the validity of the main result, where we
establish a table of comparison with other results.

2. Preliminaries

We start by introducing some notations and definitions that
will be employed throughout the paper.

R+ denotes the set of all nonnegative real numbers;
R𝑛 denotes the 𝑛-dimensional Euclidean space; ‖𝑥‖
denotes the Euclidean vector norm of 𝑥 ∈ R𝑛; 𝑥𝑇𝑦
denotes the scalar product of two vectors 𝑥, 𝑦;

R𝑛×𝑟 denotes the space of all (𝑛 × 𝑟)-matrices;

𝐴
𝑇 denotes the transpose of the matrix 𝐴; 𝐴 is

symmetric if 𝐴 = 𝐴
𝑇;

𝐼 denotes the identity matrix;

𝜆(𝐴) denotes the set of eigenvalues of 𝐴; 𝜆max(𝐴) =
max{R𝑒(𝜆) : 𝜆 ∈ 𝜆(𝐴)};

𝜇(𝐴(𝑡)) denotes the matrix measure of the matrix 𝐴
defined by

𝜇 (𝐴 (𝑡)) =

1

2

𝜆max (𝐴 (𝑡) + 𝐴
𝑇

(𝑡)) . (1)

𝐿
2
([−𝜏
𝑑
, 0],R𝑛) denotes the Hilbert space of all 𝐿

2
-

integrable andR𝑛-valued functions on [0, 𝑡];

𝐶([−𝜏
𝑑
, 0],R𝑛) denotes the Banach space of all R𝑛-

valued continuous functions mapping [−𝜏
𝑑
, 0] into

R𝑛 with 𝜏
𝑑
> 0:

𝑥
𝑡
:= {𝑥 (𝑡 + 𝑠) , 𝑠 ∈ [−𝜏

𝑑
, 0]} ,





𝑥
𝑡





= sup
𝑠∈[−𝜏𝑑 ,0]

‖𝑥 (𝑡 + 𝑠)‖ .

(2)

𝐵(0, 𝑟) = {𝑥 ∈ R𝑛/‖𝑥‖ ≤ 𝑟}, with 𝑟 > 0, denotes the
closed ball of center 0 and radius 𝑟.

Consider a linear time-varying system with nonlinear
delayed perturbations of the following form:

�̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑓
0
(𝑡, 𝑥 (𝑡)) +

𝑚

∑

𝑖=1

𝐴
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

+

𝑚

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏
𝑑
, 0] ,

(3)

with 𝜏
𝑑
= max

1≤𝑖≤𝑚
(𝜏
𝑖𝐻
), where 𝑥(𝑡) ∈ R𝑛 is the vector,

where𝐴(𝑡), 𝐴
𝑖
(𝑡) ∈ R(𝑛,𝑛), 𝑖 = 1, . . . , 𝑚 arematrices functions

continuous and bounded in 𝑡 ≥ 0, 𝜙(𝑡) ∈ 𝐶([−𝜏
𝑑
, 0],R𝑛)

is the function of initial conditions with the norm ‖𝜙‖ =

sup
𝑠∈[−𝜏𝑑 ,0]

‖𝜙(𝑠)‖; 𝜏
𝑖
(𝑡) (𝑖 = 1, . . . , 𝑚) is a given time-

differentiable time-varying delay function satisfying

𝜏
𝑖𝐿
< 𝜏
𝑖
(𝑡) ≤ 𝜏

𝑖𝐻
,

̇𝜏
𝑖
(𝑡) ≤ 𝜇 < 1, (𝑖 = 1, . . . , 𝑚) , ∀𝑡 ≥ 0,

(4)

where 𝜏
𝑖𝐿
, 𝜏
𝑖𝐻
(0 ≤ 𝜏

𝑖𝐿
< 𝜏
𝑖𝐻
), 𝜏
𝑖𝐻𝐿

= 𝜏
𝑖𝐻
− 𝜏
𝑖𝐿
.

As a matter of fact, the case that the delay derivative is
larger than or equal to 1 is universal. For example, in network
control systems, the delay 𝜏

𝑖
(𝑡) denotes 𝑡 − 𝑗

𝑘
, where 𝑗

𝑘
(𝑘 =

1, 2, . . .) are the sampling instants. Thus, this kind of delay
satisfies ̇𝜏

𝑖
(𝑡) = 1 almost for all 𝑡 ≥ 0 (see [12]). For the case

of 𝜇 ≥ 1, if choosing a positive scalar 0 < ] < 𝜇
−1, then it

follows that

(]𝜏
𝑖
(𝑡))


= ] ̇𝜏
𝑖
(𝑡) ≤ ]𝜇 < 1 (5)

and the nonlinear perturbation 𝑓
𝑖
(⋅, ⋅) (𝑖 = 0, . . . , 𝑚) satisfies





𝑓
𝑖
(𝑡, 𝑦)





≤ 𝛿
𝑖1





𝑦




+ 𝛿
𝑖2
(𝑡) , ∀𝑡 ≥ 0, ∀𝑦 ∈ R

𝑛

, (6)

where 𝛿
𝑖1
> 0 and 𝛿

𝑖2
(⋅) are nonnegative continuous bounded

functions for 𝑖 = 0, 1, . . . , 𝑚.

Definition 1. The system (3) is said to be globally uniformly
exponentially practically stable toward a ball 𝐵(0, 𝑟) of radius
𝑟which is a neighborhood of the origin, if there exist positive
numbers 𝛼, 𝛾, and 𝑟, such that every solution 𝑥(𝑡, 𝜙) of the
system satisfies





𝑥 (𝑡, 𝜙)





≤ 𝛾𝑒
−𝛼(𝑡−𝑡0)





𝜙




+ 𝑟, ∀𝑡 ≥ 𝑡

0
≥ 0. (7)

The following technical proposition is needed for the
proof of the main result.
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Proposition 2. Let 𝑄, 𝑆 be symmetric matrices of appropriate
dimensions and 𝑆 > 0. Then

2𝑥
𝑇

𝑄𝑦 − 𝑦
𝑇

𝑆𝑦 ≤ 𝑥
𝑇

𝑄𝑆
−1

𝑄
𝑇

𝑥, ∀ (𝑥, 𝑦) ∈ R
𝑛

×R
𝑛

. (8)

3. Main Result

Theorem3. Suppose that there exist some positive constants 𝛼,
𝛽, ], 𝜅

1
, 𝜅
21𝑖
, 𝜅
22𝑖
, 𝜅
23𝑖
, 𝜅
24𝑖
, 𝜅
31𝑖
, 𝜅
32𝑖
, and a symmetric bounded

positive semidefinite differentiable matrix function 𝑃(𝑡) for all
𝑡 ≥ 0 satisfying the following Lyapunov differential matrix
equation (see [18]):

�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴 (𝑡) + 2𝛼𝑃 (𝑡)

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡) + 𝜖𝐼 = 0

(9)

with

𝜖 = 2 (𝑝 + 𝛽) 𝛿
01
+ 2𝛼𝛽 +

𝑚

∑

𝑖=1

𝜅
2𝑖
+

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

+ 𝜅
1
,

𝜖 > 0,

𝜅
2𝑖
= 𝜅
21𝑖
+ 𝜅
22𝑖
+ 𝜅
23𝑖
+ 𝜅
24𝑖
,

𝜅
3𝑖
= 𝜅
31𝑖
𝜏
2

𝑖𝐻
+ 𝜅
32𝑖
𝜏
2

𝑖𝐻𝐿
,

𝑃
𝛽
(𝑡) = 𝑃 (𝑡) + 𝛽𝐼,

𝑝 = sup
𝑡∈R+

‖𝑃 (𝑡)‖ ,

(10)

where

𝜂 = 𝜅
1
− 2𝛽𝜇 (𝐴)

−

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

> 0,

0 < 𝑞
𝑖
< 𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇) , 𝑖 = 1, . . . , 𝑚,

0 < 𝜇 < ]−1,

(11)

with 𝜇(𝐴) = sup
𝑡∈R+𝜇(𝐴(𝑡)) and 𝛿1 = max

1≤𝑖≤𝑚
𝛿
𝑖1
.

If

𝛿
1
<

1

(𝑝 + 𝛽)

⋅ (

𝑚

∑

𝑖=1

(𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇) − 𝑞
𝑖
) (𝜅
1
− 2𝛽𝜇 (𝐴)))

1/2

(12)

with 𝜅
1
− 2𝛽𝜇(𝐴) > 0 and 𝛿

2
(𝑡) = ∑

𝑚

𝑖=0
𝛿
𝑖2
(𝑡), then the system

(3) is globally uniformly exponentially practically stable toward
a certain ball 𝐵(0, 𝑟).

Moreover, the solution 𝑥(𝑡, 𝜙) satisfies an estimation as in
(7), with size

𝛾 = ((𝑝 + 𝛽 +

𝑚

∑

𝑖=1

(𝜅
21𝑖
𝜏
𝑖𝐿
+ (𝜅
22𝑖
+ 𝜅
23𝑖
+ 𝜅
24𝑖
]) 𝜏
𝑖𝐻

+𝜅
31𝑖
𝑐
𝑖𝐻
𝜏
3

𝑖𝐻
+ 𝜅
32𝑖
𝜏
𝑖𝐻𝐿

𝑑
𝑖𝐻𝐿

))

⋅ (𝛽)
−1

)

1/2

(13)

with 𝑑
𝑖𝐻𝐿

= (𝑐
𝑖𝐻
𝜏
2

𝑖𝐻
− 𝑐
𝑖𝐿
𝜏
2

𝑖𝐿
), 𝑐
𝑖𝐻

= (2𝛼𝜏
𝑖𝐻
𝑒
2𝛼𝜏𝑖𝐻

+ 𝑒
−2𝛼𝜏𝑖𝐻

−

1)/(2𝛼𝜏
𝑖𝐻
)
2, 𝑐
𝑖𝐿
= (2𝛼𝜏

𝑖𝐿
𝑒
2𝛼𝜏𝑖𝐻

+ 𝑒
−2𝛼𝜏𝑖𝐿

− 1)/(2𝛼𝜏
𝑖𝐿
)
2, and

(i)

𝑟 = 𝑟
1
= √

𝑀
1

2𝛼𝛽

(14)

if 𝛿
2
is bounded by a scalar positive 𝑀 for all 𝑡 ≥ 0,

with

𝑀
1
=

(𝑝 + 𝛽)
2

𝑀
2

𝜂

(15)

(ii)

𝑟 = 𝑟
2
= √

𝐼
1/2

2𝛽√𝛼

(16)

if ∫+∞
0

𝛿
4

2
(𝑠)𝑑𝑠 < +∞, with

𝐼 := ∫

+∞

0

𝑟
2

(𝑠) 𝑑𝑠, 𝑟 (𝑡) =

(𝑝 + 𝛽)
2

𝜂

𝛿
2

2
(𝑡) . (17)

Proof. Consider the following Lyapunov-Karovskii func-
tional:

𝑉 (𝑡, 𝑥
𝑡
) = 𝑉
1
(⋅) + 𝑉

2
(⋅) + 𝑉

3
(⋅) , (18)
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where

𝑉
1
(𝑡, 𝑥
𝑡
) = 𝑥
𝑇

𝑃 (𝑡) 𝑥 (𝑡) + 𝛽 ‖𝑥 (𝑡)‖
2

,

𝑉
2
(𝑡, 𝑥
𝑡
) =

𝑚

∑

𝑖=1

𝜅
21𝑖
∫

𝑡

𝑡−𝜏𝑖𝐿

𝑒
2𝛼(𝑠−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
22𝑖
∫

𝑡

𝑡−𝜏𝑖𝐻

𝑒
2𝛼(𝑠−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
23𝑖
∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑒
2𝛼(𝑠−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
24𝑖
∫

𝑡

𝑡−]𝜏𝑖(𝑡)
𝑒
2𝛼(𝑠−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠,

𝑉
3
(𝑡, 𝑥
𝑡
)

=

𝑚

∑

𝑖=1

𝜅
31𝑖
𝜏
𝑖𝐻
∫

0

−𝜏𝑖𝐻

∫

𝑡

𝑡+𝑡1−𝜏𝑖(𝑡+𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1

+

𝑚

∑

𝑖=1

𝜅
32𝑖
𝜏
𝑖𝐻𝐿

∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻

∫

𝑡

𝑡+𝑡1−𝜏𝑖(𝑡+𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻−𝑡)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1
,

(19)

with 𝛼 > 0.
Let us consider the time derivative of 𝑉

1
(𝑡, 𝑥
𝑡
),

�̇�
1
(𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) �̇� (𝑡) 𝑥 (𝑡) + �̇�
𝑇

(𝑡) 𝑃
𝛽
(𝑡) 𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑃
𝛽
(𝑡) �̇� (𝑡) ,

(20)

with 𝑃
𝛽
(𝑡) = 𝑃(𝑡) + 𝛽𝐼.

Thus,

�̇�
1
(𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃
𝛽
(𝑡) + 𝑃

𝛽
(𝑡) 𝐴 (𝑡)) 𝑥 (𝑡)

+ 2𝑃
𝛽
(𝑡) (𝑓

0
(𝑡, 𝑥 (𝑡)) +

𝑚

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑥 (𝑡 − 𝜏

𝑖
))) 𝑥 (𝑡)

+ 2

𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) .

(21)

From Proposition 2, we have

2

𝑚

∑

𝑖=1

𝑥
𝑇

(𝑡) 𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) 𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

≤

𝑚

∑

𝑖=1

(

1

𝑞
𝑖

𝑥
𝑇

(𝑡) 𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡) 𝑥 (𝑡)

+ 𝑞
𝑖





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

) .

(22)

This implies that

�̇�
1
(𝑡, 𝑥
𝑡
)

≤ 𝑥
𝑇

(𝑡) (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃
𝛽
(𝑡) + 𝑃

𝛽
(𝑡) 𝐴 (𝑡)) 𝑥 (𝑡)

+ 2( sup
𝑡∈R+

‖𝑃 (𝑡)‖ + 𝛽)

⋅ (𝑓
0
(𝑡, 𝑥 (𝑡)) +

𝑚

∑

𝑖=1





𝑓
𝑖
(𝑡, 𝑥 (𝑡 − 𝜏

𝑖
))




) ⋅ ‖𝑥 (𝑡)‖

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑥
𝑇

(𝑡) 𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡) 𝑥 (𝑡)

+

𝑚

∑

𝑖=1

𝑞
𝑖





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

.

(23)

It follows that

�̇�
1
(𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉

1
(𝑡, 𝑥
𝑡
) + 𝑥
𝑇

(𝑡)

⋅ (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃
𝛽
(𝑡) + 𝑃

𝛽
(𝑡) 𝐴 (𝑡)

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡)

+2𝛼𝑃 (𝑡) + 2 ((𝑝 + 𝛽) 𝛿
01
+ 𝛼𝛽) 𝐼)𝑥 (𝑡)

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ‖𝑥 (𝑡)‖ + 2 (𝑝 + 𝛽)

⋅

𝑚

∑

𝑖=1

𝛿
1
(𝑡)





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))





× ‖𝑥 (𝑡)‖

+

𝑚

∑

𝑖=1

𝑞
𝑖





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

,

(24)

with

𝑝 = sup
𝑡∈R+

‖𝑃 (𝑡)‖ ,

𝛿
1
= max
1≤𝑖≤𝑚

𝛿
𝑖1
, 𝛿

2
(𝑡) =

𝑚

∑

𝑖=0

𝛿
𝑖2
(𝑡) .

(25)
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Next, the time derivative of 𝑉
2
(𝑡, 𝑥
𝑡
) is given by

�̇�
2
(𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉

2
(𝑡, 𝑥
𝑡
) +

𝑚

∑

𝑖=1

𝜅
2𝑖
‖𝑥 (𝑡)‖

2

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇)




𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

,

(26)

with 𝜅
2𝑖
= 𝜅
21𝑖
+ 𝜅
22𝑖
+ 𝜅
23𝑖
+ 𝜅
24𝑖
.

The time derivative of 𝑉
3
(𝑡, 𝑥
𝑡
) is given by

�̇�
3
(𝑡, 𝑥
𝑡
)

= −2𝛼𝑉
3
(𝑡, 𝑥
𝑡
)

+

𝑚

∑

𝑖=1

𝜅
31𝑖
𝜏
𝑖𝐻
(𝜏
𝑖𝐻
𝑒
2𝛼𝜏𝑖𝐻

‖𝑥(𝑡)‖
2

+ ∫

0

−𝜏𝑖𝐻

(−�̇� (𝑡 + 𝑠) 𝑒
2𝛼(𝑠−𝜏𝑖(𝑡+𝑠)+𝜏𝑖𝐻)

⋅




𝑥 (𝑡 + 𝑠 − 𝜏

𝑖
(𝑡 + 𝑠))






2

) 𝑑𝑠)

+

𝑚

∑

𝑖=1

𝜅
32𝑖
𝜏
𝑖𝐻𝐿

(𝜏
𝑖𝐻𝐿

𝑒
2𝛼𝜏𝑖𝐻

‖𝑥 (𝑡)‖
2

+ ∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻

(−�̇� (𝑡 + 𝑠) 𝑒
2𝛼(𝑠−𝜏𝑖(𝑡+𝑠)+𝜏𝑖𝐻)

⋅




𝑥 (𝑡 + 𝑠 − 𝜏

𝑖
(𝑡 + 𝑠))






2

) 𝑑𝑠) .

(27)

By using the following differentiation rule (see [5]), one
obtains

𝑑

𝑑𝑡

(∫

0

−𝜏𝑖

∫

𝑡

𝑢(𝑡+𝑡1)

𝜓 (𝑠) 𝑑𝑠 𝑑𝑡
1
)

= 𝜏
𝑖
𝜓 (𝑡) − ∫

0

−𝜏𝑖

�̇� (𝑡 + 𝑠) 𝜓 (𝑢 (𝑡 + 𝑠)) 𝑑𝑠,

(28)

with

𝑢 (𝑡 + 𝑠) = 𝑡 + 𝑠 − 𝜏
𝑖
(𝑡 + 𝑠) ,

�̇� (𝑡 + 𝑠) = 1 − ̇𝜏
𝑖
(𝑡 + 𝑠) .

(29)

It follows that

−�̇� (𝑡 + 𝑠) ≤ 𝜇 − 1. (30)

So,

�̇�
3
(𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉

3
(𝑡, 𝑥
𝑡
)

+ (

𝑚

∑

𝑖=1

𝜅
31𝑖
𝜏
2

𝑖𝐻
+

𝑚

∑

𝑖=1

𝜅
32𝑖
𝜏
2

𝑖𝐻𝐿
)𝑒
2𝛼𝜏𝑖𝐻

‖𝑥(𝑡)‖
2

−

𝑚

∑

𝑖=1

𝜅
31𝑖
𝜏
𝑖𝐻
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇)

⋅ ∫

0

−𝜏𝑖𝐻





𝑥 (𝑡 + 𝑠 − 𝜏

𝑖
(𝑡 + 𝑠))






2

𝑑𝑠

−

𝑚

∑

𝑖=1

𝜅
32𝑖
𝜏
𝑖𝐻𝐿

𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇)

⋅ ∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻





𝑥(𝑡 + 𝑠 − 𝜏

𝑖
(𝑡 + 𝑠))






2

𝑑𝑠.

(31)

Since the last integral term is nonnegative, we obtain the
following estimation on �̇�

3
(𝑡, 𝑥
𝑡
):

�̇�
3
(𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉

3
(𝑡, 𝑥
𝑡
) +

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

‖𝑥(𝑡)‖
2

, (32)

with 𝜅
3𝑖
= 𝜅
31𝑖
𝜏
2

𝑖𝐻
+ 𝜅
32𝑖
𝜏
2

𝑖𝐻𝐿
.

Therefore, from (24)–(26)–(32), it follows that

�̇� (𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉 (𝑡, 𝑥

𝑡
) + 𝑉
0
(𝑡, 𝑥
𝑡
) , (33)

where

𝑉
0
(𝑡, 𝑥
𝑡
)

= 𝑥
𝑇

(𝑡) (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃
𝛽
(𝑡) + 𝑃

𝛽
(𝑡) 𝐴 (𝑡)

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡)

+ 2𝛼𝑃 (𝑡) + 2 ((𝑝 + 𝛽) 𝛿
01
+ 𝛼𝛽) 𝐼) 𝑥 (𝑡)

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ‖𝑥 (𝑡)‖ + 2 (𝑝 + 𝛽) 𝛿

1

⋅

𝑚

∑

𝑖=1





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))





× ‖𝑥 (𝑡)‖

+

𝑚

∑

𝑖=1

𝑞
𝑖





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

+

𝑚

∑

𝑖=1

𝜅
2𝑖
‖𝑥 (𝑡)‖

2
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−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇)




𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

+

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

‖𝑥(𝑡)‖
2

.

(34)

It follows that

𝑉
0
(𝑡, 𝑥
𝑡
)

≤ 𝑥
𝑇

(𝑡)

⋅ (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴 (𝑡) + 2𝛼𝑃 (𝑡)

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡)

+ (2 (𝑝 + 𝛽) 𝛿
01
+ 2𝛼𝛽 +

𝑚

∑

𝑖=1

𝜅
2𝑖

+

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

)𝐼)𝑥 (𝑡)

+ 𝛽𝑥
𝑇

(𝑡) (𝐴
𝑇

(𝑡) + 𝐴 (𝑡)) 𝑥 (𝑡)

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ‖𝑥 (𝑡)‖ + 2 (𝑝 + 𝛽) 𝛿

1

⋅

𝑚

∑

𝑖=1





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))





× ‖𝑥 (𝑡)‖

+

𝑚

∑

𝑖=1

𝑞
𝑖





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇)




𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

.

(35)

Now, using Proposition 2, we have
𝑚

∑

𝑖=1

(2 (𝑝 + 𝛽) 𝛿
1





𝑥 (𝑡 − 𝜏

𝑖
(𝑡))





⋅ ‖𝑥 (𝑡)‖

− (𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇) − 𝑞
𝑖
)




𝑥 (𝑡 − 𝜏

𝑖
(𝑡))






2

)

≤

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

‖𝑥 (𝑡)‖
2

,

(36)

with

0 < 𝑞
𝑖
< 𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻

(1 − 𝜇) , 𝑖 = 1, . . . , 𝑚. (37)

Hence, the above expression, in conjunction with (35), yields

𝑉
0
(𝑡, 𝑥
𝑡
) ≤ 𝑥
𝑇

(𝑡)

⋅ (�̇� (𝑡) + 𝐴
𝑇

(𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴 (𝑡) + 2𝛼𝑃 (𝑡)

+

𝑚

∑

𝑖=1

1

𝑞
𝑖

𝑃
𝛽
(𝑡) 𝐴
𝑖
(𝑡) ⋅ 𝐴

𝑇

𝑖
(𝑡) 𝑃
𝛽
(𝑡)

+ (2 (𝑝 + 𝛽) 𝛿
01
+ 2𝛼𝛽

+

𝑚

∑

𝑖=1

𝜅
2𝑖
+

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

+ 𝜅
1
)𝐼)𝑥 (𝑡)

− 𝜅
1
𝑥
𝑇

(𝑡) 𝑥 (𝑡) + 𝛽𝑥
𝑇

(𝑡) (𝐴
𝑇

(𝑡) + 𝐴 (𝑡)) 𝑥 (𝑡)

+

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

‖𝑥 (𝑡)‖
2

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ⋅ ‖𝑥 (𝑡)‖

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

.

(38)

Since 𝑃(𝑡) is a solution of (9) with

𝜖 = 2 (𝑝 + 𝛽) 𝛿
01
+ 2𝛼𝛽 +

𝑚

∑

𝑖=1

𝜅
2𝑖
+

𝑚

∑

𝑖=1

𝜅
3𝑖
𝑒
2𝛼𝜏𝑖𝐻

+ 𝜅
1
, (39)
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then

𝑉
0
(𝑡, 𝑥
𝑡
)

≤ −𝜅
1
𝑥
𝑇

(𝑡) 𝑥 (𝑡) + 𝛽𝑥
𝑇

(𝑡) (𝐴
𝑇

(𝑡) + 𝐴 (𝑡)) 𝑥 (𝑡)

+

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

‖𝑥 (𝑡)‖
2

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ⋅ ‖𝑥 (𝑡)‖

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

.

(40)

Note that we have

𝑥
𝑇

(𝑡) (𝐴
𝑇

(𝑡) + 𝐴 (𝑡)) 𝑥 (𝑡)

≤ 𝜆max (𝐴 (𝑡) + 𝐴
𝑇

(𝑡)) ‖𝑥 (𝑡)‖
2

≤ 2𝜇 (𝐴 (𝑡)) ‖𝑥 (𝑡)‖
2

≤ 2𝜇 (𝐴) ‖𝑥 (𝑡)‖
2

,

(41)

with 𝜇(𝐴) = sup
𝑡∈R+𝜇(𝐴(𝑡)).

Then, it follows that

𝑉
0
(𝑡, 𝑥
𝑡
)

≤ −(𝜅
1
− 2𝛽𝜇 (𝐴)

−

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

)‖𝑥 (𝑡)‖
2

+ 2 (𝑝 + 𝛽) 𝛿
2
(𝑡) ⋅ ‖𝑥 (𝑡)‖

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

.

(42)

Let

𝜂 = 𝜅
1
− 2𝛽𝜇 (𝐴) −

𝑚

∑

𝑖=1

(𝑝 + 𝛽)
2

𝛿
2

1

𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖

. (43)

One has

𝜂 > 0

⇒ 𝛿
1
<

√∑
𝑚

𝑖=1
(𝜅
23𝑖
𝑒
−2𝛼𝜏𝑖𝐻 (1 − 𝜇) − 𝑞

𝑖
) (𝜅
1
− 2𝛽𝜇 (𝐴))

(𝑝 + 𝛽)

,

𝜅
1
− 2𝛽𝜇 (𝐴) > 0.

(44)

Then,

𝑉
0
(𝑡, 𝑥
𝑡
) ≤ −𝜂 (‖𝑥 (𝑡)‖ − 𝜉 (𝑡))

2

+ 𝑟 (𝑡)

−

𝑚

∑

𝑖=1

𝜅
21𝑖
𝑒
−2𝛼𝜏𝑖𝐿





𝑥 (𝑡 − 𝜏

𝑖𝐿
)





2

−

𝑚

∑

𝑖=1

𝜅
22𝑖
𝑒
−2𝛼𝜏𝑖𝐻





𝑥 (𝑡 − 𝜏

𝑖𝐻
)





2

−

𝑚

∑

𝑖=1

𝜅
24𝑖
𝑒
−2𝛼]𝜏𝑖𝐻

(1 − ]𝜇) 

𝑥 (𝑡 − ]𝜏

𝑖
(𝑡))






2

(45)

with 𝜉(𝑡) = ((𝑝 + 𝛽)/𝜂)𝛿
2
(𝑡) and 𝑟(𝑡) = ((𝑝 + 𝛽)2/𝜂)𝛿2

2
(𝑡).

Taking condition (44) into account, we have

𝑉
0
(𝑡, 𝑥
𝑡
) ≤ 𝑟 (𝑡) . (46)

Therefore, from (33) and (46),

�̇� (𝑡, 𝑥
𝑡
) ≤ −2𝛼𝑉 (𝑡, 𝑥

𝑡
) + 𝑟 (𝑡) , ∀𝑡 ≥ 0 (47)

which gives

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝑉 (0, 𝑥

0
) 𝑒
−2𝛼𝑡

+ ∫

𝑡

0

𝑒
2𝛼(𝑠−𝑡)

𝑟 (𝑠) 𝑑𝑠, ∀𝑡 ≥ 0.

(48)

Now, if 𝛿
2
(𝑡) is bounded for all 𝑡 ≥ 0, then there exists𝑀 > 0

such that ‖𝛿
2
(𝑡)‖ ≤ 𝑀,∀𝑡 ≥ 0.Therefore 𝑟(𝑡)will be bounded,

so there exists 𝑀
1
> 0 such that 𝑟(𝑡) ≤ 𝑀

1
, ∀𝑡 ≥ 0, with

𝑀
1
= (𝑝 + 𝛽)

2

𝑀
2
/𝜂. So,

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝑉 (0, 𝑥

0
) 𝑒
−2𝛼𝑡

+

𝑀
1

2𝛼

(49)

and hence, using the fact that

𝛽 ‖𝑥 (𝑡)‖
2

≤ 𝑉 (𝑡, 𝑥
𝑡
) , 𝑡 ∈ R

+

, (50)





𝑥 (𝑡, 𝜙)





≤ √

𝑉 (0, 𝑥
0
)

𝛽

𝑒
−𝛼𝑡

+ 𝑟
1
, ∀𝑡 ≥ 0, (51)

with 𝑟
1
= √𝑀

1
/2𝛼𝛽. This implies that the solution converges

to the ball 𝐵(0, 𝑟
1
).
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Next, if 𝛿
2
satisfies

∫

+∞

0

𝛿
4

2
(𝑠) 𝑑𝑠 < +∞, (52)

then 𝐼 := ∫+∞
0

𝑟
2
(𝑠)𝑑𝑠 < +∞.

It follows that

𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝑉 (0, 𝑥

0
) 𝑒
−2𝛼𝑡

+

𝐼
1/2

2√𝛼

, ∀𝑡 ≥ 0. (53)

Hence, using (50), one gets





𝑥 (𝑡, 𝜙)





≤ √

𝑉 (0, 𝑥
0
)

𝛽

𝑒
−𝛼𝑡

+ 𝑟
2
, ∀𝑡 ≥ 0, (54)

with 𝑟
2
= √𝐼
1/2
/2𝛽√𝛼.

In this case, the solution converges to the ball 𝐵(0, 𝑟
2
).

Remark that, from (45), if we suppose that 𝛿
2
(𝑡) tends

to zero when 𝑡 goes to infinity, then 𝑟(𝑡) → 0 as 𝑡 →

+∞; hence the solution of (7) will converge uniformly
exponentially to zero when 𝑡 tends to infinity. Also, note that
we can estimate 𝑉(0, 𝑥

0
) as follows.

(1) Estimate 𝑉
1
(0, 𝑥
0
) as

𝑉
1
(0, 𝑥
0
) ≤ (𝑝 + 𝛽)





𝜙





2 (55)

(2) Estimate 𝑉
2
(0, 𝑥
0
) as

𝑉
2
(0, 𝑥
0
) =

𝑚

∑

𝑖=1

𝜅
21𝑖
∫

0

−𝜏𝑖𝐿

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
22𝑖
∫

0

−𝜏𝑖𝐻

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
23𝑖
∫

0

−𝜏𝑖(𝑡)

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

+

𝑚

∑

𝑖=1

𝜅
24𝑖
∫

0

−]𝜏𝑖(𝑡)
𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠.

(56)

(i) Considering ∫𝑡
𝑡−𝜏𝑖𝐿

𝑒
2𝛼(𝑠−𝑡)

‖𝑥(𝑠)‖
2
𝑑𝑠 ≥ 0,

∫

0

−𝜏𝑖𝐿

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

≤




𝜙





2

∫

0

−𝜏𝑖𝐿

𝑒
2𝛼𝑠

𝑑𝑠 =

1

2𝛼

(1 − 𝑒
−2𝛼𝜏𝑖𝐿

)




𝜙





2

≤ 𝜏
𝑖𝐿





𝜙





2

.

(57)

(ii) Considering ∫𝑡
𝑡−𝜏𝑖𝐻

𝑒
2𝛼(𝑠−𝑡)

‖𝑥(𝑠)‖
2
𝑑𝑠 ≥ 0,

∫

0

−𝜏𝑖𝐻

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

≤




𝜙





2

∫

0

−𝜏𝑖𝐻

𝑒
2𝛼𝑠

𝑑𝑠 =

1

2𝛼

(1 − 𝑒
−2𝛼𝜏𝑖𝐻

)




𝜙





2

≤ 𝜏
𝑖𝐻





𝜙





2

.

(58)

(iii) Considering ∫𝑡
𝑡−𝜏𝑖(𝑡)

𝑒
2𝛼(𝑠−𝑡)

‖𝑥(𝑠)‖
2
𝑑𝑠 ≥ 0,

∫

0

−𝜏𝑖(𝑡)

𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

≤




𝜙





2

∫

0

−𝜏𝑖(𝑡)

𝑒
2𝛼𝑠

𝑑𝑠 =

1

2𝛼

(1 − 𝑒
−2𝛼𝜏𝑖(𝑡)

)




𝜙





2

≤ 𝜏
𝑖𝐻





𝜙





2

.

(59)

(iv) Considering ∫𝑡
𝑡−]𝜏𝑖(𝑡)

𝑒
2𝛼(𝑠−𝑡)

‖𝑥(𝑠)‖
2
𝑑𝑠 ≥ 0,

∫

0

−]𝜏𝑖(𝑡)
𝑒
2𝛼𝑠

‖𝑥 (𝑠)‖
2

𝑑𝑠

≤




𝜙





2

∫

0

−]𝜏𝑖(𝑡)
𝑒
2𝛼𝑠

𝑑𝑠 =

1

2𝛼

(1 − 𝑒
−2𝛼]𝜏𝑖(𝑡)

)




𝜙





2

≤ ]𝜏
𝑖𝐻





𝜙





2

,

(60)

𝑉
2
(0, 𝑥
0
) ≤

𝑚

∑

𝑖=1

(𝜅
21𝑖
𝜏
𝑖𝐿
+ (𝜅
22𝑖
+ 𝜅
23𝑖
+ 𝜅
24𝑖
]) 𝜏
𝑖𝐻
)




𝜙





2

.

(61)

(3) Estimate 𝑉
3
(0, 𝑥
0
) as

𝑉
3
(0, 𝑥
0
)

=

𝑚

∑

𝑖=1

𝜅
31𝑖
𝜏
𝑖𝐻
∫

0

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖(𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1

+

𝑚

∑

𝑖=1

𝜅
32𝑖
𝜏
𝑖𝐻𝐿

∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖(𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1
.

(62)

The first member of 𝑉
3
(0, 𝑥
0
) is

𝜏
𝑖𝐻
∫

0

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖(𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1

≤




𝜙





2

𝜏
𝑖𝐻
∫

0

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖𝐻

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

𝑑𝑠 𝑑𝑡
1

≤

𝜏
𝑖𝐻

2𝛼

(𝜏
𝑖𝐻
𝑒
2𝛼𝜏𝑖𝐻

−

1

2𝛼

(1 − 𝑒
−2𝛼𝜏𝑖𝐻

))




𝜙





2

≤ 𝑐
𝑖𝐻
𝜏
3

𝑖𝐻





𝜙





2

.

(63)

with ((𝑥𝑒𝑥 + 𝑒−𝑥 − 1)/𝑥2 ≥ 1.5) 𝑐
𝑖𝐻
= ((2𝛼𝜏

𝑖𝐻
𝑒
2𝛼𝜏𝑖𝐻

+

𝑒
−2𝛼𝜏𝑖𝐻

− 1)/(2𝛼𝜏
𝑖𝐻
)
2

).
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The second member of 𝑉
3
(0, 𝑥
0
) is

𝜏
𝑖𝐻𝐿

∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖(𝑡1)

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

‖𝑥 (𝑠)‖
2

𝑑𝑠 𝑑𝑡
1

≤




𝜙





2

𝜏
𝑖𝐻𝐿

∫

−𝜏𝑖𝐿

−𝜏𝑖𝐻

∫

0

𝑡1−𝜏𝑖𝐻

𝑒
2𝛼(𝑠+𝜏𝑖𝐻)

𝑑𝑠 𝑑𝑡
1

≤

𝜏
𝑖𝐻𝐿

2𝛼

(𝜏
𝑖𝐻𝐿

𝑒
2𝛼𝜏𝑖𝐻

−

1

2𝛼

[𝑒
−2𝛼𝜏𝑖𝐿

− 𝑒
−2𝛼𝜏𝑖𝐻

])




𝜙





2

≤

𝜏
𝑖𝐻𝐿

(2𝛼)
2
(2𝛼𝜏
𝑖𝐻𝐿

𝑒
2𝛼𝜏𝑖𝐻

+ 𝑒
−2𝛼𝜏𝑖𝐻

− 𝑒
−2𝛼𝜏𝑖𝐿

)




𝜙





2

≤ 𝜏
𝑖𝐻𝐿

(

2𝛼𝜏
𝑖𝐻
𝑒
2𝛼𝜏𝑖𝐻

+ 𝑒
−2𝛼𝜏𝑖𝐻

− 1

(2𝛼)
2

−

2𝛼𝜏
𝑖𝐿
𝑒
2𝛼𝜏𝑖𝐻

+ 𝑒
−2𝛼𝜏𝑖𝐿

− 1

(2𝛼)
2

)




𝜙





2

≤ 𝜏
𝑖𝐻𝐿

𝑑
𝑖𝐻𝐿





𝜙





2

(64)

with 𝑑
𝑖𝐻𝐿

= (𝑐
𝑖𝐻
𝜏
2

𝑖𝐻
− 𝑐
𝑖𝐿
𝜏
2

𝑖𝐿
) and 𝑐

𝑖𝐿
= (2𝛼𝜏

𝑖𝐿
𝑒
2𝛼𝜏𝑖𝐻

+

𝑒
−2𝛼𝜏𝑖𝐿

− 1)/(2𝛼𝜏
𝑖𝐿
)
2. Consider

𝑉
3
(0, 𝑥
0
) ≤

𝑚

∑

𝑖=1

(𝜅
31𝑖
𝑐
𝑖𝐻
𝜏
3

𝑖𝐻
+ 𝜅
32𝑖
𝜏
𝑖𝐻𝐿

𝑑
𝑖𝐻𝐿

)




𝜙





2

. (65)

Therefore, from (55), (61), and (65), it follows that size

𝑉 (0, 𝑥
0
)

≤ (𝑝 + 𝛽 +

𝑚

∑

𝑖=1

(𝜅
21𝑖
𝜏
𝑖𝐿
+ (𝜅
22𝑖
+ 𝜅
23𝑖
+ 𝜅
24𝑖
]) 𝜏
𝑖𝐻

+ 𝜅
31𝑖
𝑐
𝑖𝐻
𝜏
3

𝑖𝐻
+ 𝜅
32𝑖
𝜏
𝑖𝐻𝐿

𝑑
𝑖𝐻𝐿

))




𝜙





2

.

(66)

Remark 4. If the delayed nonlinear disturbances are allowed
to be of large size in the sense that the constants 𝛿

(⋅)2
char-

acterizing the upper-bounding functions are large enough
in (6), then the radius 𝑟 of the closed ball 𝐵(0, 𝑟) becomes
accordingly larger according to their values provided in
the statement of Theorem 3. That means that if the system
is globally exponentially practically stable, then the radius
of the residual ball 𝐵(0, 𝑟) increases as the constants 𝛿

(⋅)2

increase. As a result, then the uncertainty about how far
is the state-trajectory solution from zero becomes larger as
those constants increase. Thus, to a larger disturbance, it
corresponds to a larger uncertainty about the final deviation
of the trajectory from the origin.

Remark 5. On the other hand, if the size of the nonlinear
perturbations is allowed to be large in the sense that the
constants 𝛿

(⋅)1
are large enough, then there is trade-off

between the values of 𝜅
1
and the maximum matrix measure

𝜇(𝐴) of 𝐴 so as to ensure that 𝜂 > 0 in Theorem 3. However,
note that if the constant 𝜅

1
is large, then the constant 𝜖 is

requested to be accordingly large. As a result, 𝐴(𝑡) should
have a sufficiently large absolute stability abscissa for all time
in order to compensate for the effects of the perturbations
while satisfying the Lyapunov-like matrix equality (9).

Remark 6. Note also from Theorem 3 that the radius of the
residual ball 𝐵(0, 𝑟) also increase with the squared upper-
bounds of the delays and the squared differences between
those upper-bounds and the corresponding delay lower-
bounds as well as on certain exponential functions of the
maximum delay sizes.

4. Examples

Example 1. Consider the nonautonomous system with non-
linear time-delay perturbation (3) with time-varying delay
𝜏
1
(𝑡) = 𝜏

1
cos2(0.45𝑡):

𝑓
1
(𝑡, 𝑥 (𝑡 − 𝜏

1
(𝑡)))

=
[

[

−𝛿 sin (𝑡) 𝑥
2
(𝑡 − 𝜏
1
(𝑡)) + 𝛿

2
∗ cos( 𝑡

1 + 𝑥
2

1

)

𝛿 cos (𝑡) 𝑥
1
(𝑡 − 𝜏
1
(𝑡))

]

]

,

(67)
where 𝜏

1
, 𝛿 > 0, 𝛿

2
≥ 0 will be chosen later, and

𝐴 (𝑡) = [

𝑎 (𝑡) 1

−1 𝑎 (𝑡)

] , (68)

where 𝑎(𝑡) = −0.5 cos(𝑡)−10𝑒10−sin(𝑡)−5.1𝑒− sin(𝑡)−1,𝐴
𝑖
(𝑡) = 0

and 𝑞
𝑖
= 0 for (𝑖 = 1, . . . , 𝑚). By computation, we obtain

𝜇(𝐴) ≈ −81033.741.

Let
𝛽 = 0.01, 𝛼 = 1, 𝜇 = 0.9, ] = 1.1,

𝜏
1𝐻

= 𝜏
1
, 𝜏

1𝐿
= 0 ⇒ 𝜏

1𝐻𝐿
= 𝜏
1𝐻
,

𝛿
1
= 𝛿
11
= 𝛿, 𝛿

12
= 𝛿
2
,

𝜅
1
= 𝑒
10

, 𝜅
211

= 0, 𝜅
221

= 0, 𝜅
231

= 𝑒
10

,

𝜅
241

= 0 ⇒ 𝜅
21
= 𝑒
10

,

𝜅
311

=

1

𝜏
2

1𝐻
exp (2𝛼𝜏

1𝐻
)

, 𝜅
321

= 0,

⇒ 𝜅
31
=

1

exp (2𝛼𝜏
1𝐻
)

.

(69)

Then
𝜖 = 2 (𝑝 + 𝛽) 𝛿

01
+ 2𝛼𝛽 + 𝜅

21

+ 𝜅
31
𝑒
2𝛼𝜏1𝐻

+ 𝜅
1
= 1.02 + 2𝑒

10

> 0.

(70)
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Table 1

Delay bound (𝜏
1𝐻
) 2 4 6 8 10

Perturbation bound 𝛿
1

3465.679 469.028 63.476 8.591 1.163
Estimated value of 𝛾 2098.897 2968.276 3635.376 4197.767 4693.245

We can verify that a solution 𝑃(𝑡) is given by

𝑃 (𝑡) =

[

[

[

[

𝑒
sin(𝑡)

10

0

0

𝑒
sin(𝑡)

10

]

]

]

]

. (71)

We have 𝑝 = sup
𝑡∈R+‖𝑃(𝑡)‖ = 𝑒/10,

𝛿
1
<

√𝜅
231
𝑒
−2𝛼𝜏1𝐻 (1 − 𝜇) (𝜅

1
− 2𝛽𝜇 (𝐴))

(𝑝 + 𝛽)

,

𝜅
1
= 𝑒
10

> 2𝛽𝜇 (𝐴) = −1620.67,

𝜂 = 𝜅
1
− 2𝛽𝜇 (𝐴) −

(𝑝 + 𝛽)
2

𝛿
2

𝜅
231
𝑒
−2𝛼𝜏1𝐻 (1 − 𝜇)

> 0,

𝜂
𝜁
= (1 − 𝜁

2

) (𝜅
1
− 2𝛽𝜇 (𝐴)) > 0, where 𝛿 = 𝜁𝛿

1
, 𝜁 < 1,

𝛾 =
√

𝑝 + 𝛽 + 𝜅
231
𝜏
1𝐻

+ (𝑐
1𝐻
𝜏
1𝐻
/𝑒
2𝛼𝜏1𝐻

)

𝛽

with 𝑐
1𝐻

=

2𝛼𝜏
1𝐻
𝑒
2𝛼𝜏1𝐻

+ 𝑒
−2𝛼𝜏1𝐻

− 1

(2𝛼𝜏
1𝐻
)
2

,

𝑟 = √
(𝑝 + 𝛽)

2

2𝛼𝛽𝜂
𝜁

𝛿
2
=

12.95910
−3

√1 − 𝜁
2

𝛿
2
.

(72)

If we take 𝜁 = 0.9, then 𝑟 = 29.7310−3𝛿
2
.

We see that the perturbation bound 𝛿
1
in this example is

the same as in [5] if 𝛿
2
= 0 and is better than [4], as shown in

Table 1. The simulation of this example is shown in Figures 1
and 2.

Example 2. Consider the following second-order differential
system:

�̇�
1
= −5𝑥

1
+ 𝑥
2
(𝑡 − 0.1) + cos( 𝑥

1

1 + 𝑡
2
)

+ 0.02 sin (𝑥
1
(𝑡 − 0.1) + 0.5) ,

�̇�
2
= −𝑥
1
(𝑡 − 0.1) − 5𝑥

2
,

(73)
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Figure 1: The trajectories of 𝑥
1
.

with

𝐴 = [

−5 0

0 −5

] ; 𝜆max (𝐴) = −5; 𝜇 (𝐴) = −5;

𝐴
1
= [

0 1

−1 0

] ; 𝜏
1𝐿
= 0; 𝜏

1
= 𝜏
1𝐻

= 0.1; 𝜇 = 0;

𝑓
0
(𝑡, 𝑥) =

[

[

cos( 𝑥
1

1 + 𝑡
2
)

0

]

]

; 𝛿
01
= 0; 𝛿

02
= 1

𝑓
1
(𝑡, 𝑥 (𝑡 − 1)) = [

0.02 sin (𝑥
1
(𝑡 − 0.1) + 0.5)

0

] ;

𝛿
11
= 0.02; 𝛿

12
= 0.1,

(74)

𝑥 = (𝑥
1
, 𝑥
2
)
𝑇

∈ R2. Hence, using (25), we obtain 𝛿
1
=

0.02; 𝛿
2
= 1.1.

The matrix

𝑃 (𝑡) = [

𝑝
11

𝑝
12

𝑝
12

𝑝
22

] (75)

can be computed as follows:

𝑝
11
= 𝑝
22
= −𝛽 + 𝑞

1
(5 − 𝛼) ,

𝑝
12
= √𝑞
1
⋅ √−10𝛽 + 2𝛼𝛽 + 𝑞

1
(𝛼 − 5)

2

− 𝜖

(76)
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Figure 2: The trajectories of 𝑥
2
.

such that the constant

𝛼 < 5, 𝑞
1
∈ ]

2𝛽

(5 − 𝛼)

, 𝜅
231
𝑒
−2𝛼𝜏1𝐻

[ ,

0 < 𝜖 ≤ −10𝛽 + 2𝛼𝛽 + 𝑞
1
(𝛼 − 5)

2

,

𝛼 = 1, 𝛽 = 0.001, 𝑞
1
= 0.0010489,

𝜅
1
= 0.02 > −10𝛽 = −0.01,

𝜅
211

= 0, 𝜅
221

= 0,

𝜅
241

= 0 ⇒ 𝜅
21
= 𝜅
231

= 0.001282,

𝜅
311

= 0.16374, 𝜅
321

= 0, ⇒ 𝜅
31
= 0.0016374.

𝑝
11
= 𝑝
22
= 0.00319,

𝑝
12
= 0.00125 ⇒ 𝑝 = 0.00445,

𝛿
1
= 0.02 < 0.0206,

𝜂 = 6.8310
−4

> 0,

𝛾 = √

𝑝 + 𝛽 + 𝜅
231
𝜏
1𝐻

+ 𝜅
311
𝑐
1𝐻
𝜏
3

1𝐻

𝛽

= 2.416

with 𝑐
1𝐻

=

2𝛼𝜏
1𝐻
𝑒
2𝛼𝜏1𝐻

+ 𝑒
−2𝛼𝜏1𝐻

− 1

(2𝛼𝜏
1𝐻
)
2

,

𝑟 =

(𝑝 + 𝛽)𝑀

√2𝛼𝛽𝜂

= 5.13 with 𝑀 = 𝛿
2

(77)

in such a way that condition (12) in Theorem 3 is satisfied.
The result of the simulation of this example is depicted

in Figure 3. The evolution of states 𝑥
1
and 𝑥

2
is given. It is

shown in Figure 1 that the time-delay perturbed system is
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Figure 3: Convergence of solutions.

globally uniformly practically exponentially stable toward a
neighborhood of the origin.

5. Conclusion

Based on improved Lyapunov-Krasovskii functional for per-
turbed systems with time-varying delay, we have presented
new sufficient conditions for global uniformly exponential
practical stability toward a certain ball neighborhood of the
origin. The perturbations are assumed to be nonlinear, in
general, with delayed contributions. The delayed contribu-
tions of such perturbations are not necessarily boundedwhile
they are upper-bounded by known nonnegative integrable
functions which are linear functions of the various time-
delayed state norms. The point delays are assumed to be
unknown bounded time-differentiable functions of timewith
known lower- and upper-bounds and known upper-bounds
of their time-derivatives.
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