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Light propagation is analyzed in a negative refraction material (NRM) with gain achieved by pumping. An inherent spatial “walk-
off” between the directions of phase propagation and energy transfer is known to exist in lossy NRMs. Here, the analysis is extended
to the case where the NRM acts as an active material under various pumping conditions. It is shown that the condition for perfect
imaging is only possible for specific wavelengths under special excitation conditions. Under excessive gain, the optical imaging can
no longer be perfect.

1. Introduction

Negative refraction is known to offer a wide range of
potential applications [1–4]. However, losses, which are
an inherent feature of the negative refraction, present a
major impediment to the performance of NRMs [5–9]. To
overcome these problems, NRMs with gain were proposed
to compensate the losses, even to turn the materials into
amplified systems. Nevertheless, it is often stated that the
gain will destroy the negative refraction due to causality
considerations [10], although the statement was disputed
by a theory demonstrating that negative refraction may be
preserved in a limited spectral region [11, 12].

Common methods to introduce gain in NRMs include
optical parametric amplification (OPA) [13] and externally
pumped gain materials [14–18]. Optical imaging needs to
collect both propagating and evanescent waves. However,
only within a limited range may the wave vectors receive gain
from OPA because of the strict phase-matching condition,
the application of OPA to achieve perfect imaging in NRMs
is not possible.

In this paper, we demonstrate that, under the action of
the pumping gain, lossless and amplified light propagation
may occur in a special spectral window of the NRM.

The propagation behavior is shown to be closely related to
the dispersion and pumping configuration. Propagation in
NRMs is also examined in different pumping configurations.

1.1. Spatial “Walk-Off” in Lossy NRMs. Light incidents from
free space onto a homogeneous, isotropic, lossy NRM, of
permittivity εr(ω) = ε′ + iε′′ and permeability μr(ω) =
μ′ + iμ′′, were studied in detail [8]. The complex effective
refractive index is then defined as n2(ω) = εr(ω)μr(ω) or
n(ω) = n′ + in′′. In free space, the incident wave vector
�k is real, while in the lossy NRM, the wave vector

⇀
q =

qxx̂ + (q′z + iq′′z )ẑ is complex. At a given optical frequency ω,

this implies that
⇀
q

2 = n2(ω)k2 for both the propagating wave
(|qx| < |n(ω)k|) and the evanescent one (|qx| > |n(ω)k|).

To analyze light propagation in the NRM, the phase

and group velocities are expressed as
⇀
v p = (ω/|⇀q|2)

⇀
q and

⇀
v g = ∇ω(

⇀
q) = ((A − iB)/(A2 + B2))

⇀
q , where A =

d[Re(n2(ω))k2]/dω and B = d[Im(n2(ω))k2]/dω are deter-
mined by the NRM dispersion. The energy propagation is
approximately determined by the group velocity under the
assumption of low losses [19–21]. The Poynting vector can
also be used to define the energy propagation.
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For complex vectors
⇀
v p and

⇀
v g , the direction of the

phase propagation and energy transfer in the wave packet are
determined by their real parts [22]:

⇀
v p = ω

∣

∣�q
∣

∣

2

(

qxx̂ + q′zẑ
)

, (1)

⇀
v g = A

A2 + B2

(

qx x̂ + q′zẑ
)

+
B

A2 + B2
q′′z ẑ. (2)

In an ideal NRM, where the refractive index is negative
without losses, the phase velocity and group velocity are
strictly antiparallel [1, 19]. However, (1) and (2) show that
the group velocity is no longer antiparallel because of the
contribution of the last term in (2). This spatial “walk-off,”
that is, the noncollinearity between the phase propagation
and the energy transfer, becomes obvious in a homogenous,
isotropic, lossy NRM. The angle between the phase velocity
and the group velocity is

δ = θp + θg , (3)

with the “walk-off” angle defined as 180◦ − δ.
The propagation behavior is discussed here for both

propagating and evanescent waves. The dispersive curve is
described as the Lorentz model, with εr host(ω) = 1+ω2

p/(ω
2
p−

ω2 − iγ1ω), μr host(ω) = 1 + ω2
p/(ω

2
p − ω2 − iγ2ω), and

ωp = 100 × 1012 s−1, γ1 = 3 × 1012 s−1, γ2 = 5 × 1012 s−1 in
Figure 1(a) for the real and imaginary parts of the refractive
index. For a typical propagating wave with |qx| < |q|, the
size of the “walk-off” is numerically simulated as shown in
Figure 1(b). The analysis of the “walk-off” can be extended
to evanescent waves with |qx| > |q|, where it is found that
the “walk-off” dramatically increases with |qx|, also shown
in Figure 1(b).

For perfect focusing, the “walk-off” appearing at differ-
ent |qx| should be suppressed. It was shown that this goal
can be achieved by a pumping gain scheme [18]. Here, we
show, in a pumped four-level model of signal amplification,
that the realization of perfect imaging is possible only for a
specific wavelength under strict pumping condition.

2. NRMs with Pumping Gain

Four-level systems represent conventional gain media. The
intensity of light in a chosen spectral interval can be
amplified in NRMs by introducing an extra term in the
electrical field susceptibility [14, 17, 23]. It is assumed here
that the gain medium is pumped in the linear regime, and
no gain saturation arises. Accordingly, the population of the
ground level N1 (which can be considered as the population
of the gain medium) is much larger than in the other
three levels as per the usual pumping condition. With the

definition of polarization
⇀
P = χex ε0

⇀
E, the permittivity, with

the extra term in the susceptibility, is given by

εr(ω) = εrhost + χex

= 1 +
ω2
p

ω2
p − ω2 − iγ1ω

− σΓpump N1τ32/ε0

ω2
x − ω2 − iγex ω

.
(4)

As shown below, the last term of (4) is crucial to the
performance of the gain-compensated NRMs. The compo-
nents of the effective refractive index, n′ and n′′, are shown
in Figure 2.

Whereas the optical losses in the NRM can be effectively
compensated by pumping, as shown in Figure 2(b), an
amplification of the input signal is achievable; the elim-
ination of the “walk-off” depends on both the real and
imaginary parts of the refractive index. The ideal case is the
one with n′ = −1 and n′′ = 0, giving rise to perfect imaging
[1, 6]. However, as shown in Figure 2, this condition holds
only at the optimal frequency where ω = 121.28 × 1012 s−1

under appropriate pumping conditions.
Optical imaging with resolution above or below the

diffraction limit depends on the system’s ability to recover the
wavevector’s component for either propagating or evanes-
cent waves. Figure 3(b) shows the size of the “walk-off” for
different |qx| with the appropriate pumping rate of 0.21 ×
109 s−1. The propagating waves correspond to |qx| < |q|,
while the evanescent ones correspond to |qx| > |q|. After
introducing the pumping gain, a red shift is observed in the
n′ curve. At the optimal frequency (ω = 121.28 × 1012 s−1)
where n′ = −1, the angles between the group and phase
velocities are strictly antiparallel for all |qx|. Because of
the antiparallel directions of the energy transfer and phase
propagation, the spatial “walk-off” is suppressed, so that
the ability of directional transmission (for the propagating
waves) and perfect focusing (for evanescent waves in the
near-field) will be preserved. Thus, the pumping can effec-
tively cancel the losses only in a limited spectral region,
under appropriate pumping conditions. This conclusion is
in agreement with those reported in [11, 12].

By contrast, the propagation in an active NRM under
excessive pumping exhibits a peculiar behavior. Figure 3(c)
shows the “walk-off” angles at different |qx| for excessive
pumping rate (here Γpump = 0.48× 109 s−1) at the frequency
where n′ = −1 (here ω = 121.44 × 1012 s−1). The δ angles
are then larger than 180◦, indicating that the “walk-off”
reappears, with the respective angles 180◦ + δ. The “walk-
off” becomes more significant at larger |qx|. It also shows
that δ increases dramatically with the increase of |qx| for the
evanescent wave with |qx| > |q|. Hence, the perfect focus
for the near-field component is impossible under excessive
pumping. Notice that because of the red shift in n′(ω), the
“walk-off” is suppressed at the frequency of 121.20×1012 s−1,
where n′(ω) ≈ −1.3 (the red arrow in Figure 3(c)). However,
perfect lensing requires n′(ω) = −1 [1, 6], hence the perfect
focus cannot be obtained under excessive pumping.

In order to achieve perfect focusing, the pumping rates
should be reduced and the pumping central frequencies
should be blue-shifted, as shown in Figure 3(c). Light with
all values of |qx| can then perfectly focus through the slab.

3. Conclusions

To conclude, we have analyzed the effect of gain on the
negative refraction in NRMs. In a lossy NRM, even though it
is isotropic and homogeneous, the group and phase velocities
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Figure 1: (a) The refractive index of the NRM slab. The red and blue lines show the real and imaginary parts of the refractive index n(ω),
respectively. The frequency is ω = 121.67 × 1012 s−1, where εr(ω) ≈ μr(ω) ≈ −1 [15]. (b) �vp and �vg are not strictly antiparallel (δ < 180◦)
in the lossy NRM slab, featuring the “walk-off” angle about 3.2◦ at |qx| = 0.2|q|, 8.5◦ at |qx| = 0.5|q|, and 26.4◦ at |qx| = 1.2|q|. The carrier
frequency is ω = 121.67× 1012 s−1.
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Figure 2: The parameters for the four-level system are chosen as σ = 10−4 C2/kg (C stands for Coulomb), which is the strength of the
coupling between the gain material and the host NRM, γex = 0.76 × 1012 s−1 is related to the linewidth of the gain medium, ωx = 121.6 ×
1012 s−1 is the central pumping frequency, determined by the frequency difference between state 3 and state 2, at which n′(ω) ≈ −1 is
satisfied without the gain (see Figure 1(a)), and the decay time of the gain level 2 is τ32 = 5 × 10−12 s. The value of the occupation density
is set to be N1 = 5 × 1023 m−3. The pumping rates Γpump are assumed to be 0.12 × 109 s−1 for insufficient pumping, 0.21 × 109 s−1 for the
appropriate pumping (to be discussed below), and 0.48 × 109 s−1 for the excessive pumping, respectively. (a) The real part of the refractive
index for different pumping amplitudes. A red shift of the frequency is observed at n′ = −1. (b) The imaginary part of the refractive index
for different pumping amplitudes. Loss-free windows (intervals of amplification) are revealed by the n′′ curves. Increasing the pumping rate
may compensate the losses, or even turn the material into an active medium.
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Figure 3: The “walk-off” angles as function of frequencyω in an active (pumped) NRM. The dashed line in all the plots shows the frequencies
at which n′(ω) = −1. (a) The blue line is the spatial “walk-off” angle with the pumping rate of Γpump = 0.21 × 109 s−1 at |qx| = 0.01|q|.
Both losses and the “walk-off” within the gain window are precisely canceled. (b) The δ angles obtained at the pumping rate of Γpump =
0.21× 109 s−1. The group velocities and phase velocities are strictly antiparallel in this case (δ = 180◦) at different |qx| when n′(ω) = −1 (at
ω = 121.28× 1012 s−1). (c) The δ angles obtained at the pumping rate of Γpump = 0.48× 109 s−1. Even though at this pumping rate the NRM
is turned into a light-amplifying medium, the spatial “walk-off” reappears and depends on the value of |qx| when n′(ω) = −1, which may
lead to degradation of the optical performance of an NRM.

are not strictly antiparallel, yielding a spatial “walk-off”,
which may restrict the applications of NRMs in a variety of
fields. By introducing gain, losses can be effectively reduced,
and light amplification can be realized within a narrow
spectral range. Appropriately setting the gain to strictly
cancel the losses, the “walk-off” for both propagating and
evanescent waves can be effectively eliminated for all values
of |qx|, leading to an ideal NRM. However, for excessively
pumped NRMs, the spatial “walk-off” reappears. Thus, the
use of optical pumping to realize perfect imaging is restricted
to a very narrow spectral region, under precisely defined

pumping conditions. An alternative method of overcoming
NRM losses without signal distortion may involve self-
induced transparency (SIT) solitons, which were predicted in
metamaterials [24], in analogy with SIT in other resonantly
absorbing structures [25, 26].
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