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As heat-dried biosolids become more widely produced and marketed, it is important to improve estimates of N availability
from these materials. Objectives were to compare plant-available N among three different heat-dried biosolids and determine if
current guidelines were adequate for estimating application rates. Heat-dried biosolids were surface applied to tall fescue (Festuca
arundinacea Schreb.) in Washington State, USA, and forage yield and N uptake measured for two growing seasons following
application. Three rates of urea and a zero-N control were used to calculate N fertilizer efficiency regressions. Application year
plant-available N (estimated as urea N equivalent) for two biosolids exceeded 60% of total N applied, while urea N equivalent for
the third biosolids was 45%. Residual (second-year) urea N equivalent ranged from 5 to 10%. Guidelines for the Pacific Northwest
USA recommend mineralization estimates of 35 to 40% for heat-dried biosolids, but this research shows that some heat-dried
materials fall well above that range.

1. Introduction

Heat-dried biosolids are convenient to use in a variety of
applications. The Class A heat-dried product is suitable as
a fertilizer on lawns and gardens as well as for agricultural
crops. Heat-dried biosolids are easy to transport and handle
and are applied like inorganic fertilizers, except at higher
rates.

Because a large proportion of the nitrogen (N) in
biosolids is in organic form, biosolids act as a slow-release
N source, dependent on biological transformation of the
organic N into available forms. Accurate estimates of the
mineralization rate of biosolids N are critical to developing
application rate recommendations that meet plant needs
without compromising environmental quality. Smith and
Durham [1] used laboratory incubation to compare five
different biosolids sources with and without heat drying,
and found that the mineralization rates of the heat-dried
biosolids were more than double the undried (dewatered
only) materials. This rapid mineralization more than com-
pensated for the lower initial ammonium N in the heat-
dried biosolids. Rigby et al. [2] observed similar results in
a field incubation, estimating mineralizable N from heat-
dried biosolids at twice that for dewatered biosolids. Mat-

suoka et al. [3] and Moritsuka et al. [4] produced heat-dried
biosolids in an experimental scale vessel reaching final tem-
peratures of 120 and 180◦C. They found increased available
N in the 120◦C heat-dried biosolids compared with undried
biosolids in laboratory incubation and pot studies. Heat
drying to a final temperature of 180◦C reduced available N.

Few quantitative field estimates of N availability from
heat-dried biosolids have been published. Cogger et al. [5]
estimated 32% and 44% first-year plant available N% (PAN)
for two heat-dried biosolids compared with ammonium
nitrate applied to tall fescue (Festuca arundinacea Schreb.)
in western Washington State, USA. Plant-available N%
from dewatered and air-dried biosolids ranged from 29 to
43% in the same study. Gavalda et al. [6] reported 45%
PAN (estimated as urea N equivalent) in a field study on
maize (Zea mays L.) in southwestern France. In a long-
term comparison of one heat-dried and one dewatered Class
A biosolids, Cogger et al. [7] found the heat-dried and
dewatered biosolids had similar long-term N availability
following repeated applications.

As heat-dried biosolids become more widely produced
and marketed, it is important to improve our understanding
of N availability from these materials. In this study we com-
pare two heat-dried biosolids from new facilities in western
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Table 1: Biosolids nitrogen, pH, and solids.

Biosolids dry product Total N (g kg−1) Ammonium-N (g kg−1) C: N Solids (g kg−1) pH

Soundgro 57 3.5 5.4 950 7.0

Milorganite 63 2.5 5.4 960 6.2

Sumner 51 2.5 6.1 890 6.7

Table 2: Particle size distribution of biosolids dry products.

>4.76 mm 2 to 4.76 mm 1 to 2 mm 0.425 to 1 mm <0.425 mm

Percent

Soundgro 0 53 33 13 <1

Sumner 7 40 37 14 2

Milorganite 0 13 72 14 0

Washington with Milorganite, a well-established heat-dried
product from Milwaukee, WI, USA. Our objectives were to
compare amount and timing of N availability among these
materials and determine if current guidelines were adequate
for estimating application rates.

2. Methods

2.1. Biosolids. Heat-dried biosolids sources included Milor-
ganite, Soundgro from Pierce County, WA, and Sumner
biosolids from the City of Sumner, Washington. Milorganite
is marketed nationally as a lawn fertilizer. Milorganite is
dried in a rotary kiln drier at 450–650◦C for 40 minutes. It
was at the high end of the range of first-year PAN (44%)
in the Cogger et al. [5] study cited above. Pierce County
began producing Soundgro in 2006. Soundgro is dried in
a rotating drum Andritz dryer with an inlet temperature
of 455 to 480◦C and outlet temperature of 100◦C (Andritz
Group; Gras, Austria). The facility at Sumner, Washington
also opened in 2006. It produces heat-dried biosolids on a
smaller scale using a Fenton dryer (Fenton Environmental
Technologies, Inc; Brownwood, Tex, USA). The Fenton
process at the Sumner plant uses thermal oil indirect drying
at 150◦C for four hours. Annual production is approximately
39,000 Mg yr−1 for Milorganite, 2200 Mg yr−1 for Soundgro,
and 270 Mg yr−1 for Sumner biosolids, on a dry weight basis.
Biosolids properties are shown in Tables 1 and 2.

2.2. Field Experiment. The experiment was done at the
Washington State University Puyallup Research and Exten-
sion Center, located in western Washington State, 60 km
south of Seattle. The soil is a Puyallup fine sandy loam (coarse
loamy over sandy, mixed, isotic, mesic Vitrandic Haploxe-
rolls) as classified by the US Department of Agriculture
Soil Taxonomy [8]. It is a deep, well-drained soil formed in
recent alluvium, and contains 470 g kg−1 sand, 460 g kg−1 silt,
70 g kg−1 clay, and 16 g kg−1 organic C. The climate is typical
of the maritime Pacific Northwest with cool, wet winters, and
mild, dry summers. Mean January temperature is 4◦C, mean
July temperature is 18◦C, and mean annual precipitation is

1020 mm. A pronounced summer dry season necessitates
supplemental irrigation for crops and pastures most years.

A stand of tall fescue “A.U. Triumph” was established in
2005 and maintained with irrigation, inorganic fertilizers,
mowing, and harvesting until the start of the experiment.
The experiment consisted of two trials on adjacent areas
of the tall fescue stand. Trial A began in 2007 and Trial
B in 2008. Each trial was a randomized complete block
design with 10 treatments and four replications. Individual
plots measured 1.6 × 4.6 m. Treatments included three
heat-dried biosolids (Pierce County Soundgro, Sumner, and
Milorganite) each applied at a single rate, but at two timings
(all in April, or split between April and June) for a total
of six biosolids treatments (Table 3). The remaining four
treatments were three inorganic N (urea) rates and a zero-
N control (Table 3). Biosolids and inorganic N treatments
were applied by hand to the surface of the tall fescue stand
with no incorporation. Each trial was continued through two
growing seasons, to evaluate application year and residual
year response to the biosolids applications.

Initial application rates were estimated to supply
250 kg ha−1 plant available N based on 40% availability of
N from the heat-dried biosolids [9]. Tall fescue showed
less response to the Sumner biosolids than to Soundgro
or Milorganite in a short-season preliminary experiment
in 2006 (data not shown), so the Sumner biosolids were
applied at higher rates in Trials A and B (Table 3). Rates
for all biosolids in Trial B (2008) were adjusted downward
based on the 2007 results. Urea N rates ranged from 90 to
270 kg ha−1 N split over four applications in 2007, and were
increased to 112 to 336 kg ha−1 N split over five applications
in 2008 and 2009. In the residual (second) year of both trials
no biosolids applications were made, but all biosolids plots
received 168 kg ha−1 N as urea split over five applications
(Table 3) to maintain grass vigor and obtain values for grass
yield and N uptake near the center of the urea fertilizer
response curves.

At the beginning of the experiment soil pH was 6.5.
Ammonium acetate extractable K was 125 mg kg−1, Ca
5.5 cmolc kg−1, Mg 0.4 cmolc kg−1, and Bray-1 extractable
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Table 3: Biosolids and urea N fertilizer application amounts and timing for the ten treatments.

Annual application rate (kg ha−1 total N)

Year N source
Application

timing
Application

dates
Soundgro Milorg Sumner

Zero N
Control

Low
Urea

Med
Urea

High
Urea

Trial A

Application Yr 2007
Biosolids Single (1X) 16 Apr 630 592 907

Biosolids
Split

(0.5× 2 appl)
16 Apr, 14 Jun 630 592 907

Urea
Split

(0.25× 4 appl)
17 Apr to 20 Jul 0 90 180 270

Residual Yr 2008
Biosolids

Split
(0.2× 5 appl)

5 Mar to 8 Aug 168 U∗ 168 U 168 U

Biosolids
Split

(0.2× 5 appl)
5 Mar to 8 Aug 168 U 168 U 168 U

Urea
Split

(0.2× 5 appl)
5 Mar to 8 Aug 0 112 224 336

Trial B

Application Yr 2008
Biosolids Single (1X) 25 Apr 441 414 635

Biosolids
Split

(0.5× 2 appl)
25 Apr, 3 Jul 441 414 635

Urea
Split

(0.2× 5 appl)
25 Apr to 12 Sep 0 112 224 336

Residual Yr 2009
Biosolids

Split
(0.2× 5 appl)

4 Mar to 22 Jul 168 U 168 U 168 U

Biosolids
Split

(0.2× 5 appl)
4 Mar to 22 Jul 168 U 168 U 168 U

Urea
Split

(0.2× 5 appl)
4 Mar to 22 Jul 0 112 224 336

168 U: In residual yr, 168 kg N ha−1 of urea-N applied to all biosolids treatments, following same urea application schedule as urea the treatment plots.

Table 4: Monthly mean temperature, monthly precipitation, and irrigation applied during the growing season, March–October 2007–2009.

Mean temperature Precipitation Irrigation

2007 2008 2009 2007 2008 2009 2007 2008 2009
◦C mm mm and (number)

March 8.6 5.8 5.6 138 86 121

April 9.6 7.7 9.1 32 46 87

May 12.5 13.2 12.8 28 22 77 38 (2)

June 15.1 14.3 16.9 32 27 13 51 (2) 25 (1) 58 (3)

July 18.8 17.2 19.6 29 23 0 51 (2) 71 (3) 89 (4)

August 16.9 17.9 17.7 42 47 30 51 (2) 25 (1) 18 (1)

September 14.2 14.4 15.3 54 9 70 23 (1) 25 (1) 18 (1)

October 9.4 9.9 10.3 90 63 133

Numbers in parentheses in irrigation columns are number of irrigations in that month.

P 255 mg kg−1. Soil test P and Ca were adequate for grass
forage production, while K was low, and Mg borderline
[10]. To ensure adequate levels of all nutrients except N,
all plots received supplemental potassium (176 kg ha−1 K),
sulfur (45 kg ha−1), and magnesium (22 kg ha−1) applied
as KCl (0-0-62) and K2SO4·2MgSO4 (0-0-22-22 S-11 Mg)
each spring. The tall fescue was irrigated as needed to
prevent moisture stress and maintain growth throughout the
summer. Growing season rainfall, irrigation, and temper-

atures during the experimental period are summarized in
Table 4.

The tall fescue was harvested six times per year at the
early boot stage using a small-plot forage harvester. A 1 ×
4.6 m swath was harvested from each plot at a height of 5 cm.
Because the initial biosolids applications were made after the
first harvest of the application year, only five harvests are
included in the application year experimental period for both
trials. The second (residual) year includes all six harvests.
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Figure 1: Comparison of single and split biosolids applications on
tall fescue dry matter yield by harvest, Trial A application year.

The harvested forage from each plot was weighed wet, and
a subsample (approximately 500 g) was collected and oven
dried at 55◦C to determine dry matter. The dried subsample
was then ground and analyzed for total N.

Soils from selected plots (Soundgro and Sumner split
application and 270 kg ha−1 urea N) were sampled in Octo-
ber 2007 to determine residual soil nitrate-N at the onset of
the rainy season. Samples were collected in 30 cm increments
to a depth of 90 cm using a hydraulic probe with a 4 cm
diameter. A minimum of three subsamples per depth and
plot were collected and composited.

Total N was determined for biosolids and grass sam-
ples using a combustion analyzer (LECO Instruments,
St. Joseph, MI). Biosolids ammonium N and soil nitrate
N concentrations were measured after extraction with
2 M KCl. Ammonium-N was determined using an auto-
mated salicylate-nitroprusside method and nitrate-N deter-
mined by an automated cadmium reduction method [11].

2.3. Data Analysis. Nitrogen uptake was calculated as the
product of the yield and N concentration of the grass
tissue. Statistics for yield and N uptake from the biosolids
treatments were computed by ANOVA using a factorial
design and the SAS General Linear Models procedure [12].

Apparent N recovery N from the biosolids was calculated
in a two-step process. First, we used a linear regression of the
N uptake at the different urea rates to calculate the fertilizer
uptake efficiency of urea and background soil N availability:

N uptake = urea efficiency×N rate + background soil N,
(1)

where

(i) N rate is the amount of urea N applied at each rate
(kg ha−1),

(ii) urea efficiency is the slope of the N uptake versus N
rate regression (unitless) and represents the propor-
tion of urea N taken up into the harvested fescue,

(iii) background soil N (kg ha−1) is the intercept and
represents fescue N uptake from the unamended soil,

Separate equations were calculated for each trial each
year. Because clover became established in the zero-N plots
in 2008 and 2009 and added fixed N to the system, we did
not include N uptake from those plots in the urea regression
equations after 2007, using only the fertilized plots for those
years.

Apparent N recovery is an estimate of N uptake from
the biosolids. It is the difference between N uptake from
the biosolids treatment and N uptake in the zero-N control
plots (assumed to be background soil N). When expressed as
a percentage of total N applied, it estimates the fraction of
the biosolids N captured in the harvested plant tissue. We
calculated apparent N recovery for the application year of
each trial by subtracting the intercept of the appropriate urea
regression from the biosolids N uptake for the same trial.
Dividing by the biosolids total N applied gives the apparent
N recovery percentage:

Apparent N recovery %

=
{(

treatment N uptake− background soil N
)

applied N

}
× 100,

(2)

where

(i) treatment N uptake (kg ha−1) is the amount of N
captured in the harvested portion of the fescue for
each treatment,

(ii) applied N (kg ha−1) is the total amount of N applied
in each biosolids treatment.

For the residual year of each trial, we modified the
apparent N recovery equation to account for the 168 kg ha−1

that was applied to all of the biosolids treatments that year:

Apparent N recovery %

=
{(

treatment N uptake−N168
)

applied N

}
× 100,

(3)

where

(i) N168 represents N uptake from the 168 kg ha−1 urea
N treatment, derived from the appropriate urea N
uptake regression for each trial.

Plant-available N (PAN) is an estimate of N release from
the biosolids. PAN differs from apparent N recovery in that it
includes available N that was not taken up into the harvested
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Table 5: Tall fescue dry matter yield and N uptake, Trials A and B, application year.

Biosolids Source Application Timing
Yield (Mg ha−1) N uptake (kg ha−1)

Trial A 2007 Trial B 2008 Trial A 2007 Trial B 2008

Soundgro
Single 13.0 9.8 371 259

Split 12.9 10.8 335 269

Sumner
Single 13.2 9.6 370 276

Split 13.1 10.6 355 281

Milorganite
Single 11.8 9.8 348 265

Split 13.3 10.9 345 269

Significance
Source NS NS NS NS

Timing NS ∗∗ NS NS
∗∗

Signficant at P < .01
NS: Not significant (P > .05).

Table 6: Tall fescue dry matter yield and N uptake, Trials A and B, residual year.

Biosolids Source Application Timing
Yield (Mg ha−1) N uptake (kg ha−1)

Trial A 2008 Trial B 2009 Trial A 2008 Trial B 2009

Soundgro
Single 11.4 10.9 253 231

Split 10.9 11.1 236 246

Sumner
Single 11.7 11.3 262 248

Split 11.3 11.0 250 242

Milorganite
Single 10.1 10.1 220 214

Split 10.8 10.7 236 227

Significance
Source ∗ NS ∗ ∗∗

Timing NS NS NS NS
∗

Significant at P < .05.
∗∗Significant at P < .01.
NS: Not significant.

Table 7: Apparent N recovery and urea N equivalent from biosolids, application year. Single and split application data pooled.

Apparent N recovery (kg ha−1) Apparent N recovery (%) Urea N equivalent (%)

Treatment Trial A 2007 Trial B 2008 Trial A 2007 Trial B 2008 Trial A 2007 Trial B 2008

Soundgro 240 159 38 36 61 72

Sumner 250 174 27 27 44 54

Milorganite 233 162 39 39 63 78

part of the plant. This could include N in roots and crowns,
or N lost to leaching or volatilization. PAN is used to compare
N availability among different soil amendments. In this study
we used urea N equivalent as a surrogate for PAN. Urea
N equivalent (expressed as % biosolids N) is calculated by
dividing the treatment apparent N recovery (%) by the urea
efficiency (slope) for the appropriate trial and year

Urea N equivalent %

=
(
biosolids treatment apparent N recovery %

)
urea efficiency

.

(4)

3. Results

3.1. Tall Fescue Yield and N Uptake. Tall fescue yield and N
uptake from the biosolids treatments in the application and

residual years are shown in Tables 5 and 6. Lower yields in
the Trial B application year compared with Trial A reflect
lower rates of biosolids application (Table 1). No treatment
interactions between biosolids source and application timing
were observed for either yield or N uptake. There was no
significant effect of biosolids source on tall fescue yield or N
uptake during the application year for either trial (Table 5).
The biosolids were not applied at uniform rates, however,
as the rate of the sumner product was about 50% higher
than Soundgro and Milorganite (Table 1). Biosolids source
did affect yield in the residual year of Trial A and N uptake in
the residual year of both trials with lower yield and N uptake
from Milorganite (Table 6).

Splitting the biosolids application over two dates had
only small effects on full-season tall fescue yield or N
uptake. The only significant effect was increased yield with
split application in the application year of Trial B. Split
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Table 8: Apparent N recovery and urea N equivalent from biosolids, residual year. Single and split application data pooled.

Apparent N recovery (kg ha−1) Apparent N recovery (%) Urea N equivalent (%)

Treatment Trial A 2008 Trial B 2009 Trial A 2008 Trial B 2009 Trial A 2008 Trial B 2009

Soundgro 35 28 6 6 9 10

Sumner 46 34 5 5 8 8

Milorganite 18 10 3 2 5 4
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Figure 2: Harvested tall fescue N uptake versus inorganic N (urea) rate.

applications did result in more uniform yields across harvests
in the application year (Trial A shown in Figure 1).

3.2. Biosolids Apparent N Recovery and Urea N Equivalent.
Urea N uptake regressions were used in the calculation of
biosolids apparent N recovery and urea N equivalent. A
separate urea uptake regression was calculated for each trial
each year (Figure 2). Intercepts (background soil N) were
similar across the regressions, but the slope (urea uptake

efficiency) was significantly lower in the Trial B application
year than in the other regressions.

Apparent N recovery % for the application year was
similar across the two trials and was similar between
Soundgro and Milorganite (Table 7). Apparent N recovery
% was lower for the Sumner biosolids. Apparent N recovery
% for Milorganite in this study (39%) was greater than
that reported in previous research (33%) [5]. Application
year urea N equivalent averaged 62% for Soundgro and
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Milorganite in Trial A and 75% in Trial B (Table 7). The very
high results in Trial B are likely an artifact of the low urea
uptake efficiency observed in the fertilizer plots for the Trial
B application year. Much less N was released in the residual
year, with urea N equivalent estimated from 8 to 10% of N
applied for the Soundgro and Sumner products, and 4 to 5%
for Milorganite (Table 8).

Postharvest soil nitrate N was low in the samples
collected in 2007, and not different among the treatments
sampled, averaging 4.0 mg kg−1 in the 0 to 30 cm depth,
2.8 mg kg−1 at 30 to 60 cm, and 2.7 mg kg−1 and 60 to 90 cm.
This is consistent with results from treated and control
plots in previous biosolids experiments done under similar
conditions [7] and indicates little potential for leaching loss
from the plots.

First-year available N from Milorganite and Soundgro
was higher than previously reported for heat-dried biosolids
under field conditions [5, 6]. Similarly high first-year
available N has been observed in laboratory incubations [1].
They reported 58 to 59% available N from lab incubations of
three heat-dried biosolids. The Sumner biosolids had lower
available N, but still equal to or greater than observed for
biosolids produced without heat drying. Second-year urea
N equivalent in this study was similar to field PAN values
for heat-dried biosolids reported previously [5, 6]. The heat
dried biosolids all tended to release N rapidly, with most
of the yield response occurring in the first two harvests
following an application (Figure 1).

These results show that first year available N (as urea
N equivalent) for Milorganite and Soundgro exceed 60%,
which is greater than previously reported in the literature.
Current guidelines for the Pacific Northwest of the USA
recommend using mineralization estimates of 35 to 40%
for heat-dried biosolids [9], but this research shows that
at least some heat-dried materials fall above that range,
meaning that these materials are effective at lower application
rates. We expect these results can be extended to other
temperate regions with adequate growing season rainfall or
irrigation, based on the results of a previous multilocation
field and modeling study of biosolids N availability [13].
Future research is needed to determine the relationship
between specific heat drying processes and available N to
improve estimates of N release from heat-dried products.
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